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Abstract. Accurate projections of the evolution of ice sheets
in a changing climate require a fine mesh/grid resolution in
ice sheet models to correctly capture fundamental physical
processes, such as the evolution of the grounding line, the re-
gion where grounded ice starts to float. The evolution of the
grounding line indeed plays a major role in ice sheet dynam-
ics, as it is a fundamental control on marine ice sheet stabil-
ity. Numerical modeling of a grounding line requires signif-
icant computational resources since the accuracy of its posi-
tion depends on grid or mesh resolution. A technique that im-
proves accuracy with reduced computational cost is the adap-
tive mesh refinement (AMR) approach. We present here the
implementation of the AMR technique in the finite element
Ice Sheet System Model (ISSM) to simulate grounding line
dynamics under two different benchmarks: MISMIP3d and
MISMIP+. We test different refinement criteria: (a) distance
around the grounding line, (b) a posteriori error estimator,
the Zienkiewicz–Zhu (ZZ) error estimator, and (c) different
combinations of (a) and (b). In both benchmarks, the ZZ error
estimator presents high values around the grounding line. In
the MISMIP+ setup, this estimator also presents high values
in the grounded part of the ice sheet, following the complex
shape of the bedrock geometry. The ZZ estimator helps guide
the refinement procedure such that AMR performance is im-
proved. Our results show that computational time with AMR
depends on the required accuracy, but in all cases, it is sig-
nificantly shorter than for uniformly refined meshes. We con-

clude that AMR without an associated error estimator should
be avoided, especially for real glaciers that have a complex
bed geometry.

1 Introduction

The uncertainty in projections of ice sheet contribution to
sea level rise in the next century remains large, primarily
due to the potential collapse of the West Antarctic Ice Sheet
(WAIS; Church et al., 2013; Jevrejeva et al., 2014; Ritz et al.,
2015; DeConto and Pollard, 2016). Projections of the col-
lapse of WAIS are based on the marine ice sheet instability
(MISI) hypothesis (Weertman, 1974; Mercer, 1978; Thomas,
1979). This hypothesis refers to ice sheets grounded below
sea level on retrograde bedrock slopes (as seen in Fig. 1), as
is the case for many glaciers in WAIS (Fretwell et al., 2013).
MISI states that the grounding line (GL), the region where
the ice sheet starts to float (see Fig. 1), cannot remain stable
on such bedrock slopes (Schoof, 2007b; Katz and Worster,
2010; Gudmundsson et al., 2012). Accordingly, the GL re-
treat on retrograde bedrock slopes causes increased ice dis-
charge, which in turn leads to further GL retreat, resulting
in a non-linear positive feedback. This self-sustaining GL
retreat persists until a prograde bedrock slope is reached.
Therefore, a change in climate or ocean can potentially force
a large-scale fast migration of the GL inland (Schoof, 2007a;
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Figure 1. Vertical cross-section of a marine ice sheet: marine ice
sheet (light blue), ocean (dark blue) and bedrock (brown). The po-
sition of the grounding line is implicitly defined by the level set
function, φgl, based on a hydrostatic floatation criterion (Seroussi
et al., 2014a).

Favier et al., 2014; Seroussi et al., 2014b). Recently, WAIS
has experienced an increase in the intrusion of ocean warm
deep water (Jacobs et al., 2011; Dutrieux et al., 2014) that
likely increased the ocean-induced melt under ice shelves, re-
duced the buttressing they provide to inland ice and triggered
the retreat of grounding lines around WAIS observed over the
last decades (Rignot et al., 2014; Christie et al., 2016; Kimura
et al., 2016; Seroussi et al., 2017).

Modeling this positive feedback requires the coupling of
different physical processes (ice sheet and ice shelf evolu-
tions, GL migration, basal friction, etc.), and the accuracy
of the result is highly dependent on the GL parameterization
and the spatial discretization of the domain. Vieli and Payne
(2005) compared the results of different ice sheet numerical
models in terms of GL migration and found that the numeri-
cal results have a strong dependency on horizontal grid size.
Analyzing the stability and dynamics of the GL on reverse
bed slopes, Schoof (2007b) pointed out that sufficiently high
grid resolution in the GL zone is a critical element to obtain
reliable numerical results. Two ice sheet model intercom-
parison projects (MISMIP and MISMIP3d) later confirmed
the GL dynamics dependency on spatial resolutions (Pattyn
et al., 2012, 2013).

Several marine ice sheet models have employed different
numerical schemes to overcome this mesh resolution require-
ment at the GL with reduced computational cost: by impos-
ing a flux condition at the GL position (Pollard and DeConto,
2009, 2012; Pattyn, 2017), by treating the GL and basal fric-
tion with sub-grid or sub-element schemes (Feldmann et al.,
2014; Leguy et al., 2014; Seroussi et al., 2014a) or by apply-
ing high spatial resolution only in the GL region with adap-
tive grid refinement (Durand et al., 2009; Goldberg et al.,
2009; Gladstone et al., 2010; Gudmundsson et al., 2012;
Cornford et al., 2013).

The grid or mesh adaptation technique allows resources
to be applied only where they are required, which is very

useful in transient simulations that include some disconti-
nuity in the time-dependent solution (Devloo et al., 1987;
Berger and Colella, 1989), as is the case for GL dynamics
as defined in Schoof (2007b), as the basal friction is only
applied to grounded ice. This technique can be performed
with two different methods: r-adaptivity and h-adaptivity
methods (Oden et al., 1986). The r-adaptivity method, also
known as moving mesh method, moves progressively a fixed
number of vertices in a given direction or region (Anderson
et al., 1984, p. 533), while the h-adaptivity method, named in
this work as adaptive mesh refinement (AMR), splits edges
and/or elements, inserting new vertices into the mesh where
high resolution is required (Devloo et al., 1987; Berger and
Colella, 1989). The performance of each of these methods
depends on the problem for which they are applied. Vieli
and Payne (2005) showed that models applying a moving
grid to track the GL movement perform better than fixed
grid models. Since the position of the GL is explicitly de-
fined in moving grids, Vieli and Payne (2005) noticed for this
method a weak grid resolution dependency in comparison to
the fixed grid method, for which the GL position falls be-
tween grid points. Goldberg et al. (2009) obtained accurate
solutions with fewer resources solving the time-dependent
shelfy-stream equations with the two different mesh adapta-
tion techniques mentioned above, moving mesh and AMR.
Using a one-dimensional shelfy-stream model based on fi-
nite difference scheme, Gladstone et al. (2010) demonstrated
that AMR and sub-grid parameterization for GL position
could produce robust predictions of GL migration. Pattyn
et al. (2012) found that moving grid methods tend to be the
most accurate and AMR can further improve accuracy com-
pared to models based on a fixed grid. Cornford et al. (2013)
implemented a block-structured AMR in the Berkeley Ice
Sheet Initiative for Climate Extremes (BISICLES), a 2.5-D
ice sheet model based on the finite volume method. They
demonstrated that simulations with AMR are computation-
ally cheaper and more efficient, even as the grounding line
moves over significant distances. Jouvet and Gräser (2013)
combined the shallow ice approximation and the shallow-
shelf approximation in an AMR numerical scheme involv-
ing a truncated Newton multigrid and finite volume method.
Through MISMIP3d experiments (Pattyn et al., 2013), they
highlighted the relevance and efficiency of AMR in terms of
computational cost when high resolution (∼ 100 m) is neces-
sary to reproduce GL reversibility. Recently, Gillet-Chaulet
et al. (2017) implemented an anisotropic mesh adaptation
in the finite element ice flow model, Elmer/Ice (Gagliardini
et al., 2013). Based on the MISMIP+ experiment (Asay-
Davis et al., 2016), they showed that combining various vari-
ables (ice thickness, basal drag, velocity, etc.) in an estimator
allowed to reduce the number of mesh vertices by more than
1 order of magnitude compared to uniformly refined meshes,
for the same level of numerical accuracy.

