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Abstract. The effective applications of land surface models
(LSMs) and hydrologic models pose a varied set of data in-
put and processing needs, ranging from ensuring consistency
checks to more derived data processing and analytics. This
article describes the development of the Land surface Data
Toolkit (LDT), which is an integrated framework designed
specifically for processing input data to execute LSMs and
hydrological models. LDT not only serves as a preprocessor
to the NASA Land Information System (LIS), which is an
integrated framework designed for multi-model LSM simu-
lations and data assimilation (DA) integrations, but also as
a land-surface-based observation and DA input processor.
It offers a variety of user options and inputs to processing
datasets for use within LIS and stand-alone models. The LDT
design facilitates the use of common data formats and con-
ventions. LDT is also capable of processing LSM initial con-
ditions and meteorological boundary conditions and ensur-
ing data quality for inputs to LSMs and DA routines. The
machine learning layer in LDT facilitates the use of modern
data science algorithms for developing data-driven predic-
tive models. Through the use of an object-oriented frame-
work design, LDT provides extensible features for the con-
tinued development of support for different types of obser-
vational datasets and data analytics algorithms to aid land
surface modeling and data assimilation.

1 Introduction

The accurate quantification of terrestrial water and energy
cycles is important for a wide range of applications including
weather and climate modeling and initialization, agricultural
and water management and estimation of hydrological haz-
ards such as droughts and floods, among others. The need for
robust estimates of land surface conditions to support these
applications has led to the development of land data assimila-
tion systems (LDASs; e.g., Rodell et al., 2004; Mitchell et al.,
2004; Chen et al., 2007). The key emphasis of an LDAS is the
integration of the state-of-the art land surface models (LSMs)
with high-quality observations from in situ networks, reanal-
yses, and remote sensing, in order to obtain an improved rep-
resentation of land surface processes. The synthesis of sev-
eral types of model and observation data across various spa-
tial and temporal resolutions and extents is needed to support
the development of flexible LDAS configurations for con-
ducting both research and application-oriented studies.

The LDAS environments pose a varied set of data synthe-
sis requirements based on the modeling configurations. The
models within LDASs are typically executed in an uncoupled
fashion by isolating the land surface and by providing the re-
quired boundary conditions from the atmosphere. These con-
ditions are derived from the outputs of atmospheric models,
remote sensing, and ground observations. The LSMs also re-
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quire specifications of land surface characteristics such as
vegetation, soils, and topography, which are a mix of both
time-invariant and time-varying parameters. The data assimi-
lation (DA) tools in LDASs incorporate the information from
remote sensing and ground observations to constrain and im-
prove model states. Similarly, the optimization, and uncer-
tainty estimation tools exploit observational information to
calibrate and estimate the uncertainty associated with the
model parameters. In addition to these external data needs,
data processing requirements related to initialization, spatial
and temporal disaggregation, and bias mitigation are also of-
ten encountered in LDAS modeling scenarios. Finally, there
is often a significant technology gap to bridge when bringing
together the technical advances in data science and process-
ing methods with the land modeling approaches.

These challenges and gaps have motivated the develop-
ment of a data fusion environment known as the Land sur-
face Data Toolkit (LDT). The primary function of LDT
is to serve as a data synthesis environment for terrestrial
LDASs. LDT is currently designed as the preprocessor to the
NASA Land Information System (LIS; Kumar et al., 2006;
Peters-Lidard et al., 2007), which is an open-source soft-
ware infrastructure for land surface modeling and designed
to facilitate the efficient utilization of terrestrial hydrolog-
ical observations. In addition to the land surface models,
LIS includes computational subsystems for DA, optimiza-
tion, and uncertainty estimation. LDT and LIS have been
used to enable LDAS configurations over global (GLDAS;
e.g., Rodell et al., 2004), North American (NLDAS; Mitchell
et al., 2004; Xia et al., 2012), and regional (e.g., FEWS NET
LDAS (FLDAS); McNally et al., 2017) domains. The devel-
opment of LDT provides a formal environment to support
the data synthesis requirements of the LIS-enabled LDAS
instances. Specifically, LDT supports the processing of the
model parameters, forcing data, and initial conditions in a
consistent manner and meets the DA-related data prepro-
cessing requirements, i.e., the climatological processing of
datasets needed for model simulations and the use of ad-
vanced data science techniques for data mining and fusion.
The latest public release of LDT is version 7.2 and available
at https://lis.gsfc.nasa.gov/releases (last access: 6 May 2017).

The need for formal and efficient data fusion environments
to augment modeling systems has been recognized in the
model–data fusion (MDF; Raupach et al., 2005) paradigm,
which describes the iterative nature of model development
and the critical data dependencies and information transfer
in the modeling process. The LIS framework has been de-
signed to support this interplay between models and data
through both internal and external components. The internal
LIS subsystems for DA, optimization, and uncertainty esti-
mation allow the exploitation of the information from hy-
drological datasets for improving model structure, parame-
ters, and states. A post-processing environment known as the
Land surface Verification Toolkit (LVT; Kumar et al., 2012)
provides the capabilities for the verification, benchmarking,

and evaluation of LIS and other independent model simula-
tions and a wide range of observational datasets. Together
with LIS and LVT, the development of LDT allows the capa-
bilities for realizing the end-to-end MDF paradigm through
formal environments that allow for input data processing,
mining, and fusion and also model characterization, formu-
lation, and validation.

This paper provides a detailed technical description of
LDT, its capabilities and applications, highlighting its use
as both a stand-alone application and within the overall LIS
framework. Section 2 gives additional background and a re-
view of land model input processing software. Sections 3
and 4 describe LDT’s overall design and variety of capabil-
ities it currently supports. Several examples of some of the
capabilities are provided in parts of Sect. 4. Finally, a sum-
mary and description of future work are contained in Sect. 5.

