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Abstract. The process of model evaluation is not only an
integral part of model development and calibration but also
of paramount importance when communicating modelling
results to the scientific community and stakeholders. The
modelling community has a large and well-tested toolbox
of metrics to evaluate temporal model performance. In con-
trast, spatial performance evaluation does not correspond to
the grand availability of spatial observations readily avail-
able and to the sophisticate model codes simulating the spa-
tial variability of complex hydrological processes. This study
makes a contribution towards advancing spatial-pattern-
oriented model calibration by rigorously testing a multiple-
component performance metric. The promoted SPAtial EFfi-
ciency (SPAEF) metric reflects three equally weighted com-
ponents: correlation, coefficient of variation and histogram
overlap. This multiple-component approach is found to be
advantageous in order to achieve the complex task of com-
paring spatial patterns. SPAEF, its three components indi-
vidually and two alternative spatial performance metrics, i.e.
connectivity analysis and fractions skill score, are applied
in a spatial-pattern-oriented model calibration of a catch-
ment model in Denmark. Results suggest the importance
of multiple-component metrics because stand-alone metrics
tend to fail to provide holistic pattern information. The three
SPAEF components are found to be independent, which al-
lows them to complement each other in a meaningful way.
In order to optimally exploit spatial observations made avail-
able by remote sensing platforms, this study suggests apply-
ing bias insensitive metrics which further allow for a com-
parison of variables which are related but may differ in unit.
This study applies SPAEF in the hydrological context using

the mesoscale Hydrologic Model (mHM; version 5.8), but
we see great potential across disciplines related to spatially
distributed earth system modelling.

1 Introduction

Spatially distributed models, which represent various compo-
nents of the earth system, are extensively applied in policy-
making, management and research. Such modelling tackles
a wide range of environmental problems, such as the anal-
ysis of drought patterns (Herrera-Estrada et al., 2017), as-
sessing the spatial regularization of fertilizers in agricultural
landscapes (Refsgaard et al., 2014) or modelling vegetation
dynamics (Ruiz-Pérez et al., 2016). Our study focuses on hy-
drological variability as predicted by spatially distributed hy-
drological models. The correct representation of the spatial
variability of hydrological fluxes often constitutes the major
obstacle for many modelling efforts with respect to model
structure, parameterization and forcing data.

In order to establish confidence in outputs generated by
spatially explicit hydrological models and further to justify
their application while recognizing their limitations, it is of
paramount importance to quantify performance (Alexandrov
et al., 2011; Hagen and Martens, 2008; Kumar et al., 2012).
Within the field of meteorological modelling the application
of spatial model evaluation is well established with bench-
mark studies and well-tested toolboxes (Brown et al., 2009;
Dorninger et al., 2013; Gilleland et al., 2016). The hydrolog-
ical modelling community has historically focused more on
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temporal model performance, but the call for a paradigm shift
towards a spatial-pattern-oriented model evaluation using in-
dependent spatial observations has been ongoing for nearly
2 decades (Grayson and Blöschl, 2001; Koch et al., 2016a;
Stisen et al., 2011; Wealands et al., 2005). Modelling the
temporal dynamics of hydrological response can be consid-
ered independent of a model’s spatial component as different
parameters control spatial and temporal variability (Pokhrel
and Gupta, 2011). Along the lines of Gupta et al. (2008),
the feasibility of an adequate spatial-pattern-oriented model
evaluation is constrained by the versatility of the applied per-
formance metric. The task to quantitatively compare spatial
patterns is non-trivial and the multi-layered content of spa-
tial patterns expresses distinct requirements to such a met-
ric (Cloke and Pappenberger, 2008; Gilleland et al., 2009;
Vereecken et al., 2016). A single metric will generally not ad-
equately address performance and instead a combination of
metrics spanning multiple relevant aspects of model perfor-
mance are necessary (Clark et al., 2011; Gupta et al., 2012).
The advantages of using multiple-component metrics have
been broadly accepted for the evaluation of temporal model
performance (Kling et al., 2012), but multiple-component
evaluation has not yet been highlighted for the evaluation of
simulated spatial patterns.

Model evaluation targeted at spatial performance requires
reliable spatial observations which are broadly facilitated by
remote sensing platforms across various spatial scales (Mc-
Cabe et al., 2008; Orth et al., 2017). At a small scale, Glaser
et al. (2016) explored the applicability of portable thermal in-
frared cameras to evaluate simulated spatial patterns of sur-
face saturation in the hillslope–riparian–stream interface. At
the catchment scale, Schuurmans et al. (2011) incorporate
remote-sensing-based maps of latent heat in order to identify
structural model deficiencies. At a regional scale, Mendig-
uren et al. (2017) applied a spatial-pattern-oriented model
evaluation based on remote sensing estimates of evapotran-
spiration to diagnose shortcomings of the national hydrolog-
ical model of Denmark. At a large scale, Koch et al. (2016b)
utilized land surface temperature retrievals to evaluate large-
scale land surface models across the continental US.