Here, we implement the AMR technique for unstructured
meshes in the parallel finite element Ice Sheet System Model
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(ISSM v4.14; Larour et al., 2012). The AMR capability in
ISSM relies on two different and independent mesh gener-
ators (one or the other mesh generator is used according to
the user’s choice): Bamg, a bi-dimensional anisotropic mesh
generator developed by Hecht (2006), and NeoPZ, a finite el-
ement library developed by Devloo (1997). ISSM’s architec-
ture is based on the Message Passing Interface (MPI), where
models are run in a distributed memory scheme. Our AMR
implementation minimizes MPI communications, avoiding
overheads and latencies. Since refinement criteria are cru-
cial to AMR performance (Devloo et al., 1987), we im-
plement different criteria based on (a) the distance to the
grounding line, (b) the Zienkiewicz–Zhu (ZZ) error estimator
(Zienkiewicz and Zhu, 1987) and (c) different combinations
of (a) and (b). To analyze the performance of AMR, we run
two benchmark experiments: MISMIP3d (Pattyn et al., 2013)
and MISMIP+ (Asay-Davis et al., 2016). We compare AMR
results from both Bamg and NeoPZ with uniformly refined
meshes in terms of GL position and computational time.

This paper is organized as follows: in Sect. 2, we summa-
rize the main features of ISSM’s architecture and the strate-
gies used to implement an efficient AMR technique for tran-
sient simulations. In Sect. 3, we describe both MIMISP3d
and MISMIP+ experiments used to analyze the AMR per-
formance, and in Sect. 4 we present the results in terms of
GL position and processing time. We finish this paper with
a discussion of the results and conclusions in Sects. 5 and 6,
respectively.

2 AMR implementation

2.1 ISSM architecture

Our AMR implementation is strongly based on the architec-
ture of ISSM. We describe here the main ISSM features nec-
essary to understand the AMR strategy. We refer to Larour
et al. (2012) for a more detailed description of ISSM.

Several stress balance approximations are implemented in
ISSM, including higher-order models (e.g., Blatter–Pattyn;
Pattyn, 2003, full Stokes). The current AMR capability
is supported for the 2-D vertically integrated shallow-
shelf or shelfy-stream approximation (SSA; Morland, 1987;
MacAyeal, 1989). The SSA is employed for both grounded
and floating ice, so membrane stress terms (which are re-
quired to correctly model the GL dynamics; Schoof, 2007b)
are included but all vertical shearing is neglected (Seroussi
et al., 2014a). Here, the mesh used for the SSA equations is
unstructured and relies on a Delaunay triangulation.

ISSM is designed to run in parallel in a distributed memory
fashion by MPI. When a model is launched, the entire mesh
is spatially partitioned over processing units or cores (CPUs),
and data structures related to the finite element method are
built in each partition. All physical entities that vary in space

Figure 2. Examples of adaptive meshes using Bamg and NeoPZ.
Blue line: grounding line position. Black lines: coarse mesh, com-
mon for Bamg and NeoPZ. Green lines: adaptive meshes with level
of refinement equal to 2 (L2). Bamg keeps vertices and connectiv-
ities unchanged as much as possible compared to the coarse mesh.
NeoPZ generates nested meshes; vertices and connectivities of the
coarse mesh are kept unchanged.

(ice viscosity, ice thickness, surface, velocities, etc.) are kept
within the elements.

MPI communications between the partitions (CPUs) are
performed to assemble the global stiffness matrix and load
vector, as well as during the solution update in the elements
once the system of equations is solved. The advantage of MPI
is its ability to handle larger models (i.e., for continental-
scale simulations) in many cores and nodes on a cluster. Its
disadvantage is the cost in the communications between the
partitions.
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Figure 3. Solution sequence for ice sheet transient simulation with adaptive mesh refinement.

2.2 Bamg and NeoPZ

The AMR technique in ISSM is implemented for unstruc-
tured meshes and triangular elements. Here are some short
descriptions of the mesh generators Bamg and NeoPZ.

Bamg (Hecht, 2006) is a bi-dimensional mesh generator
based on Delaunay-like method (Hecht, 2005). This mesh
generator is embedded in ISSM for static anisotropic mesh
adaptation (Morlighem et al., 2010). Here, we extend Bamg
capabilities for dynamic adaptation (AMR). The refinement
in Bamg is carried out by specifying the desired resolution
on the vertices. To reach the desired resolution, Bamg’s al-
gorithm splits triangle edges and inserts new vertices in the
mesh (Hecht, 2006). The algorithm keeps new vertices and
connectivities unchanged as much as possible compared to
the previous mesh (Hecht, 2005). This procedure reduces the
numerical errors introduced by the AMR when the solutions
are interpolated into the new mesh (see Sect. 2.3). Regions
of different resolutions are linked by a mesh transition zone,
where the element sizes are changed gradually. The spatial
extent of this mesh transition zone is also specified by the
user in Bamg’s algorithm. An example of adaptive mesh us-
ing Bamg is shown in Fig. 2.

NeoPZ (Devloo, 1997) is a finite element library dedicated
to highly adaptive techniques (Calle et al., 2015). In NeoPZ’s
data structure, each element is refined into four topologically
similar elements, whose resolutions are half of the refined el-
ement. To avoid hanging vertices (Calle et al., 2015), some
elements are divided in specific ways such that any two el-
ements in the mesh may have a vertex or an entire edge in
common, or no vertices in common (Szabó and Babuška,
1991, p. 81). In this sense, all meshes refined by NeoPZ are
nested; i.e., vertices and connectivities from the coarse mesh
are kept fixed during the entire simulation time. This charac-
teristic does not introduce any numerical error induced by
the AMR during the interpolation process (see Sect. 2.3).
The AMR with NeoPZ is given by specifying the level of re-
finement, i.e., how often elements are refined. Therefore, the
mesh transition zone, which links regions of different reso-
lutions, is generated stepwise through resolutions dictated by
levels of refinement. Figure 2 shows an example of an adap-
tive mesh using NeoPZ.

Here, we describe the algorithm to couple ISSM to Bamg
and NeoPZ as well as the refinement criteria usage (Sect. 2.3
and 2.4).