2 Background

There are a few instances of specialized data processing en-
vironments designed to support large modeling systems. One
example includes the Community Land Model, versions 4
and higher (Oleson et al., 2010), which has data preprocess-
ing scripts and online instructions provided to users to gen-
erate inputs for the model. The developers provide standard-
ized global input files, but if the user wants to run another
resolution or regional subset or use different parameters (e.g.,
a land cover map), the user must modify and run several
different scripts to generate the necessary input files, which
can take several steps. Other examples include the National
Center for Atmospheric Research (NCAR) WRF Preprocess-
ing System (WPS) and the preprocessor for the WRF Hy-
drological modeling extension (WRF-Hydro; Gochis et al.,
2014; Sampson and Gochis, 2015). WPS offers a suite of spe-
cific datasets and primarily serves the preprocessing needs of
the WRF community (Skamarock et al., 2008) and some in
the Noah land surface model community (e.g., Chen et al.,
2007). If the user wants to use WPS for Noah model param-
eter preprocessing, the user is either limited to what prepro-
cessed parameters are available or they have to generate those
files in the specific WPS-required format before using them.
The WRF-Hydro preprocessor can utilize different hydrolog-
ically based topographical datasets, such as HydroSHEDS
(Lehner et al., 2008); however, the input elevation maps to
the WRF-Hydro preprocessor are expected to be specifically
in ArcGIS raster format, a proprietary format (ESRI, 2016),
and may require more testing and effort when using open-
source alternatives, like QGIS (https://www.qgis.org/, last
access: 15 August 2017).

Meteorological boundary conditions used in the numeri-
cal simulation of land surface states and fluxes are required,
in many instances, to be downscaled and/or adjusted to the
surface level as inputs to the land models. Some forcing data
preprocessing efforts currently exist to downscale coarser-
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Figure 1. Schematic of the complete model–data fusion (MDF)
paradigm enabled by LDT, LIS, and LVT (modeled after Fig. 1 in
Williams et al., 2009). LDT is the data preprocessing environment
that feeds into the modeling and data assimilation environment of
LIS and also LVT (the model evaluation and benchmarking system).

scale datasets, e.g., climate model reanalyses in high vary-
ing terrain-based regions. Examples include the Modern-
Era Retrospective analysis for Research and Applications
(MERRA) Spatial Downscaling for Hydrology tool (MSDH;
Sen Gupta and Tarboton, 2016), which uses the R statisti-
cal software package (e.g., https://cran.r-project.org/, last ac-
cess: 30 May 2018); TopoSCALE, v.1.0 (Fiddes and Gruber,
2014); and the eartH2Observe data portal, which provides a
suite of Python scripts that downscale meteorological fields
from the European Union’s eartH2Observe dataset (https:
//github.com/earth2observe/downscaling-tools, last access:
18 January 2018). However, these script-based or software
toolkits typically only serve a select set of different meteoro-
logical forcing datasets.

LDT shares some commonality with these processing
tools, but it is designed to be a more generic and comprehen-
sive environment for supporting a wider range of data pro-
cessing needs for the land and hydrological modeling com-
munities. It provides the user with many data processing op-
tions in how datasets are generated onto a common projec-
tion and grid, reducing inconsistencies and errors, especially
when combining different parameter datasets. LDT uniquely
supports the handling of a suite of land remote-sensing mea-
surements and preprocessing requirements for data assim-
ilation environments. In addition to these key functionali-
ties, LDT can generate certain model initial conditions (e.g.,
climatologically averaged state fields) for deterministic and
ensemble model runs, a capability that is often needed in
routine model simulations. Furthermore, the software is en-
hanced with advanced techniques such as the development
of data-driven models based on machine learning (ML) tech-
niques and Bayesian merging for adaptive downscaling and
bias-correction methods. LDT can handle input datasets in
their “native” formats, performs consistency checks to ensure

reasonable values (e.g., no missing values), and provides the
outputs using the conventions and formats compliant with
community data standards. Most processed outputs are writ-
ten to a standardized, descriptive format known as the Net-
work Common Data Format (NetCDF; Unidata, 2015).

3 Software design of the LDT framework

As noted earlier, LDT is designed to encompass a broad set of
functionalities that complement the modeling, data assimila-
tion and evaluation environments of the LIS framework. To-
gether, the LDT-LIS-LVT series conforms to the MDF con-
cept (Raupach et al., 2005), where LDT supports the input
data processing needs of the modeling system of LIS and
LVT provides the evaluation procedures to help with revis-
ing and improving any of the input and model formulations.
Figure 1, modeled after the schematic outlined in Williams
et al. (2009), highlights these end-to-end connections and
capabilities in support of the MDF paradigm. LDT plays a
central role in enabling this vision, by providing the data
and information processing capabilities, which LIS and LVT
use to enable an iterative process of model formulation, state
and parameter estimation and refinement, generalization, and
model validation and benchmarking.

LDT shares an object-oriented framework design with
LIS, with a number of points of flexibility known as
“plug-ins”. Specific implementations (such as soil parame-
ter datasets or a surface meteorological forcing) are added to
the framework through the plug-in interfaces. LDT uses the
plug-in-based architecture to support the processing of dif-
ferent types of observational datasets, ranging from in situ,
satellite, and remotely sensed products to reanalysis prod-
ucts. The LDT software structure is organized into three lay-
ers: (1) the LDT core layer, (2) the “Abstractions” layer, and
(3) the “Use case” layer. The latter represents the functional
implementations of the Abstractions layer. Figure 2 outlines
this structure and what is defined further in each layer. The
“core” top layer executes the generic functions of time man-
agement, defining the output fields, geospatial transforms,
top-level handling of the different model parameters, and me-
teorological dataset processing. The Abstractions layer en-
ables “pluggable” interfaces with which to incorporate dif-
ferent features, run modes, model datasets, and other func-
tionalities. Also, a key aspect of the Abstractions layer is the
ability to reuse the plug-ins to support additional features and
expand LDT’s capabilities.

The LDT code is implemented in Fortran 90 and C pro-
gramming languages. The C-language-based virtual function
table implementation is used to simulate polymorphic behav-
ior for the extensible components in LDT. These function
tables enable the Abstractions layer constructs. LDT is also
supported by a variety of libraries, which handle not only
the data format aspects (e.g., NetCDF I/O) but also the core
routines as supplied by the Earth System Modeling Frame-
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Figure 2. Schematic of LDT’s main software architecture, showing the various core structures, abstraction layer, and use case implementa-
tions.

work (ESMF; Hill et al., 2004) library. ESMF is a library
framework to support the building and coupling of earth
system model components. ESMF provides several “off-the-
shelf” infrastructure utilities such as clock/time manager and
generic constructs for storing and exchanging data between
various system components. LDT utilizes several ESMF fea-
tures for passing information between the plug-in compo-
nents and the core routines.

