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Abstract. Determining the spatial distribution and temporal

development of evaporation at regional and global scales is

required to improve our understanding of the coupled wa-

ter and energy cycles and to better monitor any changes

in observed trends and variability of linked hydrological

processes. With recent international efforts guiding the de-

velopment of long-term and globally distributed flux esti-

mates, continued product assessments are required to inform

upon the selection of suitable model structures and also to

establish the appropriateness of these multi-model simula-

tions for global application. In support of the objectives of

the Global Energy and Water Cycle Exchanges (GEWEX)

LandFlux project, four commonly used evaporation models

are evaluated against data from tower-based eddy-covariance

observations, distributed across a range of biomes and cli-

mate zones. The selected schemes include the Surface En-

ergy Balance System (SEBS) approach, the Priestley–Taylor

Jet Propulsion Laboratory (PT-JPL) model, the Penman–

Monteith-based Mu model (PM-Mu) and the Global Land

Evaporation Amsterdam Model (GLEAM). Here we seek

to examine the fidelity of global evaporation simulations by

examining the multi-model response to varying sources of

forcing data. To do this, we perform parallel and collocated

model simulations using tower-based data together with a

global-scale grid-based forcing product. Through quantify-

ing the multi-model response to high-quality tower data, a

better understanding of the subsequent model response to the

coarse-scale globally gridded data that underlies the Land-

Flux product can be obtained, while also providing a relative

evaluation and assessment of model performance.

Using surface flux observations from 45 globally dis-

tributed eddy-covariance stations as independent metrics of

performance, the tower-based analysis indicated that PT-

JPL provided the highest overall statistical performance

(0.72; 61 W m−2; 0.65), followed closely by GLEAM (0.68;

64 W m−2; 0.62), with values in parentheses representing

the R2, RMSD and Nash–Sutcliffe efficiency (NSE), respec-

tively. PM-Mu (0.51; 78 W m−2; 0.45) tended to underesti-

mate fluxes, while SEBS (0.72; 101 W m−2; 0.24) overes-

timated values relative to observations. A focused analysis

across specific biome types and climate zones showed con-

siderable variability in the performance of all models, with

no single model consistently able to outperform any other.

Results also indicated that the global gridded data tended to

reduce the performance for all of the studied models when

compared to the tower data, likely a response to scale mis-

match and issues related to forcing quality. Rather than rely-

ing on any single model simulation, the spatial and tempo-

ral variability at both the tower- and grid-scale highlighted

the potential benefits of developing an ensemble or blended

evaporation product for global-scale LandFlux applications.

Challenges related to the robust assessment of the LandFlux

product are also discussed.
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1 Introduction

Characterizing the exchange of water between the land sur-

face and the atmosphere is a topic of multi-disciplinary in-

terest, as the processes that comprise this dynamic cycling

of water determine the spatial and temporal variability of

hydrological responses across local and global scales. In re-

cent years, there has been significant progress in the develop-

ment of regional and global data sets based largely on remote

sensing retrievals. These data have provided a wealth of spa-

tially and temporally varying information across a range of

Earth system processes, including soil moisture (Liu et al.,

2011a), vegetation change (Tucker et al., 2005; Liu et al.,

2011b, 2013), groundwater (Famiglietti et al., 2011; Richey

et al., 2015) and precipitation (Huffman et al., 1995; Nesbitt

et al., 2004), enabling a capacity to enhance our understand-

ing and description of regional- and global-scale water cycles

and their spatial and temporal variability. While evaporation

represents the key process returning the Earth’s surface water

to the overlying atmosphere and provides the linking mech-

anism between the water and energy cycles, it is only in rel-

atively recent times that effort has been directed towards the

development of global products (Mu et al., 2007; Fisher et

al., 2008; Vinukollu et al., 2011a).

To address this observation limitation, a number of evap-

oration modelling approaches have been developed over the

past few years to enable estimation at scales beyond the field,

using satellite remote sensing (Sheffield et al., 2010; Miralles

et al., 2011a) and other data sources (Douville et al., 2013).