2.3 Parallel strategy

The solution sequence for transient ISSM simulations with
AMR is summarized in Fig. 3. Details of AMR processes
are itemized in Algorithm 11. In Fig. 3, the AMR is the last
step to be executed for a given time step. This is an explicit
approach, where a new adapted mesh is built for a given so-
lution. In Algorithm 1, all processes involved in performing
the AMR in ISSM are executed in step “e”, the remeshing
core. Step “e.1” executes the mesh adaptation (refinement or
coarsening of elements) and the other steps (“e.2” to “e.5”)
prepare the adapted mesh, data structures and solutions for
the next simulation time step.

Bamg and NeoPZ perform the AMR (step “e.1”, Algo-
rithm 1) in serial, considering the entire mesh. In our im-
plementation, only one partition (whose CPU rank is no. 0)
keeps the Bamg or NeoPZ entire mesh and is responsible for
executing the AMR process.

Our AMR implementation keeps the number of parti-
tions constant during the entire simulation time. The num-
ber and distribution of elements into the partitions vary ev-
ery time AMR is called, since the mesh partitioning process
(step “e.2”, Algorithm 1) generates partitions with a simi-
lar number of elements. This process avoids memory imbal-
ance among the CPUs and overheads during the solver phase
(Larour et al., 2012).

Each time remeshing is performed, the solutions and all
data fields are interpolated from the old mesh onto the new
mesh. This step is executed in parallel, where each CPU in-
terpolates the solutions just on its own partition (step “e.4”,
Algorithm 1). The construction of new data structures and
the adjustment of solutions (steps “e.3” and “e.5”, respec-

1The setup of the inital solution into the initial mesh is important
to reduce numerical artifacts in the first time steps. Therefore, the
initial mesh should be defined using AMR with the same level of
refinement chosen in Algorithm 1 (e.g., see Cornford et al., 2013;
Lee et al., 2015).
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Algorithm 1 Transient simulation with AMR.

1. Set initial solution state and initial mesh.

2. While tn ≤ tmax, do

a. call stress balance core (diagnostic),

b. call thickness balance core (prognostic),

c. call ice front migration core (level set adjustment),

d. call grounding line migration core (hydrostatic adjust-
ment) and

e. call remesh core (AMR);

e.1. call AMR core (refine/coarsen mesh, Bamg or
NeoPZ, serial in CPU no. 0),

e.2. call mesh partitioning (over all CPUs, serial),
e.3. build new data structures (all CPUs, parallel),
e.4. interpolate solutions (all CPUs, parallel) and
e.5. call geometry adjustment core (all CPUs, parallel).

f. Time increment tn+1 = tn+ dt .

3. Post processing.

tively, Algorithm 1) are also executed in parallel, as is the
computation of the refinement criteria (see Sect. 2.4).

All MPI communications in the remesh core (step “e”,
Algorithm 1) are minimized to avoid overheads when large
models are run. In order to minimize MPI calls, we perform
a single communication of a large array that includes all data
structures. In the interpolation process, for example, all rele-
vant fields are collected by CPU no. 0 in a single vector struc-
ture in such a way that only one MPI broadcast is called. This
approach is based on the fact that, in general, it is more effi-
cient to perform few large MPI messages instead of carrying
out many smaller ones (Reinders and Jeffers, 2015, p. 327).

2.4 Refinement criteria

Grounding line dynamics are implemented in ISSM through
an implicit level set function, φgl, based on a hydrostatic
floatation criterion (Seroussi et al., 2014a):

φgl =H −Hf, (1)

where H is the ice thickness and Hf =−b (ρw/ρi) is the
flotation height, with ρi the ice density, ρw the ocean den-
sity and b the bedrock elevation (negative if below sea level).
Figure 1 illustrates the GL position in a vertical cross-section
of a marine ice sheet. The position of the GL is defined as
φgl < 0 : ice is floating
φgl > 0 : ice is grounded
φgl = 0 : grounding line position

. (2)

The performance of AMR depends on the refinement crite-
rion (Devloo et al., 1987). We implement the three following
criteria:

a. element distance to the GL, Rgl;

b. ZZ error estimator for deviatoric stress tensor, τ , and ice
thickness, H ; and

c. different combinations of (a) and (b).

Criterion (a) is based on a heuristic approach commonly
applied (Goldberg et al., 2009; Gudmundsson et al., 2012;
Cornford et al., 2013). The second criterion, (b), is based on
the fact that high changes in the gradients in the velocity field
(therefore, in the deviatoric stress tensor, τ ) and ice thick-
ness, H , are expected to be present near the grounding line.
Criterion (c) extends and merges the features of the other two
previous criteria. We define the AMR criterion used based on
binary flags θ (= 0 or 1) such that
θgl = 1 : use element distance to the GL
θτ = 1 : use ZZ error estimator for τ
θH = 1 : use ZZ error estimator for H

. (3)

We propose Algorithm 2, inspired by Devloo et al. (1987),
to execute the refinement and coarsening processes under dif-
ferent criteria (AMR core, step “e.1” in Algorithm 1). The
first three steps in Algorithm 2 compute the criterion accord-
ing to the binary flags, θ , defined above. These steps are per-
formed in parallel. Step “4” verifies, for each element in the
mesh, if it should be refined; its distance to the GL and its ZZ
errors are compared with prescribed limits (thresholds). The
element is refined if at least one of the thresholds is exceeded,
so long as its level of refinement is less than the maximum
level chosen. This logical operation is performed by the oper-
ator “or” in the statement “if” in step “4”. Once an element is
refined, it is identified as a group. Step “5” verifies for each
group if it should be coarsened. To be coarsened, a group
should meet all thresholds; the logical operator used in this
case is “and” (statement “if” in step “5”). Algorithm 2 has
two sets of thresholds (shown with max), for elements and
for groups of elements. For the algorithm to work properly,
these sets of thresholds should be different, following Devloo
et al. (1987).

2.5 ZZ error estimator

The generic form of the ZZ (Zienkiewicz and Zhu, 1987)
error estimator ε (e) for a given element e is

ε (e)=

∫
�e

(
∇u∗−∇u

)2d�e


1/2

, (4)

where �e is the domain of the element e, ∇u is the gradient
of the finite element solution u, and ∇u∗ is the smoothed
reconstructed gradient, calculated on the element e as

∇u∗ =

s∑
i=1

ψi∇u
∗

i , (5)
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Algorithm 2 AMR core: refinement criteria calculation, re-
finement and coarsening processes. e = element; g = group
of elements that are nested and derived from a refined
element; L(e)= level of refinement of the element e;
Lmax

=maximum level of refinement; Rmax
=maximum

threshold for element/group distance to the grounding line;
εmax
=maximum threshold for element/group error estima-

tor (thickness/deviatoric stress); θ = binary flags that define
the criteria.

1. If θgl = 1, then compute the element and group distances to
the grounding line, Rgl(e) and Rgl(g).

2. If θτ = 1, then compute the element and group deviatoric
stress error estimators, ετ (e) and ετ (g).

3. If θH = 1, then compute the element and group thickness er-
ror estimators, εH (e) and εH (g).

4. For each element e such that L(e) < Lmax, do
if
[
Rgl(e) < θgl ·R

max
gl,e

]
or if

[
θτ · ετ (e) > ε

max
τ,e

]
or if[

θH · εH (e) > ε
max
H,e

]
,

then refine e.