A number of libraries to enable the support for common
earth science data formats are also utilized in LDT. They
include the latest NetCDF, version 4 (NetCDF-4), Hierar-
chical Data Format (HDF5; The HDF Group, 2015), HDF-
EOS (or HDF-4), and the GRidded Binary or General Reg-
ularly distributed Information in Binary form (GRIB) data
formats, versions 1 and 2. Currently, the GRIB data for-
mats are supported using the European Centre for Medium-
Range Weather Forecasts (ECMWF)’s GRIB Application
Programming Interface (GRIB-API) library (ECMWF, 2015)
and will be replaced with the latest ECMWF’s ecCodes.
Finally, LDT handles other data format libraries, including
the Tagged Image File Format (TIFF) and the Band Inter-
leaved by Line (BIL) format, both used mostly with remotely
sensed data and widely supported in GIS software environ-
ments and applications. TIFF formatted files are read-in us-
ing the Geospatial Data Abstraction Library (GDAL; http:
//www.gdal.org/, last access: 31 January 2018) translation li-
brary, which is linked and invoked via the FortranGIS project
libraries (https://github.com/dcesari/fortrangis, last access:
31 January 2018).

Current LDT components
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Figure 3. Schematic depicting the current and different components
in LDT.

4 Capabilities and features of LDT

LDT provides a range of features and capabilities that sup-
port the land surface and hydrological modeling communi-
ties. The current features and options are described further
in detail below. Figure 3 provides an overview of the current
LDT capabilities and components.
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4.1 Model parameter processing support

For LSMs and hydrological models, the importance of pro-
viding representative or “realistic” physical parameters has
been shown in several studies (e.g., Sun and Bosilovich,
1996; Duan et al., 2006; Bounoua et al., 2006; Nearing et al.,
2016). The key parameter types required for LSMs include
(1) land cover/vegetation, (2) land/water mask, (3) soils, and
(4) topography. Many land surface models contain tables of
physical parameters that are indexed by spatial maps of pa-
rameter types (e.g., roughness length indexed by land cover
type or saturated hydraulic conductivity indexed by soil tex-
ture class). Alternatively, physical parameters themselves
may be specified on each model grid (e.g., snow-free albedo,
green vegetation fraction). Adjunct models to LSMs include
streamflow routing models and lake models. These models
may be included with or separate from the LSM. Depending
on their dimensionality and complexity, streamflow routing
models require information about flow directions, drainage
areas, slopes, roughness, and lengths of river reaches. Sim-
ilarly, lake models require information about lake area and
depth(s).

The first major parameter type of any land-based model
is the vegetation or land cover (or use) classification map.
Not capturing the correct land cover at different scales can
lead to errors or impacts on other modeled processes, e.g.,
coupled feedbacks (Bounoua et al., 2006). Another feature
in some LSMs is the concept of representing sub-grid het-
erogeneity, also referred to as sub-grid “tiling”. Instead of
considering the dominant land characteristics only, the sub-
grid tiling approaches represent a grid cell as a mosaic of a
number of homogeneous elements, determined from the dis-
tribution of land parameters within a grid cell (e.g., Avissar
and Pielke, 1989; Koster and Suarez, 1992). Sub-grid tiling
is aimed at better representing land surface model effects and
feedback to coupled atmospheric models (e.g., Giorgi and
Avissar, 1997; Essery et al., 2003; de Vrese et al., 2016). In
addition to vegetation-based tiling, the effects of soil mois-
ture distribution (e.g., Entekhabi and Eagleson, 1989) and
elevation-based sub-grid variability (e.g., Leung and Ghan,
1995; Nijssen et al., 2001; Newman et al., 2014) on different
water budget variables, like runoff and atmospheric response,
have been investigated. LDT has been designed to support
the representation of sub-grid tiling not only for vegetation
but also for multidimensional combinations of properties, in-
cluding soil types and topographic derivatives (e.g., eleva-
tion, slope). Similar approaches have been developed for hy-
drological response units to capture sub-grid heterogeneity
for land model processes (Chaney et al., 2016).

LDT uses the vegetation or land use map as a primary in-
put parameter from which sub-grid heterogeneity can be sta-
tistically represented and a corresponding land–water mask
can also be derived. Figure 4 shows example vegetation tile
frequency maps from four different vegetation classes (e.g.,
evergreen needle leaf, croplands) belonging to the Moderate

Resolution Imaging Spectroradiometer (MODIS) Interna-
tional Geosphere-Biosphere Programme (IGBP) land cover
classification map (Friedl et al., 2002). LDT can read in a
moderately high-resolution vegetation map (e.g., < 1 km per
grid cell) and generate the tiled frequency maps, as high-
lighted in Fig. 4. In addition to land cover, LDT also repre-
sents the sub-grid-scale distribution of soil types and topog-
raphy datasets within a grid cell. The ability of LDT to rep-
resent the distribution of fine-scale features of the underlying
data for other land characteristics such as soils and topog-
raphy allows a more flexible tiling representation, based on
any of these features, or a combination of them. Land cover
and land use map options in LDT include the U.S. Geologi-
cal Survey (USGS) 24-class land cover (USGS GLCC), the
University of Maryland (UMD) Advanced Very High Reso-
lution Radiometer (AVHRR) land cover map (Hansen et al.,
2000), and a few other dataset options, like Mosaic LSM veg-
etation types (Koster and Suarez, 1996) and JULES (Dun-
derdale et al., 1999).

Closely related to the vegetation type and land use pa-
rameters described above is the “mask” field, which iden-
tifies valid grid cells on which the model will run. Typically
for a land surface or hydrological model, the mask discrimi-
nates between land and open water points, assigning an index
value, like 1, to the valid land points. In LDT, such a mask
can be derived from the land classification map or read in
and imposed. If imposed, LDT ensures that all processed pa-
rameters are geographically co-registered and consistent with
the input mask. A variety of options exist in LDT to ensure
consistency between the masks and model parameters. These
options include allowing the user to select neighboring grid
cells to fill in a parameter value when the land mask indicates
a valid land point but the parameter has a missing value. If
no valid neighboring values are available (e.g., in the case of
small islands), the user can then specify a universal value to
fill in the missing data. In addition, LDT offers other param-
eter processing features, such as upscaling (e.g., averaging)
or downscaling techniques (e.g., bilinear interpolation) and
different projections (e.g., equidistant geographic coordinate
system, polar stereographic).