The models tend to differ in their level of empiricism and in

the desired scale of application, with some exclusively de-

veloped for farm-scale operation and requiring local calibra-

tion (Bastiaanssen et al., 1998; Allen et al., 2007). Others

have been developed for broader-scale application and are

built on physical relationships describing the water and en-

ergy transfer at the land surface (Norman et al., 1995; Su,

2002; Fisher et al., 2008; Miralles et al., 2011a). While tra-

ditional applications of evaporation estimates have been di-

rected towards agricultural monitoring (Allen, 2000), catch-

ment water budgets and basin-scale water management (Kus-

tas et al., 1994; Granger, 2000), more recent applications of

evaporation products have included detection and prediction

of heatwaves (Hirschi et al., 2011; Miralles et al., 2014a),

droughts (Mu et al., 2012; Otkin et al., 2014) and in resolv-

ing the likely contribution of human-induced climate change

on such events (Greve et al., 2014).

Despite the importance of understanding the magnitude

and spatial and temporal variability of evaporation, the avail-

ability of long-term products required to do this are rather

limited. Characterizing the long-term trends and variabil-

ity in independent observations of the Earth’s coupled wa-

ter and energy cycles is a key objective of the World Cli-

mate Research Programmes (WCRP) Global Energy and Wa-

ter Cycle Exchanges (GEWEX) project. Towards this task,

the GEWEX Data and Assessments Panels (GDAP) Land-

Flux project has coordinated two interrelated research efforts

that seek to (i) intercompare long-term gridded surface flux

data sets and identify their skill and reliability (i.e. product-

benchmarking), and (ii) simulate and intercompare evapo-

ration models to identify algorithms appropriate for devel-

oping a global flux product (i.e. model-benchmarking). In

one of the first global-scale product assessments, Jiménez et

al. (2011) examined 12 evaporation products obtained from

satellite-based, reanalyses and offline land surface model

(LSM) simulations for a 3-year period (1993–1995), identi-

fying large correlations between the products, similarity in

their spatial distributions, as well as large absolute differ-

ences in the annual average evaporation. A complementary

investigation of the inter-product differences was undertaken

by Mueller et al. (2011), which included forty-one global

evaporation data sets across a range of satellite-based sim-

ulations, LSMs, global circulation models (GCMs), atmo-

spheric reanalyses data sets, empirical up-scaling of eddy-

covariance measurements, as well as atmospheric water bud-

get data sets. In that study, Mueller et al. (2011) used 7 years

of monthly mean data for the period 1989–1995 and found

strong similarity in the absolute magnitude and spatial distri-

bution of evaporation amongst the products. More recently,

Mueller et al. (2013) examined multi-annual trends and vari-

ations in evaporation products from a range of diagnostic

data sets, LSMs and reanalysis products and showed consis-

tency in inter-annual variations of evaporation products that

corresponded well with previous investigations (Jung et al.,

2010).

These benchmarking studies provided a thorough (and

much needed) assessment of available global evaporation

products and the varying approaches used to derive them.

However, evaluation of the models for their predictive skill

was challenging due to inconsistencies in the forcing data

used to drive the models, as well as to the different parame-

terisation schemes employed. That is, the analysis was per-

formed on the published evaporation output, rather than re-

running simulations from a common forcing data set. In these

benchmarking studies, the evaporation data sets were also

aggregated to similar spatial and temporal resolutions for

a common analysis period, to enable unbiased comparison.

Uncertainties emerging from such aggregations can often re-

duce the confidence in any subsequent model performance

ranking. One initial effort addressing this was the study of

Vinukollu et al. (2011a), which used the Surface Energy

Balance System (SEBS) model (SEBS; Su, 2002), a two-

source Penman–Monteith scheme by Mu et al. (2007) and

a three-source model based on parameterising the Priestley–

Taylor model (PT-JPL) (Fisher et al., 2008) to estimate global

evaporation for the period 2003–2004. The Vinukollu et

al. (2011a) analysis revealed that the modelled instantaneous

evaporation (coinciding with the time of satellite overpass)

was in reasonable agreement with locally observed evapora-

tion at 12 eddy-covariance towers across the United States,

with correlations ranging from 0.43 to 0.54. However, uncer-
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tainties resulting from scale mismatch between satellite data

and the validation tower footprint reduced the confidence and

skill ranking of the models. One of the unique aspects of

the present study is that tower data are consistent across all

model simulations; that is, tower-bias is minimised, by en-

suring that all models are assessed against the same tower

records. Further, even though sub-grid-scale variability is not

explored here (since none of the models explicitly account

for this), the tower-to-grid-scale analysis acts as a diagnostic

of representativeness and point-to-pixel error.