5. For each group g, do
if
[
Rgl(g) > θgl ·R

max
gl,g

]
and if

[
θτ · ετ (g) < ε

max
τ,g

]
and if[

θH · εH (g) < ε
max
H,g

]
,

then coarsen g.

and

∇u∗i =
1
Wi

k∑
j=1

wj∇uj , (6)

where ψi is the ith P1 Lagrange shape function on element
e, s is the number of shape functions of the element e (here,
s = 3), j is the j th element connected to the vertex i, k
is the number of elements connected to vertex i, wj is the
weight relative to the element j , and Wi is the sum of all
weights for the vertex i. Here, the weights w are defined
as the geometric area of the triangular elements. We im-
plement the ZZ error estimator for the deviatoric stress ten-
sor (τ ), written in a vectorized form; i.e., for SSA we have
∇u→ τ =

(
τxx, τyy, τxy

)T. We also extend the estimator for
the ice thickness (u=H ). The ZZ estimator was conceived
by Zienkiewicz and Zhu (1987) for linear elasticity, which
involves elliptic equations. Applying the ZZ error estimator
to the deviatoric stress tensor is therefore a natural extension,
since the SSA equations are also elliptic. The ZZ estimator
for the ice thickness highlights the regions of sharp bedrock
gradient and could be used to improve the resolution of the
bedrock geometry (e.g., see Fig. 8). See Sect. 2.4 and Algo-
rithm 2 for an explanation of how these error estimates are
combined.

3 Numerical experiments

We run two different benchmark experiments to evaluate the
adaptive mesh refinement capabilities based on the MIS-
MIP3D (Pattyn et al., 2013) and MISMIP+ (Asay-Davis
et al., 2016) experiments. The following subsections briefly
describe each setup. More details can be found in the respec-
tive references. All experiments are performed using the ver-
tically integrated SSA equations (Morland, 1987; MacAyeal,
1989).

3.1 MISMIP3d setup

The MISMIP3d domain setup is rectangular and extends
from 0 to 800 km in the x direction and from 0 to 50 km
in the y direction. The bed elevation (b) varies only in the x
direction, as follows:

b (x,y)=−100− x. (7)

Boundary conditions are applied as follows: a symmetric
condition at x = 0 so that ice velocity is equal to zero, a sym-
metric condition at y = 0 (which represents the centerline of
the ice stream) and a free-slip condition at y = 50 km so that
the flux through these surfaces is zero. Water pressure is ap-
plied at the ice front at x = 800 km.

The ice viscosity, µ, is considered to be isotropic and to
follow Glen’s flow law (Cuffey and Paterson, 2010):

µ=
B

2ε̇e
n−1
n

, (8)

where B (= A−1/n using Glen’s rate factor A) is the ice vis-
cosity parameter, ε̇e is the effective strain rate, and n= 3,
a commonly used value for the exponent in Glen’s flow
law. The ice viscosity parameter, B, is uniform and con-
stant over the domain and the time, and its value is equal
to 2.15× 108 Pa s1/3. A non-linear friction (Weertman) law
is applied on grounded ice:

τ b = C|ub|
m−1ub, (9)

where τ b is the basal shear stress, ub is the basal slid-
ing velocity, C is the friction coefficient, and m= 1/3 is
the sliding law exponent. The basal friction coefficient, C,
is also spatially uniform for all grounded ice and equal to
107 Pa m−1/3 s1/3.

The experiments are run starting from an initial configura-
tion with a thin layer (100 m) of ice and with a constant accu-
mulation rate of 0.5 m yr−1 applied over the whole domain.
The experiments run forward in time until a steady-state con-
dition is reached, which occurs after about 30 000 years.
We compare the GL positions from different meshes at t =
30 000 years.

We investigate the sensitivity of the AMR for which the re-
finement method is based on the element distance to the GL,
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Table 1. Refinement criteria for the adaptive mesh refinement
(AMR) simulations.

Experiment Label Criterion

MISMIP3d AMR R5 distance of 5 km to the GL
MISMIP3d AMR R10 distance of 10 km to the GL
MISMIP3d AMR R15 distance of 15 km to the GL

MISMIP+ AMR R5 distance of 5 km to the GL
MISMIP+ AMR R15 distance of 15 km to the GL
MISMIP+ AMR R30 distance of 30 km to the GL
MISMIP+ AMR ZZ ZZ error estimator for τ

“GL” is the grounding line. “τ” is the deviatoric stress tensor. The “distance
to the GL” refers to the region with the highest level of refinement. For
example, “AMR R5” means that 5 km on both sides of the GL (upstream and
downstream) are refined with the highest level.

Rgl (criterion a, Sect. 2.4). For comparison analysis, three
different distances are used for the highest refinement level:
Rgl = 5, 10 and 15 km. These different meshes are labeled
as R5, R10 and R15, respectively. The distance Rgl refers to
the region with the highest level of refinement. For exam-
ple, R5 means that 5 km on both sides of the GL (upstream
and downstream) are refined with the highest level. Table 1
summarizes the criteria used for all experiments. The coarse
mesh, that has a resolution of 5 km, is used as an initial mesh2

for all simulations and mesh generators (Bamg and NeoPZ).
To analyze the convergence, we refine the coarse mesh 1×,
2× and 3×. These three levels of refinement are applied to
both uniform and adaptive meshes, and correspond to ele-
ments with 2.5, 1.25 and 0.63 km resolution, respectively. Ta-
ble 2 presents the correspondence between refinement level
and model resolution at the GL used in the experiments.

We also investigate the sensitivity of the AMR to GL
parameterization into the elements (Seroussi et al., 2014a).
Three sub-element parameterizations are tested: no sub-
element parameterization (NSEP), sub-element parameteri-
zation 1 (SEP1) and sub-element parameterization 2 (SEP2).
In the NSEP method, each element of the mesh is either
grounded or floating, and the grounding line position is de-
fined as the last grounded point. In the SEP1 and SEP2 meth-
ods, the grounding line position is located anywhere within
an element and defined by the implicit level set function, φgl,
which is based on the floating condition (see Sect. 2.4). The
difference between SEP1 and SEP2 is how each one of these
methods computes the basal friction to match the amount of
grounded ice in the element. In the SEP1 approach, the basal
friction coefficient (C) is reduced as Cg = CAg/A, where Cg
is the new basal friction coefficient for the element partially
grounded, Ag is the area of grounded ice of this element, and

2Here, setting the coarse mesh as the initial mesh does not pro-
duce numerical artifacts because the experiments are run until a
steady state is reached. However, for general simulations (e.g., the
Ice1r experiment, Sect. 4.2), the initial conditions should be self-
consistent with the AMR mesh. See Algorithm 1.

Table 2. Levels of refinement tested in the experiments.

Experiment Level Label Resolution

MISMIP3d 0 (CM) L0 5 km
MISMIP3d 1 L1 2.5 km
MISMIP3d 2 L2 1.25 km
MISMIP3d 3 L3 625 m

MISMIP+ 0 (CM) L0 4 km
MISMIP+ 1 L1 2 km
MISMIP+ 2 L2 1 km
MISMIP+ 3 L3 500 m
MISMIP+ 4 L4 250 m

“CM” indicates coarse mesh, common for Bamg and NeoPZ.