The applicability of remote sensing data to calibrate hy-
drological models has already been explored by several stud-
ies that incorporated spatial patterns of land surface tem-
perature (Stisen et al., 2018), snow cover (Terink et al.,
2015) or latent heat (Immerzeel and Droogers, 2008). Over-
all the merit of constraining model parameters against spatial
observations has been widely recognized by the modelling
community. However, the design of the performance metric,
which ensures that the spatial information contained in the
remote sensing data is utilized optimally to inform the model
calibration, is rarely touched upon in the literature.

Bennett et al. (2013) provide an excellent overview of
measures that allow the modeller to quantify the performance
of environmental models. They considered model evaluation
a vital step during the iterative process of model develop-

ment, and hence it can identify the need for additional data,
alternative calibrations or updated model structure. This fur-
ther emphasizes the need for robust performance metrics. In
general, the properties of the applied metric and the design
of the evaluation framework should always correspond to the
application of the model (Krause et al., 2005).

Our study highlights the development and application of
a versatile metric that has the potential to advance the credi-
bility of spatially distributed hydrological models. When de-
signing such a metric it is important to reflect on require-
ments as well as frameworks to properly test it in, which
has been extensively discussed in the literature (Cloke and
Pappenberger, 2008; Moriasi et al., 2007; Dawson et al.,
2007; Krause et al., 2005; Refsgaard and Henriksen, 2004;
Schaefi and Gupta, 2007). Following these references and
our own reflections we identified the following five major
requirements of a spatial performance metric: (1) the met-
ric should be easy to compute, which makes results repro-
ducible and creates credibility within the scientific commu-
nity. (2) In order to be informative during model calibration
the metric should be robust and deliver a continuous response
to changes in parameter values. (3) In the formulation of
the metric, multiple independent components are necessary
to provide a holistic evaluation of the model performance.
(4) The metric should offer the possibility to compare related
variables of different units; e.g. observed latent heat (W m−2)
and simulated evapotranspiration (mm day−1). This enables
evaluation via proxies and facilitates bias insensitivity, which
is found favourable because it focuses on the pattern informa-
tion contained in the remote sensing data instead of absolute
values at the grid scale. (5) The metric should be easy to com-
municate both inside and outside the scientific community.
This requires a predefined range and the possibility to put
metric scores into context; i.e. what value ensures satisfac-
tory performance? Can we directly compare scores between
different catchments and models? These five points were
carefully taken into consideration by Demirel et al. (2018a)
for the formulation of SPAtial EFficiency (SPAEF), which
they successfully applied in a spatial-pattern-oriented model
calibration.

In this study, we rigorously test SPAEF and compare it
with two additional spatial performance metrics: fractions
skill score (Roberts and Lean, 2008) and connectivity anal-
ysis (Koch et al., 2016b). All three metrics are applied in
a spatial-pattern-oriented calibration of a catchment model
using the mesoscale Hydrologic Model (mHM: Samaniego
et al., 2010a). Such rigorous metric testing and comparison
helps to generate familiarity and is inevitable in order to es-
tablish novel metrics in the scientific community.
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Figure 1. Skjern River catchment in western Denmark. The map shows the spatial distribution of soil properties, forest areas and the river
network. Additionally, two discharge stations used in the optimizations are given.

2 Data and methods

2.1 Study site

The Skjern River catchment is located in the western part
of the Danish peninsula. The catchments size amounts to
2500 km2 and it has been studied intensively for almost
a decade by the HOBE project (Jensen and Illangasekare,
2011). The climate is maritime with a mean annual precip-
itation of around 1050 mm, which is partitioned into more
or less equal amounts of streamflow and actual evapotran-
spiration. Topography slopes gently from the highest point
of approximately 125 m in elevation on the east to sea level
in the western side of the catchment. Figure 1 shows the
spatial variability of soil texture, which stresses that soils
are predominately sandy with intertwined till and clay sec-
tions. Land use is dominated by arable land with patches of
coniferous forest. The Skjern catchment does not exhibit a
strong spatial gradient in hydrological response because gen-
eral gradients in catchment morphology or climatology do
not exist. This promotes the catchment as an excellent test
case for a spatial-pattern-oriented model calibration because
the simulated spatial patterns of hydrological variables are
governed by optimizable parameters such as soil and vegeta-
tion properties.

2.2 Hydrological model

This study utilizes the mesoscale Hydrologic Model (mHM
v5.8: Samaniego et al., 2017a), which is a grid-based spa-

tially distributed hydrological model (Kumar et al., 2013,
2010; Samaniego et al., 2010a, b). The model accounts for
key hydrological processes such as canopy interception, soil
moisture dynamics, surface and subsurface flow generation,
snow melting, evapotranspiration and others. Daily meteo-
rological data forces the model and a gridded digital ele-
vation model (DEM) characterizes the morphology of the
catchment. Additionally, the spatial variability of observable
physical properties such as soil texture, vegetation and geol-
ogy are incorporated in the model structure. A multi-scale
parameter regionalization (MPR) technique enables mHM
to consolidate three different spatial scales: meteorological
forcing at a coarse scale, intermediate model scale and fine-
scale morphological data. In the case of the Skjern model,
forcing data are available at 10–20 km resolution, the DEM is
used at 250 m scale and the model is executed at 1 km scale.
Effective parameters at the modelling scale are regionalized
through non-linear transfer functions which link spatially
distributed basin characteristics at a finer scale by means of
global parameters, which can be determined through calibra-
tion.