Another key LSM parameter involves the representation
of soil types. LDT offers a variety of data options, including
soil texture and soil-fraction-based maps (i.e., sand and clay
fractions), depending on what the LSM needs. As mentioned
above, sub-grid tiling can be generated and represented by
LDT using both the soil texture and soil-fraction maps. Some
of the current soil data options include the original Food
and Agricultural Organization soil texture and fraction maps
(Reynolds et al., 2000); the blended STATSGO (Miller and
White, 1998), version 1; the Food and Agriculture Organiza-
tion (FAO) global soil texture map (Reynolds et al., 2000);
and the International Soil Reference and Information Cen-
tre (ISRIC) texture, fractional, and other soil property-based
dataset (Hengl et al., 2014). Figure 5 shows an example com-
parison of soil texture classes over the eastern Africa region
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Figure 4. Vegetation distribution fraction of four different MODIS IGBP land cover classes (as produced by LDT): evergreen needleleaf
(a), deciduous broadleaf forest (b), open shrublands (c), and general cropland (d). Values greater than 0.9 indicate where more than 90 % of
given grid cell (0.125◦ grid cell resolution, in this example) is dominated by that vegetation type.

Figure 5. Comparison of the (a) STATSGO-FAO soil texture class
map (originally at 1 km resolution) versus the (b) ISRIC soil texture
map (originally at 250 m resolution). Dominant texture classes are
shown here at 10 km spatial resolution.

from the STATSGO-FAO and ISRIC soil texture maps, as
processed through LDT.

Currently, processing of the parameters for several land
surface and hydrologic models is supported by LDT (and
LIS), as summarized in Table 1. These models are the state-
of-the art in representing the key processes of the terrestrial
energy, water and carbon cycles as well as specialized pro-

cess representations of specific features of the land surface
(e.g., lakes, urban). Some of the LSMs include Noah ver-
sions 2.7.1 and later (Chen et al., 1996), Catchment LSM
(Koster et al., 2000), JULES (Best et al., 2011), and several
others. LDT also processes final inputs for the Hydrologi-
cal Modeling and Analysis Platform (HyMAP) (Getirana et
al., 2012, 2017), which is a hydrological routing scheme in
LIS and collects and routes LSM-based total runoff through
a network of catchments and tributaries to major river stems.
Finally, LDT supports the processing of lake model param-
eters, e.g., water depth for freshwater lake models such as
FLake (Kirillin et al., 2011).

The complexity of these model formulations continues to
increase with the addition of new components (e.g., crop,
groundwater models), fine-scale modeling needs (e.g., to-
pographical downscaling), and efforts to include impacts of
human management (e.g., irrigation). LDT provides a num-
ber of schemes and datasets to address the data process-
ing requirements of these additional components. For exam-
ple, the processing of irrigation intensity information from
the MODIS-based irrigation map developed by Ozdogan
and Gutman (2008) and the Global Rain-Fed, Irrigated and
Paddy Croplands (GRIPC; Salmon et al., 2015) are supported
within LDT. Also, crop information is available, which in-
cludes the CROPMAP scheme in Ozdogan et al. (2010), and
the updated, high-variety crop map of Monfreda et al. (2008).

Geosci. Model Dev., 11, 3605–3621, 2018 www.geosci-model-dev.net/11/3605/2018/
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Table 1. LSMs and some of their parameters supported in LDT. Note that several LSMs use the land cover type and/or the soil texture type
for each tile within LIS in combination with a lookup table to generate vegetation or soil parameters for that tile.

Model Type Parameters References

Noah, versions 2.7.1 and
greater

LSM MODIS-IGBP land cover, soil texture, monthly cli-
matological greenness fraction and albedo, max. snow
albedo, bottom soil profile temperature, slope type.

Chen et al. (1996)

Noah-MP, version 3.6.1 LSM Same as used in Noah LSM versions. Niu et al. (2011)

Catchment LSM Mosaic-based land cover classes, soil parameters
(porosity, saturated hydraulic conductivity, Clapp–
Hornberger PSI and B parameters), bedrock depth,
wetness/shape/baseflow/water transfer/minimum
theta/topographic tau parameters, diffuse and direct
NIR/VIS albedo-scale factors, monthly climatological
greenness fraction and leaf area index (LAI).

Koster et al. (2000)

Mosaic LSM Soil sand/silt/clay fractions, soil porosity and color,
monthly SAI and LAI maps.

Koster and Saurez (1996)

Simple Biosphere, version
2 (SiB-2)

LSM UMD-based land cover, vegetation canopy parameters,
rooting depth, leaf characteristics (e.g., photosynthesis,
stomatal conductance), soil respiration, etc.

Sellers et al. (1996)

SAC-HTET, Snow-17 LSM SAC: soil parameters (e.g., max. water storage, free wa-
ter depletion rate), potential evapotranspiration (PET)
monthly maps, greenness vegetation fraction, snow
albedo.

Koren et al. (2010)

Rapid Update Cycle (RUC)
LSM v3.7

LSM Same parameters as Noah LSM but also LAI monthly
climatology.

Smirnova et al. (2016)

Variable Infiltration
Capacity (VIC) v4.x

LSM UMD land cover and land mask Liang et al. (1994)

GeoWRSI, v2 LSM Start-of-season climatology, end-of-season climatology,
length of growing period, and soil water content.

Verdin and Klaver (2002)

Community Atmosphere
Biosphere Land Exchange
(CABLE) model

LSM Soil fractions and texture, porosity, land cover classifi-
cation map

Kowalczyk et al. (2013)

Joint UK Land Environ-
ment Simulator (JULES),
v4.3

LSM UM/JULES 10 km plant functional type (PFT) map, soil
hydrology parameters (e.g., porosity, wilting point, satu-
rated water conductivity, thermal capacity, thermal con-
ductivity, and ground albedo).

