Articles | Volume 11, issue 9
Geosci. Model Dev., 11, 3605–3621, 2018
https://doi.org/10.5194/gmd-11-3605-2018
Geosci. Model Dev., 11, 3605–3621, 2018
https://doi.org/10.5194/gmd-11-3605-2018

Model description paper 05 Sep 2018

Model description paper | 05 Sep 2018

The Land surface Data Toolkit (LDT v7.2) – a data fusion environment for land data assimilation systems

Kristi R. Arsenault et al.

Related authors

Towards Effective Drought Monitoring in the Middle East and North Africa (MENA) Region: Implications from Assimilating Leaf Area Index and Soil Moisture into the Noah-MP Land Surface Model for Morocco
Wanshu Nie, Sujay V. Kumar, Kristi R. Arsenault, Christa D. Peters-Lidard, Iliana E. Mladenova, Karim Bergaoui, Abheera Hazra, Benjamin F. Zaitchik, Sarith P. Mahanama, Rachael McDonnell, David M. Mocko, and Mahdi Navari
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-263,https://doi.org/10.5194/hess-2021-263, 2021
Revised manuscript under review for HESS
Short summary
Developing a hydrological monitoring and sub-seasonal to seasonal forecasting system for South and Southeast Asian river basins
Yifan Zhou, Benjamin F. Zaitchik, Sujay V. Kumar, Kristi R. Arsenault, Mir A. Matin, Faisal M. Qamer, Ryan A. Zamora, and Kiran Shakya
Hydrol. Earth Syst. Sci., 25, 41–61, https://doi.org/10.5194/hess-25-41-2021,https://doi.org/10.5194/hess-25-41-2021, 2021
Short summary
Improving early warning of drought-driven food insecurity in southern Africa using operational hydrological monitoring and forecasting products
Shraddhanand Shukla, Kristi R. Arsenault, Abheera Hazra, Christa Peters-Lidard, Randal D. Koster, Frank Davenport, Tamuka Magadzire, Chris Funk, Sujay Kumar, Amy McNally, Augusto Getirana, Greg Husak, Ben Zaitchik, Jim Verdin, Faka Dieudonne Nsadisa, and Inbal Becker-Reshef
Nat. Hazards Earth Syst. Sci., 20, 1187–1201, https://doi.org/10.5194/nhess-20-1187-2020,https://doi.org/10.5194/nhess-20-1187-2020, 2020
Short summary

Related subject area

Hydrology
GP-SWAT (v1.0): a two-level graph-based parallel simulation tool for the SWAT model
Dejian Zhang, Bingqing Lin, Jiefeng Wu, and Qiaoying Lin
Geosci. Model Dev., 14, 5915–5925, https://doi.org/10.5194/gmd-14-5915-2021,https://doi.org/10.5194/gmd-14-5915-2021, 2021
Short summary
Development of a coupled simulation framework representing the lake and river continuum of mass and energy (TCHOIR v1.0)
Daisuke Tokuda, Hyungjun Kim, Dai Yamazaki, and Taikan Oki
Geosci. Model Dev., 14, 5669–5693, https://doi.org/10.5194/gmd-14-5669-2021,https://doi.org/10.5194/gmd-14-5669-2021, 2021
Short summary
Hydrostreamer v1.0 – improved streamflow predictions for local applications from an ensemble of downscaled global runoff products
Marko Kallio, Joseph H. A. Guillaume, Vili Virkki, Matti Kummu, and Kirsi Virrantaus
Geosci. Model Dev., 14, 5155–5181, https://doi.org/10.5194/gmd-14-5155-2021,https://doi.org/10.5194/gmd-14-5155-2021, 2021
Short summary
Model cascade from meteorological drivers to river flood hazard: flood-cascade v1.0
Peter Uhe, Daniel Mitchell, Paul D. Bates, Nans Addor, Jeff Neal, and Hylke E. Beck
Geosci. Model Dev., 14, 4865–4890, https://doi.org/10.5194/gmd-14-4865-2021,https://doi.org/10.5194/gmd-14-4865-2021, 2021
Short summary
DecTree v1.0 – chemistry speedup in reactive transport simulations: purely data-driven and physics-based surrogates
Marco De Lucia and Michael Kühn
Geosci. Model Dev., 14, 4713–4730, https://doi.org/10.5194/gmd-14-4713-2021,https://doi.org/10.5194/gmd-14-4713-2021, 2021
Short summary

Cited articles

Arsenault, K. R., Kumar, S., Geiger, J., Wang, S., Kemp, E., Beaudoing, H., and Li, B: The Land surface Data Toolkit (LDT) (Version version 7.2), Zenodo, https://doi.org/10.5281/zenodo.1322613, 2017. 
Avissar, R. and Pielke, R.: A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impact on regional meteorology, Mon. Weather Rev., 117, 2113–2136, 1989. 
Bartalis, Z., Naeimi, V., Hasenauer, S., and Wagner, W.: ASCAT Soil Moisture Product Handbook, Report No. ASCAT Soil Moisture Report Series, No. 15, 30 pp., 2008. 
Bengio, Y.: Learning Deep Architectures for AI, Found. Trends in Mach. Learn., 2, 1–127, https://doi.org/10.1561/2200000006, 2009. 
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011. 
Download
Short summary
The Earth’s land surface hydrology and physics can be represented in highly sophisticated models known as land surface models. The Land surface Data Toolkit (LDT) software was developed to meet these models’ input processing needs. LDT supports a variety of land surface and hydrology models and prepares the inputs (e.g., meteorological data, satellite observations to be assimilated into a model), which can be used for inter-model studies and to initialize weather and climate forecasts.