2.3 Reference data

The observational data employed as a reference in the cali-
bration are given in Fig. 2 and consist of two datasets. The
first is 8 years (2001–2008) of discharge time series at two
locations within the catchment where the first drains around
60 % of the catchment area and the second an additional 25 %
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Figure 2. Reference data used for the optimization: the average cloud-free spatial pattern of midday latent heat in June (a) and observed
discharge (red line) at two stations (shown in Fig. 1) for the 8-year simulation period (c, d). Also shown are the simulation results from the
initial parameter set: the average cloud-free spatial pattern of daily actual evapotranspiration (aet) in June (b) and the simulated discharge
(black line) at the two reference stations.

(Fig. 1). Second, in order to complement the temporal data
we provide a remote sensing estimate of latent heat for cloud-
free grids in June between 2001 and 2008. The month of June
is the peak of the growing season, which makes the spatial
pattern distinct and relevant for a hydrological model evalu-
ation. This reference spatial pattern is obtained by the two-
source energy balance model (TSEB; Norman et al., 1995). A
detailed description of the remote-sensing-based estimation
of latent heat across Denmark is presented by Mendiguren et
al. (2017). As outlined by Mendiguren et al. (2017), TSEB
represents a two-layer model which separates soil and veg-
etation. Energy fluxes are estimated based on various input
parameters and forcings among which land surface temper-
ature (LST) and air temperature are found to be most sen-
sitive. Input data for TSEB are obtained from the daytime
LST MODIS product at 1 km spatial resolution. The reason-
ing behind averaging the latent heat maps in time to a mean
monthly map is expressed twofold. First, daily spatial pat-
terns are influenced by clouds and thus vary highly in cov-
erage, which limits the pattern information content. Second,
daily estimates are associated with higher uncertainty and are
more affected by forcing data, e.g. the spatial distribution of
precipitation on the previous day. Hence, aggregated monthly
maps of latent heat represent a robust average that is more in-
formative in a model calibration than daily maps because it
constitutes the imprint of soil properties and vegetation on

the simulated pattern, which are parameters that can be cali-
brated in a hydrological model in contrast to model forcing.

2.4 Spatial performance metrics

2.4.1 Spatial efficiency

For the formulation of a straightforward spatial performance
metric we found inspiration in the Kling–Gupta efficiency
(KGE; Kling and Gupta, 2009), which is a commonly used
metric in hydrological modelling to evaluate discharge simu-
lations. It is characterized by three equally weighted compo-
nents, i.e. correlation, variability and bias.

KGE= 1−
√(
αQ− 1

)2
+
(
βQ− 1

)2
+
(
γQ− 1

)2 (1)

αQ = ρ (obs,sim) ,βQ = σsim
/
σobs and γQ =

µsim

µobs

where αQ is the Pearson correlation coefficient between the
observed (obs) and the simulated (sim) discharge time series,
βQ is the relative variability based on the ratio of standard
deviation in simulated and observed values and γQ is the
bias term which is normalized by the standard deviation of
the observed data. KGE is selected as the discharge objective
function for the optimization applied in this study.

The multiple-component nature of KGE is favourable be-
cause a model evaluation can rarely be condensed to a sin-
gle component, such as the bias of correlation. Instead a
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more holistic and balanced assessment using several aspects
is favourable for a comprehensive model evaluation as advo-
cated by Gupta et al. (2012), Krause et al. (2005) and others.

Following the multiple-component idea of KGE we
present a novel spatial performance metric denoted SPA-
tial EFficiency (SPAEF), which was originally proposed by
Demirel et al. (2018a, b).

SPAEF= 1−
√
(α− 1)2+ (β − 1)2+ (γ − 1)2 (2)

α = ρ (obs,sim), β =
(
σsim
µsim

)
/
(
σobs
µobs

)
and γ =

n∑
j=1

min(Kj ,Lj )

n∑
j=1

Kj

where α is the Pearson correlation coefficient between the
observed (obs) and simulated (sim) pattern, β is the fraction
of the coefficient of variation representing spatial variability
and γ is the histogram intersection for the given histogramK

of the observed pattern and the histogram L of the simulated
pattern, each containing n bins (Swain and Ballard, 1991).
In order to enable the comparison of two variables with dif-
ferent units and to ensure bias insensitivity, the z score of
the patterns is used to compute γ . Throughout the paper α is
referred to as correlation, β as cv ratio and γ as histo match.

The difficulty to quantitatively compare spatial patterns
and the need for multiple-component metrics such as SPAEF
are illustrated in Fig. 3 in which two example patterns both
generated by mHM during calibration are compared with the
TSEB reference pattern. A swift visual comparison clearly
disambiguates the fact that both are inadequate spatial pat-
tern representations with respect to the reference; i.e. the
first lacks spatial variability and the second misses spatial
detail within the clearly separated clusters of high and low
values. Correlation is a commonly known statistical measure
that allows for the comparison of two variables that are col-
located in space and may differ in units. Despite the visual
evaluation, both examples have a reasonably high correla-
tion, which allegedly suggests good performance. When as-
sessing the cv ratio it becomes clear that the first example
lacks spatial variability, whereas the distinct separation of
the second example suggests an adequate representation of
spatial variability. The deficiency of the second example be-
comes clear when investigating the overlap of histograms of
the normalized (z score) simulated and reference pattern. The
z score normalization results in a pattern with a mean equal
to 0 and a standard deviation equal to 1, which is necessary
to make two patterns with different units comparable. Histo
match stresses non-existing spatial variability within the high
and low areas despite the satisfying correlation and spatial
variability.