Recently, Ershadi et al. (2014) examined a number of mod-

els including SEBS, PT-JPL, the advection–aridity model of

Brutsaert and Stricker (1979) and a single-source Penman–

Monteith (PM) model (Monteith, 1965), using a set of 20

flux towers distributed across a range of biome types and

climate zones to force the models with tower-based data di-

rectly. Based on common forcing and considering overall re-

sults, the study found that PT-JPL was the best performing

model, followed by SEBS, PM and advection–aridity. In a

related contribution, Ershadi et al. (2015) provided a more fo-

cused analysis on the influence of model structure and resis-

tance parameterisation on single, two-layer and three-source

Penman–Monteith models. The authors identified consider-

able variability in the performance of models due to their

structure and parameterisation choices. While establishing a

baseline level of performance at the tower scale is important,

understanding the impact of using the large-scale globally

gridded forcing that will ultimately drive the global prod-

ucts is key. Indeed, undertaking a parallel assessment be-

tween the tower and grid scales, while imposing consistency

in the forcing data and sampling locations used, allows for

a much greater understanding of model response than can be

achieved through either assessment in isolation: an important

extension upon recent tower-only analyses, such as Ershadi

et al. (2014) and related contributions.

A parallel effort to the LandFlux project is the European

Space Agency (ESA) funded Water Cycle Multi-mission

Observation Strategy for Evapotranspiration (WACMOS-ET;

see http://wacmoset.estellus.eu/). WACMOS-ET, which is

focused on an analysis period covering 2005–2007, seeks to

better understand the impacts of model structure on flux es-

timation, with an additional focus on developing a consistent

forcing data set using predominantly ESA developed prod-

ucts. A key result from these early works and the preliminary

outcomes from WACMOS-ET support the finding that no

single model or parameterisation consistently outperformed

any other across different biomes. Further details on these

complimentary efforts can be found in Michel et al. (2015)

and Miralles et al. (2015).

The focus of the current investigation is to build upon these

recent efforts as well as to complement ongoing WACMOS-

ET investigations, by simulating state-of-the-art evaporation

models using a joint assessment of tower-based and gridded

data, and comparing results with available eddy-covariance

flux observations. Understanding how application of grid-

ded forcing data might influence the performance of the

selected models, relative to their performance when forced

with (presumably) higher-quality tower data, is a motivat-

ing rationale for this work. Such evaluations are important

as they offer insight into the sensitivity of the models to in-

put data uncertainties, provide a relative assessment of model

quality and also inform upon issues of spatial scale and

footprint mismatch (McCabe and Wood, 2006). Establish-

ing model suitability for large-scale operational application

as part of the GEWEX LandFlux project is a further motivat-

ing goal for this work. As such, a major objective is to eval-

uate the individual model responses across a large range of

biomes and climate zones. The models selected for assess-

ment include SEBS, PT-JPL, the Penman–Monteith-based

Mu model (PM-Mu) (Mu et al., 2011) as well as the Global

Land Evaporation Amsterdam Methodology (GLEAM) (Mi-

ralles et al., 2011a). These models satisfy a number of criteria

that were considered important for global model selection,

including reliance on a minimum number of forcing vari-

ables, capacity to use remote-sensing-based observations, as

well as previous application at either the regional or global

scale.