Best et al. (2011)

Hydrological Modeling
and Analysis Platform
(HyMAP) v1, v2

Routing X,Y flow direction components, flood height, baseflow,
basin domains and mask, runoff delay terms, grid eleva-
tion, river dimensions (e.g., height, length, etc.).

Getirana et al. (2012, 2017)

Freshwater Lake (FLake)
model

Lake Interior water and lake depth, water-body quality-
control information, lake wind fetch, lake sediment in-
puts.

Kirillin et al. (2011)

To enable the topographical downscaling of meteorologi-
cal fields for fine-scale modeling, LDT processes elevation,
slope, and aspect datasets. High-resolution precipitation cli-
matology maps from the Parameter-elevation Relationships
on Independent Slopes Model (PRISM; Daly et al., 1997) or
from WorldClim (Fick and Hijmans, 2017) can be ingested

within LDT for downscaling and bias-correcting precipita-
tion fields. LDT also supports different topographic map op-
tions (e.g., elevation, slope), which include the GTOPO30
(Gesch et al., 1999) and the Shuttle Radar Topography Mis-
sion, 30 arcsec (SRTM30; Jarvis et al., 2008) digital eleva-
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tion model (DEM) datasets (globally, 30 arcsec resolution
versions).

4.2 Generation of model initial conditions

Similar to model parameters, model initial conditions (ICs)
are required by all LSMs to simulate land surface model
states and fluxes (e.g., Cosgrove et al., 2004; Rodell et al.,
2005). Climatologically averaged, state-based initial condi-
tions have been shown to provide more optimal initial condi-
tions for LSM and hydrological model simulations than other
methods (Rodell et al., 2005). One example of improving the
model initial conditions was shown in Xia et al. (2012), go-
ing from a 1-year spin-up period, originally used in the North
American LDAS, phase 1 (NLDAS-1), to two stages of run-
ning several years and averaging selected dates (e.g., 1 Jan-
uary) for NLDAS, phase 2 (NLDAS-2). Running for several
years improved the initial conditions for the NLDAS-2 model
simulations, whereas the 1-year NLDAS-1 spin-up produced
“lingering effects” on the soil moisture fields. LDT offers a
feature to generate such climatological initial conditions. The
climatological initial conditions are generated by taking an
average of the same date and time (e.g., 1 June, at 00:00 Z)
over multiple years (e.g., 1982–2010).

LDT also provides the capability to produce an IC-based
file to initialize an ensemble simulation, e.g., for a sea-
sonal forecast ensemble, going from a single-member model
“restart” file to a multi-member file, which we refer to as
ensemble “disaggregation”. In addition, an option exists to
calculate the ensemble average from a multi-member IC (or
restart) file to form a single-member IC file, which we refer
to as ensemble “aggregation”. These options can support ini-
tializing data assimilation and forecast ensemble model sim-
ulations.

4.3 Data processing support for land data assimilation

The use of observational data from satellites and other
remote-sensing platforms is a growing area of research in
the land/hydrological modeling community. The informa-
tion from these observational data sources is often used to
improve the characterization of model states through data
assimilation (DA; e.g., Reichle et al., 2002; Kumar et al.,
2008c) and model parameters through inverse modeling tech-
niques (e.g., Harrison et al., 2012). The computational sys-
tems of DA and inverse modeling, built around the physical
models, have their own data and processing requirements.
Most DA systems are designed to address and improve the
random errors in models and expect the input datasets to be
generally unbiased relative to model estimates. A common
approach in the land DA community to enable these “bias-
blind” (Dee, 2005) systems is to rescale the observational
data to be consistent with the model climatology, which is
simply a multiyear average of model states. The development

of model and observational data climatologies to enable such
reprocessing is supported within LDT.

For soil moisture data assimilation, a commonly used
rescaling approach is called CDF matching where cumula-
tive distribution functions (CDFs) are used to bias-correct
and reduce differences in observation and model states (Re-
ichle and Koster, 2004). This scaling approach matches the
CDF of the observation to that of the model and corrects all
moments (e.g., first and second) of the observation distribu-
tion, regardless of its shape. To generate CDFs with LDT,
the user must supply multiple years of model output and
observational data for the a given variable. LDT then pro-
duces model- and observation-based CDF data, separately, at
each model grid point, which the DA system can use to per-
form the rescaling. The user can select the granularity, tem-
poral averaging period, and data count threshold to generate
the CDF files. The CDFs can also be generated either based
on lumped annually based values (“lumped”) or seasonally
stratified CDF values (i.e., “monthly”). Kumar et al. (2015)
demonstrated that the use of seasonal CDFs reduces the sta-
tistical errors from CDF matching in soil moisture DA, com-
pared to the use of lumped CDFs. Finally, LDT can account
for spatial sampling by using neighboring pixels to increase
the sampling density in the CDF calculations (e.g., when a
data record period is short; based on Reichle and Koster,
2004) or by grouping CDFs by land cover or soil texture type.

LDT supports several different satellite-based observa-
tional data types that can be used for data assimilation in LIS.
These satellite-based observations include a variety of soil
moisture (SM) retrievals, terrestrial water storage (TWS),
and snow depth (SNWD). Table 2 summarizes the various
products available in LDT, which encapsulate most modern
land remote-sensing measurements.

The NASA’s Gravity Recovery and Climate Experiment
(GRACE) TWS anomaly dataset is part of the suite of satel-
lite products that can be processed by LDT and assimilated
into LIS. Currently, LDT supports monthly gridded GRACE
mass products either in 0.5 or 1.0◦ resolution, regardless of
their processing methods (i.e., spherical harmonic or mass
concentration). Release-05, or RL05, products have been
provided by the University of Texas Center for Space Re-
search (CSR), NASA’s Jet Propulsion Laboratory (JPL), and
the German Research Centre for Geosciences (GFZ). Along
with the GRACE anomaly product, LDT can incorporate
GRACE scaling information and leakage errors that are pro-
vided with the spherical harmonic products (Kumar et al.,
2016). In addition, CSR provides a higher-resolution RL05
version at 0.5 degree but using the Mascon solution (Save et
al., 2016). LDT reads in the raw GRACE anomaly data and
incorporates that information into model-based TWS infor-
mation (units of mm), for example, as in Kumar et al. (2016).
The final data produced are referred to as total TWS. Figure 6
shows an example of the LDT-produced total TWS, after in-
corporating the GRACE TWS anomaly information.
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Table 2. Different DA remotely sensed observational or land surface model data types supported in LDT and LIS.

