Articles | Volume 12, issue 5
https://doi.org/10.5194/gmd-12-2009-2019
https://doi.org/10.5194/gmd-12-2009-2019
Methods for assessment of models
 | 
23 May 2019
Methods for assessment of models |  | 23 May 2019

Bayesian inference and predictive performance of soil respiration models in the presence of model discrepancy

Ahmed S. Elshall, Ming Ye, Guo-Yue Niu, and Greg A. Barron-Gafford

Related authors

Hierarchical sensitivity analysis for a large-scale process-based hydrological model applied to an Amazonian watershed
Haifan Liu, Heng Dai, Jie Niu, Bill X. Hu, Dongwei Gui, Han Qiu, Ming Ye, Xingyuan Chen, Chuanhao Wu, Jin Zhang, and William Riley
Hydrol. Earth Syst. Sci., 24, 4971–4996, https://doi.org/10.5194/hess-24-4971-2020,https://doi.org/10.5194/hess-24-4971-2020, 2020
Short summary
A comprehensive quasi-3-D model for regional-scale unsaturated–saturated water flow
Wei Mao, Yan Zhu, Heng Dai, Ming Ye, Jinzhong Yang, and Jingwei Wu
Hydrol. Earth Syst. Sci., 23, 3481–3502, https://doi.org/10.5194/hess-23-3481-2019,https://doi.org/10.5194/hess-23-3481-2019, 2019
Short summary
Hierarchical Sensitivity Analysis for Large Scale Process-based Hydrological Modeling with Application in an Amazonian Watershed
Haifan Liu, Heng Dai, Jie Niu, Bill X. Hu, Han Qiu, Dongwei Gui, Ming Ye, Xingyuan Chen, Chuanhao Wu, Jin Zhang, and William Riley
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-246,https://doi.org/10.5194/hess-2019-246, 2019
Manuscript not accepted for further review
Bayesian performance evaluation of evapotranspiration models based on eddy covariance systems in an arid region
Guoxiao Wei, Xiaoying Zhang, Ming Ye, Ning Yue, and Fei Kan
Hydrol. Earth Syst. Sci., 23, 2877–2895, https://doi.org/10.5194/hess-23-2877-2019,https://doi.org/10.5194/hess-23-2877-2019, 2019
Short summary
The multi-assumption architecture and testbed (MAAT v1.0): R code for generating ensembles with dynamic model structure and analysis of epistemic uncertainty from multiple sources
Anthony P. Walker, Ming Ye, Dan Lu, Martin G. De Kauwe, Lianhong Gu, Belinda E. Medlyn, Alistair Rogers, and Shawn P. Serbin
Geosci. Model Dev., 11, 3159–3185, https://doi.org/10.5194/gmd-11-3159-2018,https://doi.org/10.5194/gmd-11-3159-2018, 2018
Short summary

Related subject area

Biogeosciences
Implementing the iCORAL (version 1.0) coral reef CaCO3 production module in the iLOVECLIM climate model
Nathaelle Bouttes, Lester Kwiatkowski, Manon Berger, Victor Brovkin, and Guy Munhoven
Geosci. Model Dev., 17, 6513–6528, https://doi.org/10.5194/gmd-17-6513-2024,https://doi.org/10.5194/gmd-17-6513-2024, 2024
Short summary
Assimilation of carbonyl sulfide (COS) fluxes within the adjoint-based data assimilation system – Nanjing University Carbon Assimilation System (NUCAS v1.0)
Huajie Zhu, Mousong Wu, Fei Jiang, Michael Vossbeck, Thomas Kaminski, Xiuli Xing, Jun Wang, Weimin Ju, and Jing M. Chen
Geosci. Model Dev., 17, 6337–6363, https://doi.org/10.5194/gmd-17-6337-2024,https://doi.org/10.5194/gmd-17-6337-2024, 2024
Short summary
Quantifying the role of ozone-caused damage to vegetation in the Earth system: a new parameterization scheme for photosynthetic and stomatal responses
Fang Li, Zhimin Zhou, Samuel Levis, Stephen Sitch, Felicity Hayes, Zhaozhong Feng, Peter B. Reich, Zhiyi Zhao, and Yanqing Zhou
Geosci. Model Dev., 17, 6173–6193, https://doi.org/10.5194/gmd-17-6173-2024,https://doi.org/10.5194/gmd-17-6173-2024, 2024
Short summary
Radiocarbon analysis reveals underestimation of soil organic carbon persistence in new-generation soil models
Alexander S. Brunmayr, Frank Hagedorn, Margaux Moreno Duborgel, Luisa I. Minich, and Heather D. Graven
Geosci. Model Dev., 17, 5961–5985, https://doi.org/10.5194/gmd-17-5961-2024,https://doi.org/10.5194/gmd-17-5961-2024, 2024
Short summary
Exploring the potential of history matching for land surface model calibration
Nina Raoult, Simon Beylat, James M. Salter, Frédéric Hourdin, Vladislav Bastrikov, Catherine Ottlé, and Philippe Peylin
Geosci. Model Dev., 17, 5779–5801, https://doi.org/10.5194/gmd-17-5779-2024,https://doi.org/10.5194/gmd-17-5779-2024, 2024
Short summary

Cited articles

Ahrens, B., Reichstein, M., Borken, W., Muhr, J., Trumbore, S. E., and Wutzler, T.: Bayesian calibration of a soil organic carbon model using Δ14C measurements of soil organic carbon and heterotrophic respiration as joint constraints, Biogeosciences, 11, 2147–2168, https://doi.org/10.5194/bg-11-2147-2014, 2014. 
Allison, S. D., Wallenstein, M. D., and Bradford, M. A.: Soil-carbon response to warming dependent on microbial physiology, Nat. Geosci., 3, 336–340, https://doi.org/10.1038/ngeo846, 2010. 
Ammann, L., Reichert, P., and Fenicia, F.: A framework for likelihood functions of deterministic hydrological models, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-406, in review, 2018. 
Bagnara, M., Sottocornola, M., Cescatti, A., Minerbi, S., Montagnani, L., Gianelle, D., and Magnani, F.: Bayesian optimization of a light use efficiency model for the estimation of daily gross primary productivity in a range of Italian forest ecosystems, Ecol. Model., 306, 57–66, https://doi.org/10.1016/j.ecolmodel.2014.09.021, 2015. 
Bagnara, M., Oijen, M. Van, Cameron, D., Gianelle, D., Magnani, F., and Sottocornola, M.: Bayesian calibration of simple forest models with multiplicative mathematical structure: A case study with two Light Use Efficiency models in an alpine forest, Ecol. Model., 371, 90–100, https://doi.org/10.1016/j.ecolmodel.2018.01.014, 2018. 
Download
Short summary
The assumptions that the residuals are independent, identically distributed, and have constant variance tend to simplify the underlying mathematics of data models for Bayesian inference. We relax these three assumptions step-wise, resulting in eight data models. Using three mechanistic soil respiration models with different levels of model discrepancy, we discuss the impacts of data models on parameter estimation and predictive performance, and provide recommendations for data model selection.