2.4.2 Connectivity

The connectivity metric originates from the field of hydro-
geology in which it is commonly applied to characterize the
spatial heterogeneity of aquifers (Koch et al., 2014; Rongier

et al., 2016). Outside the hydrogeology community, connec-
tivity analyses have also been conducted to describe the spa-
tial patterns of soil moisture (Grayson et al., 2002; Western et
al., 2001) and land surface temperature (Koch et al., 2016b).
Following the classification of Renard and Allard (2013), the
connectivity analysis of a continuous variable is conducted
via three steps: (1) a series of threshold percentiles decom-
poses the domain into a series of binary maps, (2) the binary
maps undergo a cluster analysis that identifies spatially con-
nected clusters and (3) the transition from many disconnected
clusters to a single connected cluster can be quantified by
principles of percolation theory (Hovadik and Larue, 2007).
In this context the probability of connection (0) is consid-
ered a suitable percolation metric. 0 states the proportion of
pairs of cells that are connected among all possible pairs of
connected cells of a cluster map.

0(t)=
1
n2
t

N(Xt )∑
i=1

n2
i , (3)

where nt is the total number of cells in the binary map Xt
below or above threshold t , which has N(Xt ) distinct clus-
ters in total. ni is the number of cells in the ith cluster in Xt .
The percolation is well captured by means of an increasing
threshold that moves along all percentiles of the variable’s
range, which makes this methodology bias insensitive. The
connectivity analysis is applied individually on cells that ex-
ceed a given threshold and those that fall below, which is
referred to as the low and high phase, respectively. Follow-
ing Koch et al. (2016b), the root mean square error between
the connectivity at all percentiles of the observed (0(t)obs)
and the simulated (0(t)sim) pattern denotes a tangible pattern
similarity metric and can be calculated as

RMSECon =

√∑100
t=1(0(t)obs−0(t)sim)

2

100
. (4)

The average RMSE score of the low and the high phase is
employed as the pattern similarity score for the connectiv-
ity analysis and is referred to as connectivity throughout the
paper.

2.4.3 Fractions skill score

The fractions skill score (FSS) is a common metric in mete-
orology to provide a scale-dependent measure that quantifies
the spatial skill of various competing precipitation forecasts
with respect to a reference (Mittermaier et al., 2013; Roberts
and Lean, 2008; Wolff et al., 2014). In the FSS framework, a
fraction reflects the occurrence of values exceeding a certain
threshold at a given window size n and is calculated at each
cell. Typically the thresholds are derived from the variable’s
percentiles, which constitutes the bias insensitivity of FSS
(Roberts, 2008). The FSS workflow is defined by three main
steps: (1) for each threshold, truncate the observed (obs) and
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Figure 3. Two examples to illustrate the importance of a multi-component analysis when comparing spatial patterns (a). The maps are
normalized by their mean. The histograms of the z score normalized maps are presented in (b). The scatter plots of the mean normalized
maps are given in (c). Scores for the three SPAEF components (histo match, cv ratio and correlation) are given in the graphs.

the simulated (sim) spatial pattern into binary maps. (2) For
each cell, compute the fraction of cells that exceed the thresh-
old and lie within a window of size n× n and (3) calcu-
late the mean squared error (MSE) between the observed
and simulated fractions and normalize it with a worst case
MSE (MSEwc) that reflects the condition with zero agree-
ment between the spatial patterns. The MSE is based on all
cells (Nxy) that lie within the modelling domain with dimen-
sions of Nx and Ny . For a certain threshold, FSS at scale n is
given by

FSS(n) = 1−
MSE(n)

MSE(n)wc
, (5)

where

MSE(n) =
1
Nxy

Nx∑
i=1

Ny∑
j=1

[
ref(n)ij − scen(n)ij

]2 (6)

and

MSE(n)wc =
1
Nxy

 Nx∑
i=1

Ny∑
j=1

ref2
(n)ij +

Nx∑
i=1

Ny∑
j=1

scen2
(n)ij

 . (7)

FSS ranges from 0 to 1, where 1 indicates a perfect match
between obs and sim and 0 reflects the worst possible perfor-
mance. For the simulated spatial patterns in the Skjern catch-
ment we applied the concept of critical scales (Koch et al.,
2017) and therefore selected three top and three bottom per-
centiles each assessed at an individual critical scale. The 1st,
5th and 20th percentiles focus on the bottom 1, 5 and 20 %
of cells and are investigated at 25, 15 and 5 km scale, re-
spectively. Three top percentiles, the 99th, 95th and 80th, are
analysed analogously. The average of the three top and bot-
tom percentiles is calculated as an overall pattern similarity
score and referred to as FSS throughout the paper.