Dataset type Description Reference

LPRM AMSR-E SM The Land Parameter Retrieval Model (LPRM)’s Advanced
Microwave Scanning Radiometer-Earth Observing System
(AMSR-E) soil moisture retrievals.

Owe et al. (2008)

WindSat SM WindSat passive microwave soil moisture Li et al. (2010)

TUW ASCAT SM ESA’s Advanced Scatterometer (ASCAT) soil moisture,
processed at Technische Universität Wien, Austria.

Bartalis et al. (2008)

SMOS SM ESA’s Soil Moisture Ocean Salinity (SMOS) dataset Kerr et al. (2001)

GCOM-W AMSR2 SM Global Change Observation Mission (GCOM) AMSR ver-
sion 2 soil moisture

Wentz et al. (2014)

SMAP SM NASA’s Soil Moisture Active-Passive (SMAP) level 3
products.

Entekhabi et al. (2014)

SMOPS SM NOAA’s Soil Moisture Operational Product Systems
(SMOPS) includes several soil moisture datasets: AMSR2,
SMOS, and ASCAT

Liu et al. (2016)

ESA’s CCI ECV active+passive SM ESA’s Climate Change Initiative (CCI) essential climate
variable (ECV) blended active/passive microwave SM

Liu et al. (2011)

GRACE TWS NASA’s Gravity Recovery and Climate Experiment
(GRACE) TWS anomaly dataset

Tapley et al. (2004)

GCOMW AMSR2 SNWD AMSR2 passive microwave snow depth retrievals Wentz et al. (2014)

LIS LSM model output LIS land surface model output fields (e.g., soil moisture) Kumar et al. (2008a, b)

LDT also allows the definition of an “exchange grid” for
DA, a domain that is used for the calculation of the obser-
vation minus the model forecast estimates (called “innova-
tions”). The use of the exchange grid allows improved con-
sistency between observations and the simulated model fore-
casts. The exchange grid information generated by LDT is
then employed by the DA system in the calculation of data
assimilation updates.

4.4 Processing support for meteorological forcing
datasets

LSMs driven with higher spatial resolution and observational
data have been shown to have improved land states and fluxes
over coarser and model-only generated meteorological in-
puts (e.g., Masson et al., 2003; Reichle et al., 2011). Higher-
resolution forcing datasets can improve land model ICs, for
example, in coupled atmospheric simulations (e.g., Kumar et
al., 2008a; Case et al., 2008). LIS and LDT support a large
variety of meteorological reanalysis, observational forcings,
and seasonal climate forecast datasets. LDT supports a large
suite of meteorological forcing data, and it can be used as
a stand-alone tool to downscale spatially and temporally, to
merge, and to quality control these different forcing datasets.
The final meteorological fields are written to a single file in
NetCDF-4 format.

At this time, LDT supports two basic ways of process-
ing meteorological datasets. First, LDT can be used to spa-
tially and temporally interpolate to downscale and merge
(or “overlay”) different meteorological forcing datasets us-
ing the “Metforcing processing” run mode option. A second
option exists where the user can generate climatological forc-
ing datasets to capture diurnal and seasonal cycles of longer-
term forcing data records. This second feature works with a
variety of meteorological datasets, including overlaying mul-
tiple datasets, to generate a more comprehensive climatolog-
ical forcing (available down to an hourly climatology). This
climatology option can be used for different applications, in-
cluding generating forcing used in forcing ensembles and cli-
matology forecast capabilities.

4.5 Spatial and temporal forcing downscaling and
disaggregation options

Generating higher-resolution meteorological inputs can be
very important in driving the LSM or hydrological models,
especially over mountainous regions, to better capture fine-
scale features, such as variations in temperature or incom-
ing solar radiation on snowpack dynamics (e.g., Rasmussen
et al., 2011). Several studies have further downscaled re-
analysis and forecast datasets, which include seasonal cli-
mate and climate change (e.g., Maraun et al., 2010), show-
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Figure 6. Examples of LDT-processed GRACE-based total TWS (in mm). (a) Plot of the LDT-processed TWS data for the southern African
region for February, 2011 and (b) a time-series plot of the TWS data for years 2003–2015 and latitude of −21◦ S and longitude of 24◦ E.

ing improved meteorological and hydrological representa-
tion at those scales. Also, temporal disaggregation of coarser
timescale forcing data (e.g., daily) has been shown to im-
prove hydrological representation versus simply applying a
uniform rate (e.g., over the day; Ryo et al., 2014). Such
methods are also applied in the GLDAS (Rodell et al., 2004)
and NLDAS (Cosgrove et al., 2003) forcing downscaling ap-
proaches.

LDT offers some options for either spatially or temporally
disaggregating forcing datasets. For temporal disaggrega-
tion, forcing datasets that are at coarser timesteps, e.g., daily
or greater, can be interpolated to a finer timestep (e.g., 3-
hourly). For example, daily observed precipitation fields can
be disaggregated using precipitation fields at finer timesteps,
e.g., hourly fields from the MERRA, version 2 (MERRA-
2), by applying weights from the MERRA-2 precipitation to
create sub-daily precipitation from the daily product. This
approach is based on Cosgrove et al. (2003), and it is pre-
ferred for LSMs over other methods, e.g., simply distributing
a daily precipitation product at the same rate (uniform) over
each sub-daily (e.g., 3-hourly) timestep (e.g., Sen Gupta and
Tarboton, 2016).