A is the total area of the element. In the SEP2 technique, the
basal friction is integrated (in the sense of the finite element
method) only on the part where the element is grounded.
This is done by changing the integration area from the orig-
inal element to the grounded part of the element. We refer
to Seroussi et al. (2014a) for a complete description of these
sub-element parameterizations.

3.2 MISMIP+ setup

The MISMIP+ domain is also rectangular, and its dimen-
sions are 0≤ x ≤ 640 km and 0≤ y ≤ 80 km. The bed ele-
vation is defined as follows:

b(x,y)=max
(
bx(x)+ by(y), bdeep

)
, (10)

with

bx(x)= b0+ b2

(x
x

)2
+ b4

(x
x

)4
+ b6

(x
x

)6
, (11)

and

by(y)=
d

1+ exp
[
−2(y−Ly/2−wc)/fc

]
+

d

1+ exp
[
2(y−Ly/2+wc)/fc

] , (12)

where bdeep =−720 m, b0 =−150.0 m, b2 =−728.8 m,
b4 = 343.91 m, b6 =−50.57 m, x = 300 km, d = 500 m,
Ly = 80 km,wc = 24 km, and fc = 4 km. Figure 4 shows the
bed elevation calculated with Eqs. (10), (11) and (12).

The ice is isothermal and the ice viscosity parameter,
B, is equal to 1.1642× 108 Pa s1/3 (uniform and constant
over the domain and the time). The boundary conditions
are similar to MISMIP3d. The friction model used here is
a power law, Eq. (9), with a coefficient, C, equal to 3.160×
106 Pa m−1/3 s1/3 (spatially uniform for all grounded ice) and
sliding law exponent, m, equal to 1/3.

We run the experiments starting from an initial configura-
tion with a 100 m thick layer of ice and run the simulations
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Figure 4. The bedrock topography for the MISMIP+ experiment
(Asay-Davis et al., 2016).

until a steady-state condition is reached (after 20 000 years).
A constant accumulation rate of 0.3 m yr−1 is applied over
the entire domain. The GL positions are compared at t =
20 000 years.

To investigate further the sensitivity of the GL position to
the refinement distance, Rgl, we choose distances with the
highest refinement level equal to Rgl = 5, 15 and 30 km, with
meshes labeled as R5, R15 and R30, respectively (see Ta-
ble 1). As for the MISMIP3d simulations, these distances re-
fer to the region around the GL with the highest level of re-
finement. The same coarse mesh3 with a resolution of 4 km is
used for Bamg and NeoPZ, and it is refined up to four times
for both adaptive and uniform refinement approaches. The re-
spective resolutions for the four refinement levels are 2, 1, 0.5
and 0.25 km. Table 2 summarizes the levels and the respec-
tive resolutions at the GL. All the MISMIP+ simulations are
performed with sub-element parameterization type I, SEP1
(Seroussi et al., 2014a).

It is important to emphasize that the MISMIP+ bed ele-
vation (Fig. 4) is calculated directly in the code every time
AMR is called (step “e.5”, Algorithm 1). This procedure
avoids excessive smoothing of the complex bedrock topog-
raphy in the refined region.

4 Results

For a given problem, the results from an AMR mesh should
be as close as possible (within an acceptable tolerance) to
those obtained with a uniformly refined mesh, for the same
level of refinement (element resolution) in both meshes.
This comparison is an indicator of the AMR performance
to that given problem. Since Bamg and NeoPZ adapt the
mesh in different ways, it is important to analyze how their
differences impact the numerical solutions. Therefore, we

3See footnote in Sect. 3.1 (MISMIP3D).

first compare the results from the adaptive and uniform
meshes using both Bamg and NeoPZ for the MISMIP3d and
MISMIP+ experiments, and then we assess the time perfor-
mance of the AMR in comparison with the uniformly refined
mesh.

4.1 GL position comparison

4.1.1 MISMIP3d setup

Figure 5 presents the GL positions and the ice volume
above floatation (VAF4) for different AMR meshes and sub-
element parameterizations as a function of element resolu-
tions. The refinement criterion used is the element distance
to the GL, Rgl (see Table 1 and Sect. 2.4). GL positions and
VAF obtained with uniformly refined meshes are also shown
in Fig. 5. For NSEP, GL position varies between 200 and
520 km for meshes L0 (coarse mesh) and L3 (level of refine-
ment equal to 3), respectively. For these same meshes, GL
position varies between 620 and 600 km for SEP1 and be-
tween 550 and 600 km for SEP2.

We note that AMR meshes with NeoPZ produce GL po-
sitions that are very similar to the ones produced with uni-
formly refined mesh. This holds for all sub-element param-
eterizations. AMR with Bamg is more sensitive to NSEP,
for which GL positions depend on the element distance to
the GL (Rgl) used, especially for the lower refinement level
(level equal to 1). Despite this, GL positions from AMR with
Bamg are in agreement with uniformly refined meshes for
SEP1 and SEP2. Similar behavior is observed in the VAF
amounts.

4.1.2 MISMIP+ setup

The MISMIP+ bed topography (see Sect. 3.2 and Fig. 4) is
designed to introduce a strong buttressing on the ice stream
from the confined ice shelf. It is therefore expected that the
results are more sensitive to the mesh refinement compared
to simpler bedrock descriptions (e.g., MISMIP3d), since re-
fining the mesh also improves the resolution of the bedrock
geometry (see Sect. 3.2).

Figure 6 presents the coarse mesh and three examples of
adaptive meshes obtained with Bamg and NeoPZ and dif-
ferent criteria: element distance to the GL, Rgl (equivalent
to 5 km, R5) and error estimator ZZ (see Table 1). The fig-
ure also shows the GL positions obtained with these meshes
and with the most refined uniform mesh (250 m resolution).
Figure 6 provides an example of a case for which the GL po-
sition remains resolution dependent and refinement criterion
dependent. We can note that, using the same criterion based
on the element distance to the GL (mesh R5), Bamg and
NeoPZ produce different meshes, as expected. For Bamg,
the mesh transition zone between the lowest and highest res-

4The ice volume above floatation is the ice volume that con-
tributes to sea level (Bindschadler et al., 2013).
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Figure 5. GL positions (a, b) and VAF (c, d) at steady state obtained from the coarse mesh and from AMR using the refinement criterion
based on the element distance to the GL, Rgl. Three element distances are used and compared: Rgl of 5, 10 and 15 km. The meshes generated
with these distances are labeled as AMR R5, AMR R10 and AMR R15, respectively (see Tables 1 and 2). Results from uniformly refined
meshes (labeled as uniform) are also shown. The simulations are carried out through the mesh generators Bamg (a, c) and NeoPZ (b, d)
using three sub-element parameterizations: NSEP, SEP1 and SEP2.

olutions is smoother than NeoPZ’s mesh, since the resolu-
tions in NeoPZ are obtained stepwise by nested elements. In
Fig. 6, at the center of the domain (y = 40 km), the GL po-
sition differs by 12 and 13 km between the most refined uni-
form mesh and the adaptive meshes generated by Bamg and
NeoPZ, respectively. Between the coarse mesh and the adap-
tive meshes, the GL position differs by about 10 km (for both
Bamg and NeoPZ). When the ZZ criterion is used, the GL
positions differ by 6 km (17 km) in comparison with the one
obtained from the most refined uniform mesh (coarse mesh).

