Articles | Volume 11, issue 6
Geosci. Model Dev., 11, 2429–2453, 2018
Geosci. Model Dev., 11, 2429–2453, 2018

Model description paper 20 Jun 2018

Model description paper | 20 Jun 2018

PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model

Edwin H. Sutanudjaja et al.

Related authors

Large-scale sensitivities of groundwater and surface water to groundwater withdrawal
Marc F. P. Bierkens, Edwin H. Sutanudjaja, and Niko Wanders
Hydrol. Earth Syst. Sci. Discuss.,,, 2020
Revised manuscript accepted for HESS
Short summary
Hydrological impacts of global land cover change and human water use
Joyce H. C. Bosmans, Ludovicus P. H. van Beek, Edwin H. Sutanudjaja, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 21, 5603–5626,,, 2017
Short summary
Toward seamless hydrologic predictions across spatial scales
Luis Samaniego, Rohini Kumar, Stephan Thober, Oldrich Rakovec, Matthias Zink, Niko Wanders, Stephanie Eisner, Hannes Müller Schmied, Edwin H. Sutanudjaja, Kirsten Warrach-Sagi, and Sabine Attinger
Hydrol. Earth Syst. Sci., 21, 4323–4346,,, 2017
Short summary
Calibration of a large-scale hydrological model using satellite-based soil moisture and evapotranspiration products
Patricia López López, Edwin H. Sutanudjaja, Jaap Schellekens, Geert Sterk, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 21, 3125–3144,,, 2017
Short summary
Improving estimates of water resources in a semi-arid region by assimilating GRACE data into the PCR-GLOBWB hydrological model
Natthachet Tangdamrongsub, Susan C. Steele-Dunne, Brian C. Gunter, Pavel G. Ditmar, Edwin H. Sutanudjaja, Yu Sun, Ting Xia, and Zhongjing Wang
Hydrol. Earth Syst. Sci., 21, 2053–2074,,, 2017
Short summary

Related subject area

GP-SWAT (v1.0): a two-level graph-based parallel simulation tool for the SWAT model
Dejian Zhang, Bingqing Lin, Jiefeng Wu, and Qiaoying Lin
Geosci. Model Dev., 14, 5915–5925,,, 2021
Short summary
Development of a coupled simulation framework representing the lake and river continuum of mass and energy (TCHOIR v1.0)
Daisuke Tokuda, Hyungjun Kim, Dai Yamazaki, and Taikan Oki
Geosci. Model Dev., 14, 5669–5693,,, 2021
Short summary
Hydrostreamer v1.0 – improved streamflow predictions for local applications from an ensemble of downscaled global runoff products
Marko Kallio, Joseph H. A. Guillaume, Vili Virkki, Matti Kummu, and Kirsi Virrantaus
Geosci. Model Dev., 14, 5155–5181,,, 2021
Short summary
Model cascade from meteorological drivers to river flood hazard: flood-cascade v1.0
Peter Uhe, Daniel Mitchell, Paul D. Bates, Nans Addor, Jeff Neal, and Hylke E. Beck
Geosci. Model Dev., 14, 4865–4890,,, 2021
Short summary
DecTree v1.0 – chemistry speedup in reactive transport simulations: purely data-driven and physics-based surrogates
Marco De Lucia and Michael Kühn
Geosci. Model Dev., 14, 4713–4730,,, 2021
Short summary

Cited articles

Alfieri, L., Burek, P., Dutra, E., Krzeminski, B., Muraro, D., Thielen, J., and Pappenberger, F.: GloFAS – global ensemble streamflow forecasting and flood early warning, Hydrol. Earth Syst. Sci., 17, 1161–1175,, 2013. 
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evaporation: Guidelines for computing crop requirements, UN-FAO, Rome, Italy, 1998. 
Argent, R. M.: An overview of model integration for environmental applications–components, frameworks and semantics, Environ. Model. Softw., 19, 219–234,, 2004. 
Bates, P. D., Horritt, M. S., and Fewtrell, T. J.: A simple inertial formulation of the shallow water equations for efficient twodimensional flood inundation modelling, J. Hydrol., 38, 33–45, 2010. 
Bergström, S.: The HBV model, in: Computer Models in Watershed Hydrology, edited by: Singh, V. P., Water Resources Publications, Highlands Ranch, CO, 1995. 
Short summary
PCR-GLOBWB 2 is an integrated hydrology and water resource model that fully integrates water use simulation and consolidates all features that have been developed since PCR-GLOBWB 1 was introduced. PCR-GLOBWB 2 can have a global coverage at 5 arcmin resolution and supersedes PCR-GLOBWB 1, which has a resolution of 30 arcmin only. Comparing the 5 arcmin with 30 arcmin simulations using discharge data, we clearly find improvement in the model performance of the higher-resolution model.