the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The multi-assumption architecture and testbed (MAAT v1.0): R code for generating ensembles with dynamic model structure and analysis of epistemic uncertainty from multiple sources
Ming Ye
Dan Lu
Martin G. De Kauwe
Lianhong Gu
Belinda E. Medlyn
Alistair Rogers
Shawn P. Serbin
Related authors
reanalysisproduct that harmonizes carbon pools (leaf, wood, soil) and fluxes (GPP, Ra, Rh, NEE) across the contiguous United States from 1986–2019. Here, we build on a decade of work on uncertainty propagation to generate the most complete and robust uncertainty accounting available to date.
Related subject area
Accurate flood risk assessments are crucial for storm protection. To achieve efficiency, computational costs must be minimized. This paper introduces a novel subgrid approach for Linear Inertial Equations (LIE) with bed level and friction variations, implemented in the SFINCS model. Pre-processed lookup tables enhance simulation precision with lower costs. Validations show significant accuracy improvement, even at coarser resolutions.
Ship weather routing has the potential to reduce CO2 emissions, but it currently lacks open and verifiable research. The Python-refactored VISIR-2 model considers currents, waves, and wind to optimise routes. The model was validated, and its computational performance is quasi-linear. For a ferry sailing in the Mediterranean Sea, VISIR-2 yields the largest percentage emission savings for upwind navigation. Given the vessel performance curve, the model is generalisable across various vessel types.
Forecasting tropical cyclones and their flooding impact is challenging. Our research introduces the Tropical Cyclone Forecasting Framework (TC-FF), enhancing cyclone predictions despite uncertainties. TC-FF generates global wind and flood scenarios, valuable even in data-limited regions. Applied to cases like Cyclone Idai, it showcases potential in bettering disaster preparation, marking progress in handling cyclone threats.