Figure 7 presents a set of results for the grounding line po-
sition and the ice volume above floatation as a function of
mesh resolution. AMR mesh dependency is clear in Fig. 7.
For AMR with NeoPZ, GL positions obtained with AMR R5
differ from the ones produced by AMR R15 and AMR R30.
Virtually AMR R15 and AMR R30 produce the same GL
positions. For AMR with Bamg, AMR R5 and AMR R15
do not improve the position of the GL as the resolution in-
creases. We can note the differences of GL positions from
AMR (with both Bamg and NeoPZ) and from uniformly re-
fined meshes are higher in comparison to the MISMIP3d ex-

periment. The same AMR mesh dependency is observed in
the VAF values.

To investigate the possible causes of this AMR mesh de-
pendency, we perform the AMR using the ZZ error estimator
calculated for the deviatoric stress tensor, τ (Table 1). The
GL positions obtained with AMR ZZ are presented in Fig. 7.
We observe that GL positions with AMR ZZ are closer to
the ones obtained with uniform meshes, for all mesh resolu-
tions. To understand this AMR ZZ result, we plot the spa-
tial distributions of the ZZ error estimator for the coarse and
adaptive meshes (using NeoPZ), as illustrated in Fig. 8 (see
also the movies in the Supplement). The ZZ error values are
normalized between 0 and 1. For the coarse mesh, we see in
Fig. 8 that the error estimators calculated for the deviatoric
stress tensor and the ice thickness present high values around
the GL. In particular, for the ice thickness, the estimator also
presents high values in the grounded part of the marine ice
sheet, following the high gradient in the side walls of the bed
topography (see Fig. 4). For AMR R5 meshes, there are high
ZZ error values around the refined region. This is not ob-
served when the refinement criterion used is the ZZ estimator
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Figure 6. Examples of adaptive meshes for the MISMIP+ exper-
iment using different refinement criteria and mesh generators (see
Tables 1 and 2). Red line: grounding line position at steady state
obtained with the coarse mesh. Black dots: grounding line position
at steady state obtained with each adaptive mesh. Blue line: ground-
ing line position at steady state obtained with the most refined mesh
(L4, uniform). The thresholds used in the ZZ criterion are described
in the legend of Fig. 7.

(AMR ZZ; see Table 1), as expected. Using the ZZ criterion
induces an equalization in the spatial distribution of the esti-
mated errors, improving the solutions (e.g., GL position; see
Fig. 7). In terms of efficiency, AMR ZZ generates fewer ele-
ments than AMR R30. At the end of the experiment and for
a level of refinement equal to 4 (resolution equal to 250 m),
using NeoPZ, AMR R30 mesh has 464 712 elements, while
AMR ZZ mesh has 24 428 elements (i.e., only ∼ 5 % of the
number of elements in AMR R30).

4.2 AMR time performance

To analyze the AMR performance in terms of computational
time, we run the Ice1r experiment of MISMIP+ (Asay-Davis
et al., 2016). The experiment starts from the steady-state con-
dition and runs forward in time for 100 years with a basal
melt rate applied. The time step is equal to 0.2 years (com-
puted to fulfil the Courant–Friedrichs–Lewy, CFL, condition
for the highest-resolution mesh). The non-linear SSA equa-
tions are solved using the Picard scheme and the Multifrontal
Massively Parallel sparse direct Solver (MUMPS; Amestoy
et al., 2001, 2006).

The purpose of the experiments described here is to as-
sess the computational overhead when AMR is active. We
initialize all the models using the steady-state solution ob-
tained with the same AMR mesh (level of refinement and
criteria) used to carry out the Ice1r experiment. This proce-
dure emulates a common modeling practice (e.g., Cornford
et al., 2013; Lee et al., 2015): the initial conditions are self-
consistent with the AMR mesh, avoiding numerical artifacts
during the transient simulation. All the experiments are run in
parallel (16 cores) in a 2× Intel Xeon E5-2630 v3 2.40 GHz
with 64 GB of RAM.

Table 3 presents GL positions obtained with different
meshes at the end of experiment Ice1r, and the computational
time and number of elements required for each mesh, as well
as the criterion used. The levels of refinement are labeled as
“L no.”; e.g., L3 means level 3 (see Table 2). Considering
the GL position obtained from the highest-resolution mesh
(L4 uniform) as a reference result, we compare the compu-
tational cost using uniform and AMR meshes to obtain the
same result within a deviation of 1.5 %. In Table 3, only L3
uniform, L3 AMR R30, L3 AMR ZZ and L3 AMR R5+ZZ
meshes produce this required accuracy. AMR R30 mesh has
at least 25 % of the number of elements of the L3 uniform
mesh, which represents virtually 80 % of the computational
time using the uniform mesh. In terms of refinement crite-
ria, AMR ZZ generates 20 % of the number of elements in
comparison to AMR R30, which means virtually 25 % of
computational time. Comparing AMR ZZ and L3 uniform,
the computational time using the adaptive mesh represents at
least 25 % of the computational time using the uniform mesh.
The performance of Bamg and NeoPZ is similar, and the ra-
tio of computational time and number of elements is virtually
equal for both packages (not shown here).
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Figure 7. GL positions (a, b) and VAF (c, d) obtained from the coarse mesh and from AMR for four refinement criteria: R5, R15, R30 and
ZZ (see Tables 1 and 2). Results from uniformly refined meshes (uniform) are also shown. The simulations are carried out through the mesh
generators Bamg (a, c) and NeoPZ (b, d) using sub-element parameterization 1 (SEP1). The thresholds for element/group used in the ZZ
criterion are, respectively, εmax

τ,e = 0.08εmax
τ (for both Bamg and NeoPZ) and εmax

τ,g = 0.04εmax
τ for NeoPZ and εmax

τ,g = 0.008εmax
τ for Bamg,

where εmax
τ is the maximum error value observed in the coarse mesh.

Table 3. AMR time performance comparison for the Ice1r experi-
ment, MISMIP+.

Level CPU time (s) No. of elem. GL pos. (km)

L0 uniform 40 6780 396.5
L1 uniform 188 27 706 407.0
L2 uniform 857 107 722 411.9
L3 uniform 1705 473 446 416.0
L4 uniform 9035 1 780 012 419.0
L3 AMR R5 498 33 794 405.2
L3 AMR R30 1376 110 332 413.7
L3 AMR ZZ 369 21 088 415.7
L3 AMR R5+ZZ 807 56 267 413.7

“Level” is the level of refinement. “No. of elem.” is the number of elements. “GL pos.” is
the grounding line position at the end of the Ice1r experiment, MISMIP+. “AMR
R5+ZZ” is the combination of the criteria ZZ error estimator (deviatoric stress tensor)
and element distance to the GL (Rgl = 5 km, R5). Mesher used: Bamg. The thresholds for
element/group used in the ZZ criterion are, respectively, εmax

τ,e = 0.16εmax
τ and

εmax
τ,g = 0.016εmax

τ for AMR ZZ, and εmax
τ,e = 0.48εmax

τ and εmax
τ,g = 0.08εmax

τ for AMR
R5+ZZ, where εmax

τ is the maximum error value observed in the coarse mesh.

