Articles | Volume 10, issue 4
https://doi.org/10.5194/gmd-10-1645-2017
https://doi.org/10.5194/gmd-10-1645-2017
Model description paper
 | 
20 Apr 2017
Model description paper |  | 20 Apr 2017

The Landlab v1.0 OverlandFlow component: a Python tool for computing shallow-water flow across watersheds

Jordan M. Adams, Nicole M. Gasparini, Daniel E. J. Hobley, Gregory E. Tucker, Eric W. H. Hutton, Sai S. Nudurupati, and Erkan Istanbulluoglu

Related authors

Creative computing with Landlab: an open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics
Daniel E. J. Hobley, Jordan M. Adams, Sai Siddhartha Nudurupati, Eric W. H. Hutton, Nicole M. Gasparini, Erkan Istanbulluoglu, and Gregory E. Tucker
Earth Surf. Dynam., 5, 21–46, https://doi.org/10.5194/esurf-5-21-2017,https://doi.org/10.5194/esurf-5-21-2017, 2017
Short summary
CellLab-CTS 2015: continuous-time stochastic cellular automaton modeling using Landlab
Gregory E. Tucker, Daniel E. J. Hobley, Eric Hutton, Nicole M. Gasparini, Erkan Istanbulluoglu, Jordan M. Adams, and Sai Siddartha Nudurupati
Geosci. Model Dev., 9, 823–839, https://doi.org/10.5194/gmd-9-823-2016,https://doi.org/10.5194/gmd-9-823-2016, 2016
Short summary

Related subject area

Hydrology
Development and performance of a high-resolution surface wave and storm surge forecast model: application to a large lake
Laura L. Swatridge, Ryan P. Mulligan, Leon Boegman, and Shiliang Shan
Geosci. Model Dev., 17, 7751–7766, https://doi.org/10.5194/gmd-17-7751-2024,https://doi.org/10.5194/gmd-17-7751-2024, 2024
Short summary
Deep dive into hydrologic simulations at global scale: harnessing the power of deep learning and physics-informed differentiable models (δHBV-globe1.0-hydroDL)
Dapeng Feng, Hylke Beck, Jens de Bruijn, Reetik Kumar Sahu, Yusuke Satoh, Yoshihide Wada, Jiangtao Liu, Ming Pan, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 17, 7181–7198, https://doi.org/10.5194/gmd-17-7181-2024,https://doi.org/10.5194/gmd-17-7181-2024, 2024
Short summary
PyEt v1.3.1: a Python package for the estimation of potential evapotranspiration
Matevž Vremec, Raoul A. Collenteur, and Steffen Birk
Geosci. Model Dev., 17, 7083–7103, https://doi.org/10.5194/gmd-17-7083-2024,https://doi.org/10.5194/gmd-17-7083-2024, 2024
Short summary
Prediction of hysteretic matric potential dynamics using artificial intelligence: application of autoencoder neural networks
Nedal Aqel, Lea Reusser, Stephan Margreth, Andrea Carminati, and Peter Lehmann
Geosci. Model Dev., 17, 6949–6966, https://doi.org/10.5194/gmd-17-6949-2024,https://doi.org/10.5194/gmd-17-6949-2024, 2024
Short summary
Regionalization in global hydrological models and its impact on runoff simulations: a case study using WaterGAP3 (v 1.0.0)
Jenny Kupzig, Nina Kupzig, and Martina Flörke
Geosci. Model Dev., 17, 6819–6846, https://doi.org/10.5194/gmd-17-6819-2024,https://doi.org/10.5194/gmd-17-6819-2024, 2024
Short summary

Cited articles

Adams, J. M.: GitHub Repository: OverlandFlow example drivers and documentation, https://doi.org/10.5281/zenodo.162058, 2016.
Adams, J. M., Nudurupati, S. S., Gasparini, N. M., Hobley, D. E., Hutton, E. W. H., Tucker, G. E., and Istanbulluoglu, E.: Landlab: Sustainable software development in practice, Second Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE2), New Orleans, LA, USA, https://doi.org/10.6084/m9.figshare.1097629, 2014.
Adams, J. M., Gasparini, N. M., Hobley, D. E., Tucker, G. E., Hutton, E. W. H., Nudurupati, S. S., and Istanbulluoglu, E.: Flooding and erosion after the Buffalo Creek fire: a modeling approach using Landlab, Presented at the Geological Society of America Annual Meeting, Denver, CO, USA, 2016.
Aksoy, H. and Kavvas, M.: A review of hillslope and watershed scale erosion and sediment transport models, Catena, 64, 247–271, https://doi.org/10.1016/j.catena.2005.08.008, 2005.
Anders, A. M., Roe, G. H., Montgomery, D. R., and Hallet, B.: Influence of precipitation phase on the form of mountain ranges, Geology, 36, 479–482, https://doi.org/10.1130/G24821A.1, 2008.
Download
Short summary
OverlandFlow is a 2-dimensional hydrology component contained within the Landlab modeling framework. It can be applied in both hydrology and geomorphology applications across real and synthetic landscape grids, for both short- and long-term events. This paper finds that this non-steady hydrology regime produces different landscape characteristics when compared to more traditional steady-state hydrology and geomorphology models, suggesting that hydrology regime can impact resulting morphologies.