Articles | Volume 9, issue 1
Geosci. Model Dev., 9, 283–305, 2016
https://doi.org/10.5194/gmd-9-283-2016
Geosci. Model Dev., 9, 283–305, 2016
https://doi.org/10.5194/gmd-9-283-2016
Methods for assessment of models
26 Jan 2016
Methods for assessment of models | 26 Jan 2016

The GEWEX LandFlux project: evaluation of model evaporation using tower-based and globally gridded forcing data

M. F. McCabe et al.

Related authors

INTRA-FIELD CROP YIELD VARIABILITY BY ASSIMILATING CUBESAT LAI IN THE APSIM CROP MODEL
M. G. Ziliani, M. U. Altaf, B. Aragon, R. Houborg, T. E. Franz, Y. Lu, J. Sheffield, I. Hoteit, and M. F. McCabe
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 1045–1052, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1045-2022,https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1045-2022, 2022
Mapping groundwater abstractions from irrigated agriculture: big data, inverse modeling, and a satellite–model fusion approach
Oliver Miguel López Valencia, Kasper Johansen, Bruno José Luis Aragón Solorio, Ting Li, Rasmus Houborg, Yoann Malbeteau, Samer AlMashharawi, Muhammad Umer Altaf, Essam Mohammed Fallatah, Hari Prasad Dasari, Ibrahim Hoteit, and Matthew Francis McCabe
Hydrol. Earth Syst. Sci., 24, 5251–5277, https://doi.org/10.5194/hess-24-5251-2020,https://doi.org/10.5194/hess-24-5251-2020, 2020
Short summary
PREDICTING BIOMASS AND YIELD AT HARVEST OF SALT-STRESSED TOMATO PLANTS USING UAV IMAGERY
K. Johansen, M. J. L. Morton, Y. Malbeteau, B. Aragon, S. Al-Mashharawi, M. Ziliani, Y. Angel, G. Fiene, S. Negrao, M. A. A. Mousa, M. A. Tester, and M. F. McCabe
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 407–411, https://doi.org/10.5194/isprs-archives-XLII-2-W13-407-2019,https://doi.org/10.5194/isprs-archives-XLII-2-W13-407-2019, 2019
Inferring soil salinity in a drip irrigation system from multi-configuration EMI measurements using adaptive Markov chain Monte Carlo
Khan Zaib Jadoon, Muhammad Umer Altaf, Matthew Francis McCabe, Ibrahim Hoteit, Nisar Muhammad, Davood Moghadas, and Lutz Weihermüller
Hydrol. Earth Syst. Sci., 21, 5375–5383, https://doi.org/10.5194/hess-21-5375-2017,https://doi.org/10.5194/hess-21-5375-2017, 2017
Short summary
PUSHBROOM HYPERSPECTRAL IMAGING FROM AN UNMANNED AIRCRAFT SYSTEM (UAS) – GEOMETRIC PROCESSINGWORKFLOW AND ACCURACY ASSESSMENT
D. Turner, A. Lucieer, M. McCabe, S. Parkes, and I. Clarke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W6, 379–384, https://doi.org/10.5194/isprs-archives-XLII-2-W6-379-2017,https://doi.org/10.5194/isprs-archives-XLII-2-W6-379-2017, 2017

Related subject area

Hydrology
Coupling a large-scale hydrological model (CWatM v1.1) with a high-resolution groundwater flow model (MODFLOW 6) to assess the impact of irrigation at regional scale
Luca Guillaumot, Mikhail Smilovic, Peter Burek, Jens de Bruijn, Peter Greve, Taher Kahil, and Yoshihide Wada
Geosci. Model Dev., 15, 7099–7120, https://doi.org/10.5194/gmd-15-7099-2022,https://doi.org/10.5194/gmd-15-7099-2022, 2022
Short summary
RavenR v2.1.4: an open-source R package to support flexible hydrologic modelling
Robert Chlumsky, James R. Craig, Simon G. M. Lin, Sarah Grass, Leland Scantlebury, Genevieve Brown, and Rezgar Arabzadeh
Geosci. Model Dev., 15, 7017–7030, https://doi.org/10.5194/gmd-15-7017-2022,https://doi.org/10.5194/gmd-15-7017-2022, 2022
Short summary
Developing a parsimonious canopy model (PCM v1.0) to predict forest gross primary productivity and leaf area index of deciduous broad-leaved forest
Bahar Bahrami, Anke Hildebrandt, Stephan Thober, Corinna Rebmann, Rico Fischer, Luis Samaniego, Oldrich Rakovec, and Rohini Kumar
Geosci. Model Dev., 15, 6957–6984, https://doi.org/10.5194/gmd-15-6957-2022,https://doi.org/10.5194/gmd-15-6957-2022, 2022
Short summary
Synergy between satellite observations of soil moisture and water storage anomalies for runoff estimation
Stefania Camici, Gabriele Giuliani, Luca Brocca, Christian Massari, Angelica Tarpanelli, Hassan Hashemi Farahani, Nico Sneeuw, Marco Restano, and Jérôme Benveniste
Geosci. Model Dev., 15, 6935–6956, https://doi.org/10.5194/gmd-15-6935-2022,https://doi.org/10.5194/gmd-15-6935-2022, 2022
Short summary
A physically based distributed karst hydrological model (QMG model-V1.0) for flood simulations
Ji Li, Daoxian Yuan, Fuxi Zhang, Jiao Liu, and Mingguo Ma
Geosci. Model Dev., 15, 6581–6600, https://doi.org/10.5194/gmd-15-6581-2022,https://doi.org/10.5194/gmd-15-6581-2022, 2022
Short summary

Cited articles

Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P. P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., and Nelkin, E.: The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present), J. Hydrometeorol., 4, 1147–1167, 2003.
Allen, R. G.: Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study, J. Hydrol., 229, 27–41, 2000.
Allen, R. G., Tasumi, M., and Trezza, R.: Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model, J. Irrig. Drain. E., 133, 380–394, 2007.
Armstrong, R. L., Brodzik, M. J., Knowles, K., and Savoie, M.: Global monthly EASE-Grid snow water equivalent climatology, National Snow and Ice Data Center, Digital media, Boulder, CO, USA, 2005.
Badgley, G., Fisher, J. B., Jiménez, C., Tu, K. P., and Vinukollu, R.: On uncertainty in global terrestrial evapotranspiration estimates from choice of input forcing datasets, J. Hydrometeorol., 16, 1449–1455, https://doi.org/10.1175/JHM-D-14-0040.1, 2015.
Download
Short summary
In an effort to develop a global terrestrial evaporation product, four models were forced using both a tower and grid-based data set. Comparisons against flux-tower observations from different biome and land cover types show considerable inter-model variability and sensitivity to forcing type. Results suggest that no single model is able to capture expected flux patterns and response. It is suggested that a multi-model ensemble is likely to provide a more stable long-term flux estimate.