Figure 9 shows the element counts and the solution time
for the AMR meshes normalized against the values for the
equivalent uniform meshes. In Fig. 9, the solution time curve
represents the relative savings due to AMR, while the gap
between the two curves (solution time minus element counts)
illustrates the overhead due to the AMR procedure. We note
the AMR overhead decreases with the level of refinement and
becomes reasonable for level 2 or higher.

5 Discussion

In this work, we describe the implementation of an adaptive
mesh refinement approach in the Ice Sheet System Model
(ISSM v4.14) as well as the performance of our imple-
mentation in terms of accuracy of the simulated ground-
ing line position and simulation time. We investigate the
adaptive meshes performance using a heuristic criterion
based on the distance to the GL (Durand et al., 2009;
Goldberg et al., 2009; Gudmundsson et al., 2012; Corn-
ford et al., 2013), and we compare with an error estima-
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Figure 8. Spatial distribution of the ZZ error estimator in the coarse and refined meshes (uniform and AMR) used in the MISMIP+ exper-
iments. The ZZ error values are normalized between 0 and 1 using the maximum error value observed in the coarse mesh. Black lines are
the grounding line positions at steady state obtained with the respective meshes. The refined meshes (uniform and AMR) are generated by
NeoPZ considering the level of refinement equal to 2 (L2; see Table 2), and the criteria used (R5 and ZZ) are summarized in Table 1. The
thresholds used in the AMR ZZ are described in the legend of Fig. 7.

tor (ZZ; Zienkiewicz and Zhu, 1987) based on the a poste-
riori analysis of the transient solutions (e.g., Goldberg et al.,
2009; Gudmundsson et al., 2012; Cornford et al., 2013).

We rely on two different mesh generators, Bamg (Hecht,
2006) and NeoPZ (Devloo, 1997), that have different proper-
ties. It is therefore expected that their solutions are not iden-
tical. This explains the difference observed in the GL posi-
tions (and VAF) compared to uniform meshes for the three
sub-element parameterizations (e.g., the MISMIP3d setup;
Fig. 5).

NeoPZ generates nested meshes, which reduces errors in
the interpolation step and is useful to assess AMR perfor-
mance in comparison to uniformly refined mesh. Bamg’s al-
gorithm works differently: the fact that some vertices’ posi-
tions change produces at least two side effects: (1) induced
errors in the interpolation process; (2) positive or negative
impact on the convergence of the solutions. The weight of
the first side effect can be reduced using higher element dis-
tance to the GL (Rgl), for which the highest resolution is ap-
plied, and increasing the length of the mesh transition zone
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Figure 9. Number of elements and CPU time for AMR meshes us-
ing the ZZ error estimator (AMR ZZ). The number of elements
and CPU time are normalized by the respective values of the
uniformly refined meshes. The normalized CPU time curve rep-
resents the AMR savings, while the difference between the two
curves represents the adaptive mesh procedure cost. Mesher used:
Bamg. The thresholds for element/group used in the AMR ZZ
are, respectively, εmax

τ,e = 0.64εmax
τ and εmax

τ,g = 0.32εmax
τ for L1,

εmax
τ,e = 0.24εmax

τ and εmax
τ,g = 0.08εmax

τ for L2, εmax
τ,e = 0.16εmax

τ

and εmax
τ,g = 0.016εmax

τ for L3, εmax
τ,e = 0.048εmax

τ and εmax
τ,g =

0.0064εmax
τ for L4, where εmax

τ is the maximum error value ob-
served in the coarse mesh.

between fine and coarse elements. Higher-order interpolative
schemes can be also used, as pointed out by Goldberg et al.
(2009), to avoid solution diffusion. In ISSM, the interpola-
tion scheme is carried out by P0 and P1 Lagrange polyno-
mials, and we suspect these are enough for our AMR pro-
cedure. The weight of the second side effect depends on the
problem considered. We suspect that for GL dynamics this
effect has overall a positive impact, once updating vertex po-
sitions is somewhat similar to the moving mesh technique,
although the GL is not explicitly defined in our approach as
in other studies (e.g., Vieli and Payne, 2005). This argument
is based on the results shown here, for both MISMIP3d and
MISMIP+ setups. Some mesh packages and finite element
libraries related to NeoPZ are Deal II (Bangerth et al., 2007),
Hermes (Šolín et al., 2008), libMesh (Kirk et al., 2006) and
HP90 (Demkowicz et al., 1998). Mesh generators related to
Bamg are MMG (Dapogny et al., 2014), Yams (Frey, 2001)
and Gmsh (Geuzaine and Remacle, 2009). So, we expect that
the results shown in this work would be reproduced with
these related packages.

The results from MISMIP3d suggest that, independently
of the sub-element parameterization and refinement level,
refining elements within a 5 km region with highest resolu-
tion around the GL is enough to generate solutions similar to
the ones produced by uniform meshes. This holds for Bamg
and NeoPZ (Fig. 5). Cornford et al. (2013) presented similar
results for MISMIP3d using SSA equations through BISI-
CLES, an AMR finite-volume-based ice sheet model. Based

on the MISMIP3d experiment, they concluded that refining
four cells on either side of the GL was enough to achieve
results similar to uniform meshes for all levels of refinement.

For MISMIP+, a minimal distance of 30 km for the high-
est resolution around the GL is necessary to accurately cap-
ture the GL position (Fig. 7). Nevertheless, there is a residual
between GL positions from AMR and uniform meshes. This
AMR mesh dependency can be explained by the bed topog-
raphy of MISMIP+ (Fig. 4); the high gradient in the side
walls induces numerical errors on the gradients of the veloc-
ity field (deviatoric stress tensor, near the GL) and ice thick-
ness (on grounded ice), as illustrated by the spatial distribu-
tion of the a posteriori error estimator used here (Fig. 8). For
the MISMIP3d setup, the highest values of the error estimate
concentrate only around the GL (not shown here), which ex-
plains why a few kilometers of high resolution near the GL
improve the GL positions.

Figures 5 and 7 present a picture of the impact of mesh
resolution in integrated quantities like VAF. The VAF curves
follow the GL position behavior, presenting the same AMR
mesh dependency in the MISMIP+ setup. Therefore, the ac-
curacy of VAF depends on the accuracy of the GL dynam-
ics. Since VAF changes represent potential sea level rise, we
highlight that the GL movement should be accurately tracked
in ice sheet models.

