Articles | Volume 12, issue 1
https://doi.org/10.5194/gmd-12-215-2019
https://doi.org/10.5194/gmd-12-215-2019
Development and technical paper
 | 
14 Jan 2019
Development and technical paper |  | 14 Jan 2019

Implementation and performance of adaptive mesh refinement in the Ice Sheet System Model (ISSM v4.14)

Thiago Dias dos Santos, Mathieu Morlighem, Hélène Seroussi, Philippe Remy Bernard Devloo, and Jefferson Cardia Simões

Related authors

A new vertically integrated MOno-Layer Higher-Order (MOLHO) ice flow model
Thiago Dias dos Santos, Mathieu Morlighem, and Douglas Brinkerhoff
The Cryosphere, 16, 179–195, https://doi.org/10.5194/tc-16-179-2022,https://doi.org/10.5194/tc-16-179-2022, 2022
Short summary
Assessment of numerical schemes for transient, finite-element ice flow models using ISSM v4.18
Thiago Dias dos Santos, Mathieu Morlighem, and Hélène Seroussi
Geosci. Model Dev., 14, 2545–2573, https://doi.org/10.5194/gmd-14-2545-2021,https://doi.org/10.5194/gmd-14-2545-2021, 2021
Short summary
The transferability of adjoint inversion products between different ice flow models
Jowan M. Barnes, Thiago Dias dos Santos, Daniel Goldberg, G. Hilmar Gudmundsson, Mathieu Morlighem, and Jan De Rydt
The Cryosphere, 15, 1975–2000, https://doi.org/10.5194/tc-15-1975-2021,https://doi.org/10.5194/tc-15-1975-2021, 2021
Short summary
Results of the third Marine Ice Sheet Model Intercomparison Project (MISMIP+)
Stephen L. Cornford, Helene Seroussi, Xylar S. Asay-Davis, G. Hilmar Gudmundsson, Rob Arthern, Chris Borstad, Julia Christmann, Thiago Dias dos Santos, Johannes Feldmann, Daniel Goldberg, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, Gunter Leguy, William H. Lipscomb, Nacho Merino, Gaël Durand, Mathieu Morlighem, David Pollard, Martin Rückamp, C. Rosie Williams, and Hongju Yu
The Cryosphere, 14, 2283–2301, https://doi.org/10.5194/tc-14-2283-2020,https://doi.org/10.5194/tc-14-2283-2020, 2020
Short summary

Related subject area

Cryosphere
Tuning parameters of a sea ice model using machine learning
Anton Korosov, Yue Ying, and Einar Ólason
Geosci. Model Dev., 18, 885–904, https://doi.org/10.5194/gmd-18-885-2025,https://doi.org/10.5194/gmd-18-885-2025, 2025
Short summary
WRF-Chem simulations of snow nitrate and other physicochemical properties in northern China
Xia Wang, Tao Che, Xueyin Ruan, Shanna Yue, Jing Wang, Chun Zhao, and Lei Geng
Geosci. Model Dev., 18, 651–670, https://doi.org/10.5194/gmd-18-651-2025,https://doi.org/10.5194/gmd-18-651-2025, 2025
Short summary
Clustering simulated snow profiles to form avalanche forecast regions
Simon Horton, Florian Herla, and Pascal Haegeli
Geosci. Model Dev., 18, 193–209, https://doi.org/10.5194/gmd-18-193-2025,https://doi.org/10.5194/gmd-18-193-2025, 2025
Short summary
SnowQM 1.0: a fast R package for bias-correcting spatial fields of snow water equivalent using quantile mapping
Adrien Michel, Johannes Aschauer, Tobias Jonas, Stefanie Gubler, Sven Kotlarski, and Christoph Marty
Geosci. Model Dev., 17, 8969–8988, https://doi.org/10.5194/gmd-17-8969-2024,https://doi.org/10.5194/gmd-17-8969-2024, 2024
Short summary
Simulation of snow albedo and solar irradiance profile with the Two-streAm Radiative TransfEr in Snow (TARTES) v2.0 model
Ghislain Picard and Quentin Libois
Geosci. Model Dev., 17, 8927–8953, https://doi.org/10.5194/gmd-17-8927-2024,https://doi.org/10.5194/gmd-17-8927-2024, 2024
Short summary

Cited articles

Ainsworth, M. and Oden, J. T.: A Posterori Error Estimation in Finite Element Analysis, Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts, Wiley-Interscience, New York, NY, USA, 1st Edn., 2000.  a
Ainsworth, M., Zhu, J. Z., Craig, A. W., and Zienkiewicz, O. C.: Analysis of the Zienkiewicz–Zhu a-posteriori error estimator in the finite element method, Int. J. Numer. Meth. Eng., 28, 2161–2174, https://doi.org/10.1002/nme.1620280912, 1989. a
Amestoy, P. R., Duff, I. S., L'Excellent, J.-Y., and Koster, J.: A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling, SIAM J. Matrix Anal. A., 23, 15–41, https://doi.org/10.1137/S0895479899358194, 2001. a
Amestoy, P. R., Guermouche, A., L'Excellent, J.-Y., and Pralet, S.: Hybrid scheduling for the parallel solution of linear systems, Parallel Comput., 32, 136–156, https://doi.org/10.1016/j.parco.2005.07.004, 2006. a
Anderson, D. A., Tannehill, J. C., and Pletcher, R. H.: Computational Fluid Mechanics and Heat Transfer, Series in computational methods in mechanics and thermal sciences, McGraw-Hill Book Company, USA, 1984. a
Download
Short summary
The reduction of numerical errors in ice sheet modeling increases the results' accuracy reliability. We improve numerical accuracy by better capturing grounding line dynamics, while maintaining a low computational cost. We implement an adaptive mesh refinement (AMR) technique in the Ice Sheet System Model and compare AMR simulations with uniformly refined meshes. Our results show that the computational time with AMR is significantly shorter than for uniformly refined meshes for a given accuracy.
Share