2.5 Optimization procedure

The mHM of the Skjern catchment is applied at 1 km spa-
tial resolution and the simulation period is set to 12 years
(1997–2008) during which the first 4 years are used as warm-
up and the following 8 years are utilized for the calibration.
The model parameters are calibrated against observed dis-
charge time series at two stations and the average latent heat
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pattern of June under cloud-free conditions. The reference
pattern reflects an instantaneous observation of midday la-
tent heat (W m−2), whereas the model simulates daily ac-
tual evapotranspiration (mm day−1). Obviously these vari-
ables are closely related; however, it requires suitable spatial
performance metrics to be able to quantitatively compare two
patterns with different units.

A sensitivity analysis was performed in order to select a
limited number of parameters for the optimization. This was
based on two steps: a variance-based sequential screening
(Cuntz et al., 2015) followed by a Latin hypercube sampling
(van Griensven et al., 2006). The mHM has 48 global pa-
rameters and the first step identified 24 informative parame-
ters; results were presented by Demirel et al. (2018a). Subse-
quently we applied the Latin hypercube sampling to further
reduce the number of sensitive parameters to 17. Among the
selected parameters, eight represent the soil moisture mod-
ule (pedo transfer functions, root fraction distribution and
soil moisture stress), two control the interflow, one affects
the percolation, two are sensitive to the base flow and four
define the ET module via the dynamic scaling function using
MODIS LAI.

In order to reflect on the ability of different spatial per-
formance metrics to optimize the pattern performance of the
distributed hydrological model applied in this study, we have
designed six calibrations. All commence with the same ini-
tial parameter set and include KGE at both discharge stations
as temporal objective functions. Additionally, each optimiza-
tion features one of the promoted spatial performance met-
rics: (1) SPAEF, (2) correlation, (3) cv ratio, (4) histo match,
(5) FSS and (6) connectivity. The metrics correlation, cv ra-
tio and histo match represent the three SPAEF components.
The spatial objective functions aim to optimize the average
ET pattern of June and are weighted 5 times higher than the
discharge objective functions. We expect the capability of
the model to optimize simulated time series of discharge to
be more versatile in comparison to its flexibility to optimize
spatial patterns, which justifies the weighting of the objective
functions. The optimizations were conducted with the help of
PEST (version 14.02; Doherty, 2005) and the shuffled com-
plex evolution (SCE-UA) algorithm (Duan et al., 1993) was
selected as an optimizer. SCE-UA is considered a global op-
timizer and for our application it was set up to operate on two
parallel complexes with 35 parameter sets in each complex.
Each calibration was limited to 2500 model runs, which was
found reasonable to allow for the convergence of the objec-
tive functions.

3 Results and discussion

3.1 Optimizing spatial patterns

The simulation results from the initial parameter set are de-
picted in Fig. 2. The simulated pattern of AET is almost uni-

form with very little spatial variability, which results in a low
SPAEF score of −0.58. The simulated discharge has the cor-
rect timing at both stations: station no. 2 is clearly less biased
than station no. 1. Both have reasonable KGE scores on the
basis of the initial parameter set: 0.6 (station no. 1) and 0.7
(station no. 2).

Figure 4 visualizes the results from the six conducted cal-
ibrations with the aim of tracking the spatial patterns of sim-
ulated ET during the course of the optimization. SCE-UA
is executed in an iterative manner whereby each iteration
reflects a shuffling loop in which a number of parameter
sets are tested. In order to inter-compare the optimization
progress across the six calibrations, Fig. 4 illustrates the op-
timal spatial patterns at four selected iterations during the
calibration. The second iteration is the first in which SCE-
UA receives feedback from the applied metric after executing
random sets of parameter values in the first iteration. Itera-
tions 6 and 10 show intermediate steps from the optimization
progress. The optimal spatial pattern depicts the final result
in accordance with the six tested performance metrics after
2500 model runs.

From a metric point of view, the scores of the objective
functions are improved for all six calibrations. Among the
six metrics, connectivity is the only one which has to be re-
duced to 0; the remaining metrics have an optimal score of 1.
The improvements from iteration 10 to the optimal parameter
set are numerically marginal and visually not to be discrim-
inated. The visual differences between the optimized spatial
patterns are striking and the three metrics that consider lo-
cal constraints (SPAEF, correlation and FSS) can clearly be
distinguished from the remaining three. With respect to the
reference pattern in Fig. 2, the separation between forest and
non-forest has been inverted by optimizing against cv ratio
and connectivity because the right allocation is not reflected
by the metrics. The histo match metric is based on z score
normalization, which results in a clear underestimation of
spatial variability.

The importance of human-perception-based model evalu-
ation has been widely recognized in the literature (Grayson
et al., 2002; Hagen, 2003; Koch et al., 2015; Kuhnert et al.,
2005). Following our visual evaluation we regard the SPAEF
optimization as the most similar to the reference in Fig. 2.
The three SPAEF components lead to very diverging solu-
tions, and combined as SPAEF, the optimization yields a spa-
tial pattern which adequately reflects the imprint of both veg-
etation and soil on the simulated ET patterns. FSS as an ob-
jective function performs almost equally satisfying, and re-
visiting the defined critical scales may improve this calibra-
tion result even further.

