Articles | Volume 11, issue 5
Geosci. Model Dev., 11, 1873–1886, 2018
https://doi.org/10.5194/gmd-11-1873-2018
Geosci. Model Dev., 11, 1873–1886, 2018
https://doi.org/10.5194/gmd-11-1873-2018
Methods for assessment of models
15 May 2018
Methods for assessment of models | 15 May 2018

The SPAtial EFficiency metric (SPAEF): multiple-component evaluation of spatial patterns for optimization of hydrological models

Julian Koch et al.

Related authors

Machine-learning-based downscaling of modelled climate change impacts on groundwater table depth
Raphael Schneider, Julian Koch, Lars Troldborg, Hans Jørgen Henriksen, and Simon Stisen
Hydrol. Earth Syst. Sci., 26, 5859–5877, https://doi.org/10.5194/hess-26-5859-2022,https://doi.org/10.5194/hess-26-5859-2022, 2022
Short summary
The precision of satellite-based irrigation quantification in the Indus and Ganges basins
Søren Julsgaard Kragh, Rasmus Fensholt, Simon Stisen, and Julian Koch
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-307,https://doi.org/10.5194/hess-2022-307, 2022
Revised manuscript under review for HESS
Short summary
Modelling of the shallow water table at high spatial resolution using random forests
Julian Koch, Helen Berger, Hans Jørgen Henriksen, and Torben Obel Sonnenborg
Hydrol. Earth Syst. Sci., 23, 4603–4619, https://doi.org/10.5194/hess-23-4603-2019,https://doi.org/10.5194/hess-23-4603-2019, 2019
Short summary
Combining satellite data and appropriate objective functions for improved spatial pattern performance of a distributed hydrologic model
Mehmet C. Demirel, Juliane Mai, Gorka Mendiguren, Julian Koch, Luis Samaniego, and Simon Stisen
Hydrol. Earth Syst. Sci., 22, 1299–1315, https://doi.org/10.5194/hess-22-1299-2018,https://doi.org/10.5194/hess-22-1299-2018, 2018
Short summary
Calibration of a parsimonious distributed ecohydrological daily model in a data-scarce basin by exclusively using the spatio-temporal variation of NDVI
Guiomar Ruiz-Pérez, Julian Koch, Salvatore Manfreda, Kelly Caylor, and Félix Francés
Hydrol. Earth Syst. Sci., 21, 6235–6251, https://doi.org/10.5194/hess-21-6235-2017,https://doi.org/10.5194/hess-21-6235-2017, 2017
Short summary

Related subject area

Hydrology
SIMO v1.0: simplified model of the vertical temperature profile in a small, warm, monomictic lake
Kristina Šarović, Melita Burić, and Zvjezdana B. Klaić
Geosci. Model Dev., 15, 8349–8375, https://doi.org/10.5194/gmd-15-8349-2022,https://doi.org/10.5194/gmd-15-8349-2022, 2022
Short summary
Thermal modeling of three lakes within the continuous permafrost zone in Alaska using the LAKE 2.0 model
Jason A. Clark, Elchin E. Jafarov, Ken D. Tape, Benjamin M. Jones, and Victor Stepanenko
Geosci. Model Dev., 15, 7421–7448, https://doi.org/10.5194/gmd-15-7421-2022,https://doi.org/10.5194/gmd-15-7421-2022, 2022
Short summary
Water balance model (WBM) v.1.0.0: a scalable gridded global hydrologic model with water-tracking functionality
Danielle S. Grogan, Shan Zuidema, Alex Prusevich, Wilfred M. Wollheim, Stanley Glidden, and Richard B. Lammers
Geosci. Model Dev., 15, 7287–7323, https://doi.org/10.5194/gmd-15-7287-2022,https://doi.org/10.5194/gmd-15-7287-2022, 2022
Short summary
Coupling a large-scale hydrological model (CWatM v1.1) with a high-resolution groundwater flow model (MODFLOW 6) to assess the impact of irrigation at regional scale
Luca Guillaumot, Mikhail Smilovic, Peter Burek, Jens de Bruijn, Peter Greve, Taher Kahil, and Yoshihide Wada
Geosci. Model Dev., 15, 7099–7120, https://doi.org/10.5194/gmd-15-7099-2022,https://doi.org/10.5194/gmd-15-7099-2022, 2022
Short summary
RavenR v2.1.4: an open-source R package to support flexible hydrologic modelling
Robert Chlumsky, James R. Craig, Simon G. M. Lin, Sarah Grass, Leland Scantlebury, Genevieve Brown, and Rezgar Arabzadeh
Geosci. Model Dev., 15, 7017–7030, https://doi.org/10.5194/gmd-15-7017-2022,https://doi.org/10.5194/gmd-15-7017-2022, 2022
Short summary

Cited articles

Alexandrov, G. A., Ames, D., Bellocchi, G., Bruen, M., Crout, N., Erechtchoukova, M., Hildebrandt, A., Hoffman, F., Jackisch, C., Khaiter, P., Mannina, G., Matsunaga, T., Purucker, S. T., Rivington, M., and Samaniego, L.: Technical assessment and evaluation of environmental models and software: Letter to the Editor, Environ. Model. Softw., 26, 328–336, https://doi.org/10.1016/j.envsoft.2010.08.004, 2011. 
Brown, B. G., Gotway, J. H., Bullock, R., Gilleland, E., Fowler, T., Ahijevych, D., and Jensen, T.: The Model Evaluation Tools (MET): Community tools for forecast evaluation, in: Preprints, 25th Conf. on International Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Phoenix, AZ, Amer. Meteor. Soc. A, Vol. 9, 2009. 
Clark, M. P., Kavetski, D., and Fenicia, F.: Pursuing the method of multiple working hypotheses for hydrological modeling, Water Resour. Res., 47, W09301, https://doi.org/10.1029/2010WR009827, 2011. 
Cloke, H. L. and Pappenberger, F.: Evaluating forecasts of extreme events for hydrological applications: An approach for screening unfamiliar performance measures, Meteorol. Appl., 15, 181–197, 2008. 
Download
Short summary
Our work addresses a key challenge in earth system modelling: how to optimally exploit the information contained in satellite remote sensing observations in the calibration of such models. For this we thoroughly test a number of measures that quantify the fit between an observed and a simulated spatial pattern. We acknowledge the difficulties associated with such a comparison and suggest using measures that regard multiple aspects of spatial information, i.e. magnitude and variability.