2 Data and methodology

2.1 Data

For this analysis, model simulations cover the period from

1997 to 2007 and are performed at a 3-hourly temporal reso-

lution. To examine model response and inter-product vari-

ability, a parallel tower- and grid-based analysis was per-

formed. Data for the tower-based analysis are derived from

a set of 45 eddy-covariance towers (see Table A1), while

the gridded data are extracted from a compilation of avail-

able globally distributed satellite, meteorological and land

surface characteristics products. Compared to the 0.5 degree

and 3-hourly gridded data, the use of tower-based forcing is

expected to minimise issues related to footprint uncertain-

ties when evaluating simulations against the observed eddy-

covariance-based flux data. The primary purpose of the grid-

based analysis is to better understand the effects of large-

scale forcing data on the accuracy of global retrievals, rela-

tive to the tower-based evaluations.

2.1.1 Description of tower-based forcing data

Data for the tower-based analyses are derived from forty-five

eddy-covariance towers selected from within the FLUXNET

database (Baldocchi et al., 2001). Table A1 lists the key at-

tributes of the selected towers and Fig. A1 describes the vary-

ing temporal lengths of the tower records used in this study.

The requirement that towers only be used if they are able to

provide the input data required by all models (see Table 1)

was a strong limiting criterion that significantly reduced the

number of available study sites. In particular, the availability

www.geosci-model-dev.net/9/283/2016/ Geosci. Model Dev., 9, 283–305, 2016
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Table 1. Summary of data sources for tower-based and grid-based analysis and their spatial and temporal resolutions.

Variable Tower-based Grid-based Model

Air temperature Tower data aggregated to 3-hourly LandFlux data at 0.5◦ and 3-hourly All models

Humidity Tower-based relative humidity

converted to specific humidity and

aggregated to 3-hourly

Specific humidity from LandFlux data

at 0.5◦ and 3-hourly

All except GLEAM

Pressure Calculated as a function of ground

elevation

LandFlux data at 0.5◦ and 3-hourly All models

Net radiation Tower data aggregated to 3-hourly LandFlux data from SRB v3 at 1◦ and

3-hourly

All models

Ground heat flux Tower data aggregated to 3-hourly Calculated from net radiation and

fractional vegetation cover data, 0.5◦

and 3-hourly

All models

Land surface

temperature

Calculated from tower-based longwave

upward radiation and aggregated to

3-hourly

LandFlux data at 0.5◦ and 3-hourly SEBS only

Wind speed Tower data aggregated to 3-hourly LandFlux data at 0.5◦ and 3-hourly SEBS only

Canopy height Tower metadata Simard et al. (2011) product and Eq. (1) SEBS only

NDVI GIMMS NDVI at 8 km and bi-monthly GIMMS NDVI at 0.5◦ and bi-monthly All except GLEAM

Leaf area index Calculated from NDVI LandFlux data at 0.5◦ and monthly SEBS and PM-Mu

Fractional vegetation

cover

Calculated from NDVI Calculated from NDVI All except GLEAM

Precipitation Tower data aggregated to 3-hourly LandFlux data at 0.5◦ and 3-hourly GLEAM only

Soil properties IGBP-DIS at 5 arcmin IGBP-DIS data aggregated to 0.5◦ GLEAM only

Soil moisture CCI-WACMOS data at 0.25◦ and daily Same as tower-based GLEAM only

Soil depth GlobSnow (daily and 25 km) Same as tower-based GLEAM only

Vegetation optical

depth

From Liu et al. (2011b) at 0.25◦ and

daily

Same as tower-based GLEAM only

Snow water equivalent GlobSnow and NSIDC at 0.25◦ and

daily

Same as tower-based GLEAM only

Lightning frequency Monthly climatology at 0.5◦ Same as tower-based GLEAM only

Cover fractions MOD44B data at 250 m MOD44B data at 0.5◦ GLEAM only

of land surface temperature data, which is required for SEBS,

drastically constrained the choice of towers. However, ensur-

ing data consistency within the towers used for simulation

and assessment was an important component of this work, as

it removes the impact of tower bias in subsequent model as-

sessment. Even with this reduced number, the selected tow-

ers represent a considerable spatial spread encompassing a

variety of biome types and climate zones (see Fig. 1).

In terms of forcing data requirements, tower-based vari-

ables that were used for model simulations include air tem-

perature, relative humidity, wind speed, net radiation, ground

heat flux and precipitation. A summary of the forcing data

requirements for each model is provided in Table 1. Land

surface emissivity, leaf area index and fractional vegetation

cover were estimated from normalized difference vegetation

index (NDVI) data obtained from the Global Inventory Moni-

toring and Modelling Study (GIMMS) data set (Tucker et al.,

2005), at 8 km spatial and bi-monthly temporal resolutions.