All metrics contain different spatial information which is
used to constrain the model parameters, which results in op-
timized spatial patterns that clearly differ from one another.
Although some metrics undoubtedly fail to inform the opti-
mizer to identify a parameter set satisfying our visual crite-
rion they still provide relevant pattern information to a cer-
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Figure 4. Tracking of the simulated actual evapotranspiration maps (normalized by mean) throughout the six conducted optimizations using
different objective functions. The first four columns show the trajectory of pattern improvements in accordance with one objective function.
The maps depict the best fit between the reference (b) and model at various iterations throughout the optimization. The spatial similarity
scores in accordance with the different metrics are given in the top right corner of each map.

tain extent. In consequence, these metrics do not function as
stand-alone objective functions for this calibration study; e.g.
cv ratio yields an inadequate spatial pattern but as a com-
ponent in SPAEF it generates a satisfying solution to the
optimization problem. Following Krause et al. (2005), one
should carefully take the pros and cons of each performance
measure into consideration when designing the calibration
and validation framework of a model. Moreover, the met-
ric should be tailored to the intended use of the model and
should relate to simulated quantities which are deemed rele-
vant for the application of the model. For the objective of our
calibration study the bias insensitivity and the capability of a
metric to compare variables that are related but differ in unit
was most relevant.

Table 1 cross-checks the metric scores of the six optimized
spatial patterns in Fig. 4. Reading the table column-wise al-
lows for an investigation of whether the metrics provide in-
dependent information to the optimizer. As an example, cv
ratio reaches its optimal score; however, the reaming metrics
perform poorly. This indicates that cv ratio conveys indepen-
dent information with respect to the other metrics. On the
other hand, calibrating against correlation yields a high FSS
score, which attests partly redundant information content in
the two given metrics. Reading the table row-wise screens for
the consistency of the calibrations. The highest metric score

should be reached when calibrating against itself, which is
the case for all six calibrations.

Additionally, Table 1 presents the KGE scores for the six
conducted calibrations. The discharge performance has been
improved by all calibrations and the scores vary slightly
across them. Similar to the initial run station no. 2 performs
generally better than station no. 1. The simulated discharge
of the six optimized models is shown in Fig. 5 for a 4-year
period at station no. 1. All calibrations simulate the discharge
dynamics in accordance with the observations and are gener-
ally equipped with a good timing of the peak flows. Differ-
ences are found in the recession flow between the six sim-
ulations. However, our effort focuses on the spatial perfor-
mance and it is striking how different the simulated spatial
patterns can be while predicting almost identical streamflow.
This supports previous findings in the literature which stress
that spatial and temporal response in hydrological models are
controlled by different parameters and that the one cannot be
used to inform the other (Pokhrel and Gupta, 2011; Stisen et
al., 2011, and others).

Figure 4, in combination with Table 1, provide details to
investigate the key weaknesses of the two metrics, FSS and
connectivity, used to evaluate SPAEF. It becomes evident
that calibrating against connectivity results in poor scores of
the remaining metrics, which underlines its inability to cap-
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Table 1. Cross-check of the six conducted calibrations (as rows). The optimal model run is evaluated by the remaining metrics (as columns).
Numbers in bold indicate the optimized value of the respective optimization.

Six optimizations Calibrated against

SPAEF correlation cv ratio histo match connectivity FSS

Evaluated against SPAEF 0.56 0.28 −0.74 −0.19 −1.16 0.18
correlation 0.73 0.80 −0.48 0.15 −0.56 0.74
cv ratio 0.81 0.41 1.00 0.17 2.17 0.57
histo match 0.72 0.64 0.10 0.91 0.08 0.36
connectivity 0.26 0.18 0.17 0.25 0.10 0.18
FSS 0.88 0.91 0.44 0.35 0.40 0.91
KGE – station no. 1 0.89 0.90 0.88 0.84 0.88 0.95
KGE – station no. 2 0.91 0.93 0.91 0.90 0.92 0.95

Figure 5. Simulated discharge at station no. 1 obtained by the six
optimizations. Data are shown only for 4 out of the 8 years of sim-
ulation. KGE values vary between 0.84 and 0.95.

ture the correct spatial allocation, variability and distribution.
Thus, the key weakness of connectivity is that it cannot op-
erate as a stand-alone metric; instead it should be accompa-
nied by another metric, ideally correlation, which will ensure
the correct allocation. On the other hand, FSS yields reason-
able scores of allocation and variability between forest and
non-forest areas. However, the FSS optimization lacks spa-
tial variability within the high and low areas, which could
be resolved by considering more threshold percentiles when
computing the score. Therefore the weakness of FSS lies in
its dependency on the threshold percentile, which has to be
defined by the user.

Choosing a suitable metric alone is not sufficient to un-
dertake a successful spatial-pattern-oriented model calibra-
tion. Model agility promoted by a flexible parameterization
is required to allow the simulated spatial patterns to be op-
timized with respect to a reference pattern (Mendoza et al.,
2015). In this study, this is achieved by applying a model
code (mHM: Samaniego et al., 2010a) that features a multi-
scale parameter regionalization scheme (MPR) in which spa-

tially distributed basin characteristics are transformed via
global parameters to effective model parameters at the model
scale. These so-called transfer functions generate seamless
and physically consistent parameters fields (Mizukami et al.,
2017). In contrast, Corbari and Mancini (2014) conducted
a spatial validation of a subsurface–surface–land surface
model against MODIS LST in which parameters were cali-
brated individually at each grid. In contrast to regionalization
techniques such as MPR, this approach does not grant phys-
ically meaningful parameter fields and may overestimate the
credibility of remote sensing data. Samaniego et al. (2017b)
recently proposed a modelling protocol that describes how
MPR can be added to any particular model, which extends
the applicability of MPR beyond mHM. However, the choice
of transfer functions may not always be trivial and their re-
liability is crucial for the successful application of MPR or
other regionalization approaches. Another limitation of the
MPR scheme in mHM is that the minimum scale at which a
model can be applied depends on the data availability, since
subgrid variability is fundamental to MPR (Samaniego et al.,
2017b).