Current spatial downscaling techniques available from
LDT, in conjunction with LIS, include using higher-
resolution (e.g., 1 km), monthly precipitation climatology
datasets, such as from the PRISM (Daly et al., 1997) or
WorldClim (Fick and Hijmans, 2017) to spatially downscale
coarser-scale precipitation data. Specifically, LDT calculates
and stores the ratio of high-resolution precipitation climatol-
ogy versus the same climatology aggregated at the coarser-
scale resolution. These ratios reflect how spatial patterns of
monthly precipitation change with respect to spatial resolu-
tions and therefore provide a basis for spatially downscaling
precipitation data when read into LIS. If the climatology of
the precipitation data used to run LIS is also available, spa-
tial downscaling can be performed in conjunction with bias
correction. In this case, for example, LDT calculates the ratio
of 1 km PRISM climatology to that of the coarser-scale pre-

cipitation used by LIS and stores the ratio (at the simulation
resolution) in the LIS parameter file. LIS in turn reads the
ratio and applies it to precipitation data each time when new
forcing data are read. By definition, the output precipitation
field from LIS will have the same climatology as PRISM in
each calendar month, hence removing the bias of the coarser-
scale precipitation climatology relative to that of the finer-
scale precipitation climatology.

Other spatial disaggregation techniques available in LDT
include the ability to process topographic maps (e.g., eleva-
tion, slope) and forcing-based lowest-layer terrain heights,
which can be used in LIS to further downscale the forcing
fields in two different ways. The first approach follows that
used in NLDAS-1 and 2 (e.g., Cosgrove et al., 2003), where a
static environmental lapse rate (of 6.5 K km−1) is used to ap-
ply an elevation adjustment to the spatially coarser meteoro-
logical fields (e.g., air temperature, specific humidity) to finer
scales (e.g., 1 km) to capture greater terrain spatial variabil-
ity. This lapse-rate correction can, for instance, improve air
temperature representation in mountainous regions. Figure 7
highlights the comparison of NLDAS-2 forcing dataset at its
native 12.5 km (or 0.125 degree) resolution and then down-
scaled using the lapse-rate adjustment method with SRTM
elevation to 1 km resolution using the SRTM 1 km elevation
parameter file. The ability to generate spatially varying at-
mospheric lapse rates based on atmospheric pressure levels
and temperatures (e.g., Sen Gupta and Tarboton, 2016) is
not available within LDT, but it could be expanded to in-
clude this approach. Finally, LDT processes and provides
high-resolution slope and aspect fields, which are applied in
LIS to adjust downward solar radiation fields. Accounting
for slope and aspect has been shown to improve radiation
budgets and snow simulations in mountainous regions (e.g.,
Kumar et al., 2013).
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Figure 7. Examples of LDT-processed SRTM elevation parameter (in meters) at both (a) 12.5 km and (c) 1 km resolutions. (b) NLDAS-2
air temperature forcing field at its native 12.5 km resolution on 1 April 2005 (18:00 Z). (d) The 1 km resolution SRTM elevation field was
then used to “topographically downscale” the NLDAS-2 air temperature (in units of K) using the lapse-rate correction approach for the
finer-detailed 1 km air temperature field, as shown in plot (d).

4.6 The machine learning layer

Despite the huge advancements in modeling made possible
by “physical” models, they have fundamental limitations in
their ability to accurately portray the complex processes of
the Earth system. For example, the significant human foot-
print on the hydrological cycle has essentially led to a “re-
plumbing” of the global hydrological cycle through activities
such as agriculture and infrastructure development, leading
to the recognition of a new geological epoch called the An-
thropocene (Zalasiewicz et al., 2011). The accurate represen-
tation of the replumbing is critical for understanding the con-
sequences of human activity on water resources and its con-
tribution to hydrological extremes. Due to the often subjec-
tive nature of the human-engineered processes, the concep-
tual physical models are limited in their ability to represent
Anthropocene processes. On the other hand, large-scale ob-
servations from satellites and remote-sensing platforms pro-
vide a huge opportunity to represent them, which is only pos-
sible if sophisticated data processing and data-driven models
are available to fully exploit the information content of such
measurements.

The availability of increased amounts of earth science data
and the power of modern computers present an ideal sce-

nario for employing machine learning (ML) techniques for
data-driven modeling and predictive analytics. ML-methods
essentially develop nonlinear feature transformations learned
from mapping a set of inputs to a set of outputs. More recent
advancements in ML such as deep learning (Bengio, 2009),
modeled after the human cognitive process, allow the model-
ing of more complex relationships among the data and incre-
mental learning. Generally, the data-driven ML models are
a good alternative to the physical models when it is diffi-
cult to build knowledge-driven simulation models in cases
where the understanding of the underlying processes is lack-
ing. With this recognition, LDT includes an ML layer de-
signed to support a variety of ML algorithms and training
models. The ML models developed from LDT are expected
to augment the physical models and data assimilation envi-
ronments.

Currently the ML layer in LDT includes shallow learn-
ing algorithms such as the Artificial Neural Network (ANN),
which consists of an input layer, an output layer, and a set
of hidden layers. The user specifies the input and output lay-
ers, whereas the topology of the hidden layer is constructed
within LDT. During the training phase, LDT is presented
with a set of inputs and the corresponding outputs, which are
used to develop a set of weights and interconnections within

www.geosci-model-dev.net/11/3605/2018/ Geosci. Model Dev., 11, 3605–3621, 2018



3616 K. R. Arsenault et al.: The Land surface Data Toolkit (LDT v7.2)

Rainfall (LSM)

Snowfall (LSM)

Surface soil
 temperature (LSM)

Green vegetation
 fraction (LSM)

Surface soil 
moisture (LSM)

In situ snow depth 
(GHCN)

Input 
layer

Hidden 
layer

Output 
layer

Spectral difference 
Tb18H - Tb36H (AMSR2)

Spectral difference 
Tb18V - Tb36V (AMSR2)

Fractional snow cover
(MODIS)

 0

 50

 100

 150

 200

 250

 300

 350

08/13 09/13 10/13 11/13 12/13 01/14 02/14 03/14 04/14 05/14 06/14 07/14

Sn
ow

 d
ep

th
 (m

m
)

GHCN
ANN prediction

Figure 8. Example of the ML layer utilization in LDT. The top
panel shows the schematic of the ANN which ingests a suite of
LSM-based and remote-sensing-based inputs for developing pre-
dictions of snow depth. The bottom panel shows the performance
of the trained network against in situ observations from the GHCN
network.

the ANN. The trained network can then be used for generat-
ing predictions with a new set of inputs.