Here, the emissivity was calculated using the approach of So-

brino et al. (2004), leaf area index was estimated following

Fisher et al. (2008) and the fractional vegetation cover was

estimated using the technique described in Jiménez-Muñoz

et al. (2009). Land surface temperature was calculated using

tower-observed longwave upward radiation and by invert-
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Figure 1. Location of the selected towers and their distributions for various biomes.

ing the Stefan–Boltzmann equation (Brutsaert, 2005). Atmo-

spheric pressure data, which are absent from many towers,

were calculated based on ground elevation of tower locations

using an equation presented in Bos et al. (2008). Canopy

height (hc), which is needed for the SEBS model, was ob-

tained from tower metadata and was assumed constant during

the simulation period. Although hc varies over many vegeta-

tion types, accounting for its within- and inter-annual vari-

ability is usually not possible, as observed data of hc vari-

ations are rarely recorded. Tower data were aggregated (i.e.

summed for precipitation and averaged for other input vari-

ables) from their native resolution of half-hourly or hourly

to 3-hourly, to match the temporal resolution of the gridded

data.

2.1.2 Description of grid-based forcing data (LandFlux

version 0 forcing data set)

Grid-based data were developed by Princeton University for

the LandFlux version 0 (V-0) data set. The variables in the

V-0 include air temperature, land surface temperature, wind

speed, atmospheric pressure, specific humidity, precipita-

tion, net radiation, NDVI and leaf area index. Net radia-

tion data derive from the GEWEX Surface Radiation Bud-

get (SRB) version 3 (Stackhouse et al., 2011), while land

surface temperature is determined by employing a Bayesian

post-processing procedure that merges High-Resolution In-

frared Radiation Sounder (HIRS) retrievals with the land sur-

face temperature data from the National Centers for Environ-

ment Prediction (NCEP) Climate Forecast System Reanal-

ysis (CFSR) (Saha et al., 2010), as described in Coccia et

al. (2015). Precipitation data are also from the NCEP CFSR

product and have been bias-corrected to the Global Precip-

itation Climatology Project (GPCP) V2.2 data set (Adler et

al., 2003). Likewise, atmospheric pressure, specific humidity

and wind speed data were extracted from the CFSR reanal-

ysis data. For vegetation-based parameters, NDVI data were

prepared by aggregating 8 km resolution GIMMS NDVI data

to 0.5◦ resolution, while leaf area index data were developed

by Zhu et al. (2013) through fitting GIMMS NDVI data to the

Moderate Resolution Imaging Spectroradiometer (MODIS)

MOD15A2 NDVI product, using a neural network technique.

The majority of variables in the global LandFlux V-0 forc-

ing data set are at 0.5◦ spatial and 3-hourly temporal resolu-

tion. Exceptions include the net radiation (1◦ and 3-hourly),

NDVI (0.5◦ and bi-monthly) and leaf area index (0.5◦ and

monthly). For net radiation, the 1◦ data were linearly inter-

polated to a 0.5◦ resolution. The bi-monthly NDVI data were

assumed constant for all 3-hourly time steps during each 15-

day interval, while the leaf area index data were assumed

constant during each month. The canopy height over shrub-

land and forest biomes was assumed fixed and was estimated

using a static canopy height product developed by Simard et

al. (2011). For grassland and cropland biomes, where the dy-

namics of canopy height can be considerable, canopy height

was calculated using Eq. (1), derived from Chen et al. (2012):

hc =h
min
c +

hmax
c −hmin

c

NDVImax−NDVImin

× (NDVI−NDVImin) , (1)

where hmin
c and hmax

c are the minimum and maximum canopy

height and were obtained from the static vegetation table

of the North American Data Assimilation System (NLDAS)

(available from http://ldas.gsfc.nasa.gov/nldas/web/web.veg.

table.html). NDVImin and NDVImax are the minimum and

maximum NDVI, respectively, and were calculated on a

pixel-wise basis for each calendar year. The JPL static veg-

etation height was aggregated linearly from 1 km to 0.5◦.