In order to examine the added value of spatial patterns
retrieved from remote sensing data, Demirel et al. (2018a)
conducted several calibration scenarios of the same model
set-up as applied in this study. Calibrating only against time
series of discharge resulted in a poor spatial pattern perfor-
mance and, vice versa, the calibration using remote sensing
data only was not able to constrain the hydrograph correctly.
However, the balanced calibration using both observations
did not worsen the objective function in comparison to using
them as the sole calibration target, which underlined limited
trade-offs between the temporal and spatial observations in
the applied calibration.

In order to further advance opportunities for spatial-
pattern-oriented model evaluation, hydrological models can
be extended by emission models to simulated brightness tem-
perature, which is closer to the true observations of the re-
mote sensing sensors. As an example, Schalgeet al. (2016)
implemented such a coupling, which facilitated direct model
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Figure 6. 3-D Pareto front based on the 2500 runs during the SPAEF
optimization. Each component of the SPAEF metric represents an
individual axis. The black line indicates the deviation between the
theoretical optimal (1,1,1) SPAEF value and the optimized model
run (0.72,0.73,0.81).

evaluation against SMAP brightness temperature. Similar so-
lutions are feasible for LST and it has the clear advantage
of bypassing the uncertainties and inconsistencies associated
with remote sensing models, which the hydrological mod-
eller has no control of.

3.2 Spatial efficiency metric

Establishing novel metrics in the modelling community is of-
ten hindered by an intrinsic inertia supported by an excessive
choice of metrics, which leads to reliance on familiar metrics.
Both the implementation and the interpretation of unfamiliar
metrics may be found too troublesome by many users. Famil-
iarity can only be obtained by rigorous testing and by having
a metric which provides scores in a predefined range easy to
interpret. In the following we will provide a detailed analysis
of the SPAEF calibration results to further the understand-
ing of its implications and the interaction between the three
components.

Figure 6 depicts a three-dimensional Pareto front of the
three SPAEF components on the basis of the 2500 parameter
sets executed in the SPAEF calibration, which allows for an
investigation of trade-offs between different objective func-
tions. The formulation of SPAEF gives equal weights to the
three components; hence the best compromise is the parame-
ter set with the lowest Euclidian distance to the optimal point
(1,1,1). If desirable, the weights could be adjusted manu-
ally to specifically focus on one of the three components.
Throughout calibration, scores across the range of each com-

ponent are obtained, which indicates that the components are
clearly sensitive to changes in spatial performance. Further,
it reveals the global nature of SCE-UA, which rigorously ex-
plores the parameter space. With an ideal score of 1, SCE-
UA optimized SPAEF to 0.56, which may seem surprisingly
low given the good visual agreement. This underlines the
fact that SPAEF is a tough criterion with three independent
components that individually penalize the overall similarity
score. The question of what marks an acceptable and satisfy-
ing SPAEF score is hard to generalize and probably depends
on the pattern to be assessed. The ET pattern in the Skjern
catchment is dominated by local feedbacks of soil and vege-
tation, which constitute challenging small-scale details for a
model. Alternatively, a catchment with a strong spatial gra-
dient of e.g. precipitation or topography may naturally yield
a higher SPAEF score. Such gradients in forcing or morphol-
ogy are typically not calibrated and will dominate the spatial
pattern of the estimated hydrological fluxes. A distinct spa-
tial variability provided by the model inputs is therefore ex-
pected to favour correlation and cv ratio, resulting in a higher
SPAEF score. However, more work is needed to study the re-
lationship of spatial variability and SPAEF.

The patterns of the simulated variable (daily ET) and the
observed variable (instantaneous latent heat) used in this
study differ in unit but are linearly related. One can imagine a
case of using SPAEF in a proxy validation with a non-linear
relationship between the variables. In such a case, the user
can consider transforming the data. This is especially cru-
cial for correlation, which assumes linearity. The remaining
components, histo match and cv ratio, are less dependent on
linearity, as the first is based on z score normalization and the
second on mean normalization.

As introduced earlier, human perception is considered a
reliable benchmark for the evaluation of spatial performance
metrics. More precisely, a metric can be regarded as reliable
if it is able to emulate human vision. In order to establish a re-
liable benchmark dataset, Koch and Stisen (2017) have con-
ducted a citizen science project with the aim of quantifying
spatial similarity scores based on human perception. Their
study was based on over 6000 simulated spatial pattern com-
parisons of land surface variables in the Skjern catchment.
When compared to human perception, SPAEF provides a sat-
isfying coefficient of determination of 0.73. In comparison,
the coefficients of determination for connectivity, FSS and
correlation are 0.48, 0.60 and 0.76, respectively.