Since numerical errors are not only concentrated near the
GL for the MISMIP+ setup, an error estimator is likely more
appropriate to understand the error structure of the problem,
to guide the refinement and to reduce the error estimates
along the domain, improving AMR performance. This ex-
plains why a simple test with the AMR ZZ produces better
convergence with much fewer elements than AMR based on
the heuristic criterion (element distance to the GL, Fig. 7).
Related works have used proxies of error estimators: Gold-
berg et al. (2009) used the jumps in strain rate between ad-
jacent cells; Gudmundsson et al. (2012) used the second
derivative of the ice thickness; Cornford et al. (2013) used
the Laplacian of the velocity field and Gillet-Chaulet et al.
(2017) used the estimator proposed by Frey and Alauzet
(2005), whose metric is based on a priori interpolation error
calculated by the field’s Hessian matrix (second derivative).
The ZZ used here is a true a posteriori error estimator based
on the recovered gradient (Ainsworth and Oden, 2000, p. 3),
widely used in the finite element community (Ainsworth
et al., 1989; Grätsch and Bathe, 2005) and suitable to be
implemented in ice sheet models, including those based on
finite volumes or finite differences. As the MISMIP+ bed
geometry is more realistic than MISMIP3d, we can expect
similar results for real glaciers, i.e., high numerical errors
present in regions not necessarily adjacent to the GL.

Further analysis with ZZ or another error estimator should
be developed to improve the AMR criterion used in ice sheet
modeling. An important issue to be investigated is the inter-
polation of real bed topography directly from a dataset every
time AMR is carried out. This interpolation increases bed
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resolution according to mesh adaptation, which reduces the
smoothness of the bed in the model (since real beds are not
necessarily smooth). The reduction of the bed smoothness in-
duces some numerical errors and counterbalances the effect
of mesh adaptation, increasing AMR mesh dependency. Real
bed topographies should be analyzed in benchmark models
as well as in real ice sheet domains. Our current AMR im-
plementation interpolates the bed elevation from the coarse
mesh, except for the MISMIP+ experiment, for which we
hard-coded the calculation of the bed topography directly in
the code (in this case, AMR reduces the smoothness of the
bed in the model, but as there is no small-scale bed topogra-
phy, the numerical error based on the ZZ error estimator for
the ice thickness is reduced). The interpolation from a dataset
will be implemented in ISSM in the future. Based on this dis-
cussion and the results shown in this study, we recommend
AMR with the combination of the heuristic criterion (using a
minimal distance, e.g., 5 km) with an associated error estima-
tor. Our recommendation is based on the following: we know
a priori that applying high resolution around the GL would
reduce the error caused by the basal friction discretization
within the elements. In fact, applying only an error estima-
tor does not guarantee that the elements around the GL are
refined until the highest (desired) resolution. We noted this
for the MISMIP+ setup (see the last mesh in Fig. 6). On the
other hand, only imposing fine mesh resolution near the GL
does not ensure that the GL position is correctly captured be-
cause the extension of the grounding zone (where the devia-
toric stress dominates the stress balance in the ice sheet–shelf
transition; e.g., see Fig. 11 in Schoof, 2007b) depends on the
physical parameters of the ice sheet. Interestingly, for the
MISMIP+ setup, the combination of the heuristic criterion
with the ZZ error estimator (AMR R5+ZZ) and the AMR ZZ
produce similar results (as shown in Table 4), which does not
guarantee that it would be the case for real ice sheets. There-
fore, for real ice sheets, we suspect that using both criteria
(R5+ZZ) should work properly. Tests varying AMR param-
eters (distance to the GL, maximum thresholds for the error
estimator, level of refinement, etc.) should be carried before
any ice sheet simulation to optimize AMR performance in
terms of both solutions and computational time.

The grounding zone is not the only place where AMR can
be applied. Ice front and calving dynamics (Todd et al., 2018)
as well as shear margins in ice streams (Haseloff et al., 2015)
are examples for which adaptive meshes can improve numer-
ical solutions with reduced computational efforts. In ISSM,
the AMR can be applied to these regions through extension
of Algorithm 2. Other experiments (not shown here) testing
the AMR to refine the ice front region show promising results
(Santos et al., 2018).

Our AMR performance analysis shows that the compu-
tational time in AMR simulations reaches up to 1 order of
magnitude less in comparison to models based on uniform
meshes. Computational time and solution accuracy of AMR
depend on the physical problem and the refinement criterion

Table 4. AMR criteria comparison for the MISMIP+ experiment.

Level Criteria GL pos. (km) No. of elem.

L0 (coarse mesh) 435.6 6780

L1 AMR ZZ 446.8 15 864
L1 AMR R5+ZZ 446.7 15 976
L1 Uniform 447.0 27 120

L2 AMR ZZ 452.6 20 891
L2 AMR R5+ZZ 452.2 22 692
L2 Uniform 451.9 108 480

L3 AMR ZZ 455.3 21 936
L3 AMR R5+ZZ 455.6 42 617
L3 Uniform 456.3 433 920

L4 AMR ZZ 455.8 24 428
L4 AMR R5+ZZ 455.4 192 149
L4 Uniform 459.0 1 735 680

“Level” is the level of refinement. “‘GL pos.” is the grounding line position
at the end of the experiment. “No. of elem.” is the number of elements.
“AMR R5+ZZ” is the combination of the criteria ZZ error estimator
(deviatoric stress tensor) and element distance to the GL (Rgl of 5 km, R5).
Mesher used: NeoPZ. The thresholds used in the ZZ criterion are described
in the legend of Fig. 7.

used. In this work, even with hundreds of elements generated
(e.g., meshes AMR R30), the computational time is satisfac-
tory. This is observed for both NeoPZ and Bamg. Further
analysis should be carried out to check the performance in
real ice sheets and in higher computational scale (thousand
of elements), but the results presented in this study suggest
that our AMR implementation strategy is adapted to the mod-
eling questions being investigated. Our AMR computation
time compares to Cornford et al. (2013), in which AMR sim-
ulations spend approximately one-third of CPU time needed
in simulations performed by uniform meshes.

6 Conclusions

We implemented dynamic AMR into ISSM and tested its
performance on two different experiments with different re-
finement criteria. The comparison between Bamg and NeoPZ
shows that they present similar performance, and the choice
of which should be used is up to the user. Moreover, users us-
ing Bamg (or a similar mesh generator) should pay attention
to the minimal extension of the mesh transition zone to re-
duce numerical errors (e.g., in the interpolation step). NeoPZ
is more suitable with error estimators, as well as in AMR per-
formance comparison. Based on the AMR mesh sensitivity
observed here, we conclude that AMR without an error esti-
mator should be avoided, mainly in setups where bedrock in-
duces complex stress distributions and/or strong buttressing.
In real bedrock topographies, where small-scale features may
play an important role, an error estimator is suitable to guide
the AMR. Further research should be carried out in order to
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evaluate AMR performance in real bed geometries. Our rec-
ommendation to improve the AMR performance while mini-
mizing computational effort is the combination of the heuris-
tic criteria, applying a minimal distance around the GL (e.g.,
5 km), with an error estimator. The simple tests with the ZZ
error estimator show a significant potential, mostly due to
its simple implementation and performance. The AMR tech-
nique in ISSM can be extended to others physical processes
such that the evolution of ice sheets and, consequently the
sea level rise, can be accurately modeled and projected.

Code availability. The adaptive mesh refinements are currently im-
plemented in the ISSM code for triangular elements. The code
can be download, compiled and executed following the instructions
available on the ISSM website: https://issm.jpl.nasa.gov/download
(last access: 4 January 2019, Larour et al., 2012).
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