Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.240
IF5.240
IF 5-year value: 5.768
IF 5-year
5.768
CiteScore value: 8.9
CiteScore
8.9
SNIP value: 1.713
SNIP1.713
IPP value: 5.53
IPP5.53
SJR value: 3.18
SJR3.18
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 51
h5-index51
GMD | Articles | Volume 11, issue 7
Geosci. Model Dev., 11, 3045–3069, 2018
https://doi.org/10.5194/gmd-11-3045-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 11, 3045–3069, 2018
https://doi.org/10.5194/gmd-11-3045-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Model evaluation paper 31 Jul 2018

Model evaluation paper | 31 Jul 2018

EcH2O-iso 1.0: water isotopes and age tracking in a process-based, distributed ecohydrological model

Sylvain Kuppel et al.

Viewed

Total article views: 2,588 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,747 767 74 2,588 167 54 66
  • HTML: 1,747
  • PDF: 767
  • XML: 74
  • Total: 2,588
  • Supplement: 167
  • BibTeX: 54
  • EndNote: 66
Views and downloads (calculated since 12 Mar 2018)
Cumulative views and downloads (calculated since 12 Mar 2018)

Viewed (geographical distribution)

Total article views: 2,332 (including HTML, PDF, and XML) Thereof 2,311 with geography defined and 21 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 23 Oct 2020
Publications Copernicus
Download
Short summary
This paper presents a novel ecohydrological model in which both the fluxes of water and the relative concentration in stable isotopes (2H and 18O) can be simulated. Spatial heterogeneity, lateral transfers and plant-driven water use are incorporated. A thorough evaluation shows encouraging results using a wide range of in situ measurements from a Scottish catchment. The same modelling principles are then used to simulate how (and where) precipitation ages as water transits in the catchment.
This paper presents a novel ecohydrological model in which both the fluxes of water and the...
Citation