Likewise, the NDVI derived canopy height was calculated

at 8 km resolution and then aggregated to 0.5◦. Similar to

the tower-based data, the methodology of Jiménez-Muñoz

www.geosci-model-dev.net/9/283/2016/ Geosci. Model Dev., 9, 283–305, 2016
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et al. (2009) was used for the gridded forcing to estimate

the fractional vegetation cover data from NDVI data. The

ground heat flux at the grid-scale was calculated as a fraction

of net radiation using fractional vegetation cover, following

Su (2002).

2.1.3 Model-specific forcing data and data sources

In addition to the data described above and shown in Ta-

ble 1, both GLEAM and SEBS have some model-specific

forcing data requirements. For SEBS, information on land

surface temperature, wind-speed and canopy height are re-

quired. At the tower scale, these data are provided by avail-

able meteorological forcing or metadata descriptions in the

case of canopy height. At the grid scale they are provided by

a combination of the LandFlux V-O data set and an adapted

JPL static vegetation height, as described in Sect. 2.1.2.

GLEAM-based simulations require information on soil prop-

erties, vegetation optical depth (VOD), satellite soil mois-

ture, snow water equivalent, lightning frequency and vege-

tation cover fraction. Soil properties data for GLEAM in-

clude field capacity, critical soil moisture and wilting point

soil moisture thresholds. Data for these were obtained from

the Global Gridded Surfaces of Selected Soil Characteris-

tics data set of the International Geosphere–Biosphere Pro-

grammes Data and Information System (IGBP-DIS), avail-

able from Oak Ridge National Laboratory Distributed Ac-

tive Archive Center (http://www.daac.ornl.gov). Soil prop-

erties data were used in their native 5 arcmin resolution for

tower-based analysis, but were aggregated to 0.5◦ for grid-

based assessment. Vegetation optical depth data were from

Liu et al. (2011b) using a merged product from multiple

microwave-based satellite data. The 0.25◦ spatial and daily

temporal resolutions VOD data were gap filled as described

by Miralles et al. (2011a). Soil moisture data assimilated in

GLEAM comes from ESA’s Climate Change Initiative (CCI)

WACMOS data set (Liu et al., 2012) produced from both ac-

tive and passive satellite microwave data at 0.25◦ and daily

resolution. Snow water equivalent data are from the Glob-

Snow product version 1.0 (Luojus et al., 2010); as GlobSnow

covers the Northern Hemisphere only, Global Monthly Snow

Water Equivalent Climatology data from the National Snow

and Ice Data Center (NSIDC) (Armstrong et al., 2005) are

used for the BW-Ma1 tower (see Table A1) located in the

Southern Hemisphere. Both GlobSnow data and the NSIDC

product are at approximately 0.25◦ spatial and daily tempo-

ral resolutions. Lightning frequency data are based on the

Combined Global Lightning Flash Rate Density monthly cli-

matology at 0.5◦ (Mach et al., 2007) and it is used to calcu-

late a climatology of rainfall rates (Miralles et al., 2010). Fi-

nally, vegetation cover fractions are derived from the MODIS

MOD44B product (Hansen et al., 2005). The MODIS contin-

uous cover factions describe every pixel as a combination of

its fractions of water, tall canopy, short vegetation and bare

soil. The temporal average of fractions is used here for the

MODIS period, providing only a static cover fraction for the

GLEAM simulations. The MOD44B product is available at

250 m and 0.25◦ resolution. For tower-based analysis, cover

fractions are at 250 m resolution, but for grid-based analysis

the 0.25◦ MOD44B product was aggregated to 0.5◦.

Table 1 summarises the different sources and spatio-

temporal scales of the data that were used for both the tower-

and grid-based flux simulations. As noted earlier, the tempo-

ral analysis encompasses the period 1997–2007, although as

defined in Fig. A1, the individual tower records do not nec-

essarily provide uninterrupted observations during this time

range.