Figure 7 highlights the evolution of the three SPAEF com-
ponents by tracking their scores during the 2500 runs of four
calibrations: SPAEF, correlation, cv ratio and histo match.
Convergence can be observed for all components when cal-
ibrated against itself or SPAEF. This underlines the fact that
the choice to limit the optimizer to 2500 runs was reasonable
for this study, but may differ for other modelling studies. The
results underline consistency because SPAEF provides the
second best score for all components right after being cali-
brated against itself. Furthermore, the three components can
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Figure 7. Tracking of the three SPAEF components throughout the
2500 conducted runs of four calibrations (SPAEF, correlation, cv
ratio and histo match). The envelopes represent the 10th and 90th
percentile of a 100-run moving window; the line shows the median.

be considered independent because optimizing against one
component does not automatically lead to the improvement
of another. This is especially the case for the cv ratio calibra-
tion in which correlation stagnates and histo match decreases
throughout the course of the 2500 runs.

Uncertainty in the observations should ideally be an in-
tegral part of model evaluation. The proposed calibration
framework in this study deals implicitly with the issue of
uncertainty. First, the daily snapshots of midday ET are av-
eraged to a more robust monthly map, and second, the bias
insensitivity of SPAEF alleviates the effect of uncertainties
in the observations. Instead of assessing the exact values at
the grid scale, SPAEF evaluates global characteristics such
as distribution and variability, which are less affected by
data uncertainty. For some applications, the bias insensitivity
may be a hurdle when the model is expected to be unbiased.
In such a case the SPAEF formulation (Eq. 4) could easily
be extended by a fourth component, such as the bias term
(γQ) from the KGE formulation (Eq. 3). Discharge obser-
vations are most commonly available for hydrological mod-
elling studies. Such data can provide reliable information on
the overall water balance, and when being accompanied with
spatial observations, the catchment internal variability of hy-
drological processes can be constrained as well.

4 Conclusions

The complexity of spatially distributed hydrological models
is currently increasing, as is the availability of satellite-based

remote sensing observations. In light of the vast amount of
existing remote sensing products in combination with re-
cent developments, such as the promising Copernicus pro-
gramme with its multi-satellite Sentinel missions (McCabe et
al., 2017), the incorporation of detailed spatial data retrieved
from remote sensing platforms will continue to enable grand
opportunities for hydrological modelling in the near future.

This study aimed to make a contribution to that course by
rigorously testing SPAEF, a simple and novel spatial perfor-
mance metric which has the potential to advance the spatial-
pattern-oriented validation and calibration of spatially dis-
tributed models. The applicability of SPAEF was tested in
the hydrological context; however, its versatility promotes it
to be beneficial throughout many disciplines of earth system
modelling.

We applied SPAEF alongside its three components and
two other spatial performance metrics (connectivity and
FSS) in a calibration experiment of a mesoscale catchment
(∼ 2500 km2) in Denmark. A satellite-retrieved map of latent
heat, which represents the average evapotranspiration pattern
of cloud-free days in June, was utilized beside discharge time
series as the reference dataset. We draw the following main
conclusions from this work.

Quantifying spatial similarity is a non-trivial task and it
requires taking several dimensions of spatial information si-
multaneously into consideration. The formulation of SPAEF
is therefore based on three equally weighted components, i.e.
correlation, ratio of the coefficient of variation and z score
histogram overlap between a simulated and an observed pat-
tern. SPAEF reflects the Euclidian distance of the three com-
ponents from the optimum, which is equivalent to the con-
cept of a three-dimensional Pareto front. The components are
bias insensitive and allow for the assessment of two variables
that differ in units. Further, we could infer independent infor-
mation content on the three components, which complement
each other when used jointly as SPAEF.

SPAEF is straightforward to compute and has a predefined
range between −∞ and 1, which simplifies communication
with the scientific community and stakeholders. Neverthe-
less, more rigorous testing is required to further establish fa-
miliarity. The relationship between SPAEF and spatial vari-
ability has to be investigated in more detail for the purpose
of putting the metric into context, i.e. comparing different
catchments or models.

The right spatial performance metric alone is not enough
to improve the spatial predictability of a distributed model
trough calibration. The metric has to be accompanied by an
agile model structure and flexible parameterization, such as
regionalization techniques, by means of transfer functions,
allowing the simulated pattern to adjust in a meaningful way.
Naturally, this has to be further supported by high-quality
forcing data, detailed catchment morphology and trustworthy
spatial observations at an adequate scale.

The calibration exercise of the Skjern catchment high-
lighted the importance of incorporating spatial observation
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in the calibration of hydrological models since the six con-
ducted calibrations yielded strikingly different ET patterns
while simulating similar discharge dynamics. Based on our
findings, bias insensitive spatial metrics are ideally accompa-
nied by bias sensitive discharge metrics that secure the over-
all robustness in terms water balance closure.

With this contribution we hope to encourage the modelling
community to rethink paradigms when formulating calibra-
tion or validation experiments by choosing appropriate met-
rics that focus on spatial patterns representing earth system
processes.

Code and data availability. The code for the applied spatial perfor-
mance metrics is made available by Demirel et al. (2018b) at https:
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