The ML-based trained network models can be a useful op-
erator within DA environments. Most satellite instruments
detect radiances (electromagnetic energy over specific wave-
lengths), and the conversion of these raw measurements to
geophysical variable is not always trivial. The ML techniques
can be used to develop models that translate between radi-
ance measurements and related geophysical quantities. Such
models can then be used in DA configurations, essentially al-
lowing the direct use of raw satellite measurements in mod-
eling.

An example of such a scenario is presented in Fig. 8.
The input ML layer in LDT is used to ingest radiance mea-
surements for the 18 and 36 GHz channels (both horizontal
and vertical polarizations) from the AMSR2 instrument on
the Global Change Observation Mission-Water (GCOM-W)
satellite (Wentz et al., 2014). In addition, the input layer is
presented with the fractional snow cover data from MODIS
Terra instrument (MOD10A1) and the outputs from a LIS
model simulation (variables including precipitation, green
vegetation fraction, soil moisture, and soil temperature). The
ANN within LDT is then trained against the daily snow depth
measurements from the Global Historical Climate Network
(GHCN) for a period of approximately 1 year (1 August 2012
to 31 July 2013). The training is conducted at a point location
(Tierra Amarilla in New Mexico, 36.7◦ E, 106.6◦W), where
the snow evolution is often ephemeral, making an accurate

prediction difficult. The bottom panel of Fig. 8 shows the
performance of the trained network, when used for prediction
in the following year (1 August 2013 to 31 July 2014). The
snow evolution is captured well by the ANN-based predic-
tions. The specification of the input and output layers is user-
defined and customizable. The ML layer in LDT can also be
used for developing data-driven models both in a spatially
distributed manner (where the training is done on a grid cell
by grid cell basis) and on an aggregate basis (where a single
trained model is developed using available inputs for all grid
cells).

5 Summary and future capabilities

Land data assimilation systems (LDASs) require the integra-
tion of high-quality observations with state-of-the-art land
surface and hydrological models to acquire robust estimates
of land surface conditions to meet the needs of applications
involving weather and climate modeling, water resources
management and modeling of hydrological extremes, among
others. The synthesis of several types of model and obser-
vation data across various spatial and temporal resolutions
and extents is needed to support the development of flexi-
ble LDAS configurations for conducting both research and
application-oriented studies. To offer such a data fusion soft-
ware framework, the Land surface Data Toolkit (LDT) has
been developed with a large suite of capabilities including
(1) parameter processing for a wide variety of models in-
cluding land surface, hydrological, lake and streamflow mod-
els; (2) the creation of initial conditions (e.g., climatological
restarts) from model runs; (3) data assimilation preprocess-
ing support; (4) meteorological forcing data processing for
inputs to the models; and (5) data-driven models based on
machine learning to assist the physical modeling and DA en-
vironments. LDT provides a formal environment to handle
the data-related needs within the model–data fusion concept,
which is recognized to be essential for the systematic devel-
opment and improvement of Earth system models.

LDT serves as the main preprocessor to the NASA Land
Information System (LIS), which is an integrated framework
designed for multi-model land surface model (LSM) and data
assimilation (DA) integrations. LDT can also be used inde-
pendently as an observational and model input processor for
other land surface modeling systems. In addition, LDT offers
a variety of user options to process model inputs, supports a
variety of software libraries, has the ability to read in native
(or original) dataset formats, and uses common data formats,
like NetCDF-4.

LDT is an evolving framework and will continue to be de-
veloped with the addition of support for new datasets and
data processing algorithms. Over the past several decades,
the complexity of land surface models has gradually in-
creased, as they have evolved from the first-generation sim-
ple bucket schemes (Manabe, 1969) to models that represent
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the complex interactions of the terrestrial water, energy, and
biogeochemical cycles. In addition, more detailed and fine-
scale representations of the land surface (surface and subsur-
face) also continue to grow, imposing an increased set of data
requirements for their effective application at the scales of in-
terest. A formal, extensive, and adaptive environment such as
LDT is necessary to support these requirements. Similarly,
the land DA applications and their complexity continue to
grow with the increasing availability of remote-sensing ob-
servations. Sophisticated data fusion models and processing
algorithms are required to support the utilization of raw satel-
lite measurements. With the increase in computing power
and data science advancements, the machine learning and
predictive analytics have become more commonplace in ar-
eas involving e-commerce, social media, and health care. The
data-rich Earth science arena is an ideal environment for de-
ploying such data science enhancements and the machine
learning (ML) layers in LDT will be continually updated to
exploit such capabilities.

Future LDT capabilities will continue to include new
parameter datasets (e.g., land cover, soil types), remotely
sensed and in situ observations for DA preprocessing needs,
projection grid types (e.g., Mercator projection), additional
meteorological forcing datasets and downscaling techniques,
and additional machine-learning methods. Parallel decompo-
sition ability is also being developed and supported in LDT.
Currently parallel capability is being tested with the meteo-
rological forcing processing and downscaling and with some
of the parameter processing features. New LSMs are cur-
rently being implemented, including the Community Land
Model (CLM; Oleson et al., 2010) and the latest versions of
Noah and JULES LSMs. In addition, native parameter pro-
cessing support is being considered for the Catchment and
VIC LSMs, for HyMAP, and for other groundwater-based
parameters. Finally, end-to-end data input processing for op-
timization and parameter estimation along with uncertainty
estimation techniques have been considered in future LDT
versions, another component fulfilling the model–data fu-
sion (MDF) paradigm with LIS and Land surface Verification
Toolkit (LVT).

Code availability. The current version of LDT is release 7.2r ver-
sion (6 May 2017 release), which is open-source and publicly avail-
able from the main LIS website at https://lis.gsfc.nasa.gov/releases
(last access: 22 August 2018; Kumar et al., 2006). The persistent
identifier for this version is http://doi.org/10.5281/zenodo.1322613.
The main LDT features described in this paper can be found
with this release. Also, end-use test case examples are provided
(https://lis.gsfc.nasa.gov/tests/ldt, last access: 14 March 2018; Ar-
senault et al., 2018), and additional documentation, including the
full user guide and tutorial type presentations, is located here:
https://lis.gsfc.nasa.gov/documentation/ldt (last access: 14 March
2018; Arsenault et al., 2018). Future versions of the code will be
made also available on GitHub (https://github.com/, last access: 25
July 2018; GitHub, 2018).
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