Articles | Volume 11, issue 7
Geosci. Model Dev., 11, 3045–3069, 2018
https://doi.org/10.5194/gmd-11-3045-2018
Geosci. Model Dev., 11, 3045–3069, 2018
https://doi.org/10.5194/gmd-11-3045-2018

Model evaluation paper 31 Jul 2018

Model evaluation paper | 31 Jul 2018

EcH2O-iso 1.0: water isotopes and age tracking in a process-based, distributed ecohydrological model

Sylvain Kuppel et al.

Related authors

Land surface model parameter optimisation using in situ flux data: comparison of gradient-based versus random search algorithms (a case study using ORCHIDEE v1.9.5.2)
Vladislav Bastrikov, Natasha MacBean, Cédric Bacour, Diego Santaren, Sylvain Kuppel, and Philippe Peylin
Geosci. Model Dev., 11, 4739–4754, https://doi.org/10.5194/gmd-11-4739-2018,https://doi.org/10.5194/gmd-11-4739-2018, 2018
Short summary
A new stepwise carbon cycle data assimilation system using multiple data streams to constrain the simulated land surface carbon cycle
Philippe Peylin, Cédric Bacour, Natasha MacBean, Sébastien Leonard, Peter Rayner, Sylvain Kuppel, Ernest Koffi, Abdou Kane, Fabienne Maignan, Frédéric Chevallier, Philippe Ciais, and Pascal Prunet
Geosci. Model Dev., 9, 3321–3346, https://doi.org/10.5194/gmd-9-3321-2016,https://doi.org/10.5194/gmd-9-3321-2016, 2016
Short summary
Model–data fusion across ecosystems: from multisite optimizations to global simulations
S. Kuppel, P. Peylin, F. Maignan, F. Chevallier, G. Kiely, L. Montagnani, and A. Cescatti
Geosci. Model Dev., 7, 2581–2597, https://doi.org/10.5194/gmd-7-2581-2014,https://doi.org/10.5194/gmd-7-2581-2014, 2014
Short summary
Quantifying the model structural error in carbon cycle data assimilation systems
S. Kuppel, F. Chevallier, and P. Peylin
Geosci. Model Dev., 6, 45–55, https://doi.org/10.5194/gmd-6-45-2013,https://doi.org/10.5194/gmd-6-45-2013, 2013

Related subject area

Hydrology
A distributed simple dynamical systems approach (dS2 v1.0) for computationally efficient hydrological modelling at high spatio-temporal resolution
Joost Buitink, Lieke A. Melsen, James W. Kirchner, and Adriaan J. Teuling
Geosci. Model Dev., 13, 6093–6110, https://doi.org/10.5194/gmd-13-6093-2020,https://doi.org/10.5194/gmd-13-6093-2020, 2020
Short summary
Simulating second-generation herbaceous bioenergy crop yield using the global hydrological model H08 (v.bio1)
Zhipin Ai, Naota Hanasaki, Vera Heck, Tomoko Hasegawa, and Shinichiro Fujimori
Geosci. Model Dev., 13, 6077–6092, https://doi.org/10.5194/gmd-13-6077-2020,https://doi.org/10.5194/gmd-13-6077-2020, 2020
Short summary
KLT-IV v1.0: image velocimetry software for use with fixed and mobile platforms
Matthew T. Perks
Geosci. Model Dev., 13, 6111–6130, https://doi.org/10.5194/gmd-13-6111-2020,https://doi.org/10.5194/gmd-13-6111-2020, 2020
Short summary
Simulating human impacts on global water resources using VIC-5
Bram Droppers, Wietse H. P. Franssen, Michelle T. H. van Vliet, Bart Nijssen, and Fulco Ludwig
Geosci. Model Dev., 13, 5029–5052, https://doi.org/10.5194/gmd-13-5029-2020,https://doi.org/10.5194/gmd-13-5029-2020, 2020
Short summary
The Ensemble Framework For Flash Flood Forecasting (EF5) v1.2: description and case study
Zachary L. Flamig, Humberto Vergara, and Jonathan J. Gourley
Geosci. Model Dev., 13, 4943–4958, https://doi.org/10.5194/gmd-13-4943-2020,https://doi.org/10.5194/gmd-13-4943-2020, 2020
Short summary

Cited articles

Ala-aho, P., Tetzlaff, D., McNamara, J. P., Laudon, H., and Soulsby, C.: Using isotopes to constrain water flux and age estimates in snow-influenced catchments using the STARR (Spatially distributed Tracer-Aided Rainfall–Runoff) model, Hydrol. Earth Syst. Sci., 21, 5089–5110, https://doi.org/10.5194/hess-21-5089-2017, 2017. a, b, c, d, e
Albrektson, A.: Sapwood basal area and needle mass of Scots pine (Pinus sylvestris L.) trees in central Sweden, Forestry, 57, 35–43, 1984. a
Allison, G. B. and Leaney, F. W.: Estimation of isotopic exchange parameters, using constant-feed pans, J. Hydrol., 55, 151–161, https://doi.org/10.1016/0022-1694(82)90126-3, 1982. a
Barnes, C. J. and Bonell, M.: Application of unit hydrograph techniques to solute transport in catchments, Hydrol. Process., 10, 793–802, 1996. a
Benettin, P., Soulsby, C., Birkel, C., Tetzlaff, D., Botter, G., and Rinaldo, A.: Using SAS functions and high-resolution isotope data to unravel travel time distributions in headwater catchments, Water Resour. Res., 53, 1864–1878, 2017. a, b
Download
Short summary
This paper presents a novel ecohydrological model in which both the fluxes of water and the relative concentration in stable isotopes (2H and 18O) can be simulated. Spatial heterogeneity, lateral transfers and plant-driven water use are incorporated. A thorough evaluation shows encouraging results using a wide range of in situ measurements from a Scottish catchment. The same modelling principles are then used to simulate how (and where) precipitation ages as water transits in the catchment.