2.1.4 Definition of selected biome type and climate

zones

The specific biomes examined in this work include wet-

land (WET), grassland (GRA), cropland (CRO), shrub-

land (SHR), evergreen needleleaf forest (ENF), evergreen

broadleaf forest (EBF) and deciduous broadleaf forest

(DBF). Biome type was specified in FLUXNET metadata

records for each of the individual tower sites and follows

the International Geosphere–Biosphere Programme (IGBP)

classification. For simplicity, the shrubland biome is com-

prised of closed shrubland, woody savannah and mixed for-

est biomes. The number of towers for each biome type

varies, with fourteen for evergreen needleleaf forest, ten for

grassland, seven for cropland, seven for deciduous broadleaf

forest, four for shrubland, two for wetland and only one

for evergreen broadleaf forest (see Table A1). The climate

zones include boreal (BOR), sub-tropical (subTRO), tem-

perate (TEMP), temperate-continental (TempCONT) and dry

(DRY) for arid and semi arid regions. These zones were pre-

scribed from the tower-specific metadata, which were in turn

derived from Rubel and Kottek (2010), based on a Köppen-

Geiger climate classification. As with biome type, the towers

are not evenly distributed across climate zones, with fifteen

for temperate, eleven for sub-tropical, eight for temperate-

continental, five for boreal and six for dry regions (see Ta-

ble A1).

2.2 LandFlux model descriptions

Following are brief descriptions of the models employed in

this analysis. For a more comprehensive explanation of the

implementation of these different schemes, the reader is re-

ferred to the principal model references as well as the recent

contributions of Ershadi et al. (2014, 2015).

2.2.1 SEBS

SEBS is a widely employed process-based model used in the

estimation of evaporation. The model uses a variety of land

surface and atmospheric variables and parameters for sim-

ulating the transfer of heat and water vapour from the land

surface to the atmosphere. To do so, the model first esti-
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mates the representative roughness of the land surface and

then uses roughness parameters, temperature gradient and

wind speed data to estimate sensible heat flux via a set of

flux-gradient equations describing the transfer of heat from

the land surface to the atmosphere. Depending on the at-

mospheric boundary layer height, the model uses either the

Monin–Obukhov similarity theory or the bulk atmospheric

similarity theory equations (Brutsaert, 2005). The model es-

timates the sensible heat flux of hypothetically wet and dry

conditions and uses these extreme-cases to calculate the

evaporative fraction. Evaporation is then calculated as a frac-

tion of the available energy. The model requires accurate val-

ues of net radiation, land surface temperature, air tempera-

ture, humidity, wind speed and vegetation phenology to cal-

culate surface fluxes. SEBS relaxes the need for parameter-

isation of the surface resistance, but is sensitive to aerody-

namic resistance parameterisation (Ershadi et al., 2013). Fur-

ther details on SEBS and its model formulation can be found

in Su (2002).

2.2.2 PT-JPL

The PT-JPL model of evaporation uses a minimum of meteo-

rological and remote sensing data and has been employed in a

number of studies to estimate regional- and global-scale flux

responses (Fisher et al., 2008; Sahoo et al., 2011; Vinukollu

et al., 2011b, a; Badgley et al., 2015). A key characteristic

of the model is the use of bio-physiological properties of

the land surface to reduce Priestley–Taylor potential evap-

oration to actual values. The PT-JPL is a three-source model

in which the total evaporation is partitioned into soil evap-

oration (λEs), canopy transpiration (λEt), and wet canopy

evaporation (λEi), i.e. λE = λEs+ λEt+ λEi . The model

first partitions the total net radiation to soil and vegetation

components and calculates potential evaporation for soil, for

canopy and for the wet canopy. The model then determines a

set of constraint multipliers to represent the impacts of green

canopy fraction, relative wetness of the canopy, air temper-

ature, plant water stress and soil water stress on the evap-

orative process. The model uses the constraint multipliers

to reduce the potential evaporation to actual values for each

component of the system. PT-JPL does not calibrate or tune

parameter values and does not use wind speed data or pa-

rameterisations of the aerodynamic and surface resistances.

However, the model does require accurate estimates of opti-

mum temperature (Topt) (Potter et al., 1993) for canopy tran-

spiration. The optimum temperature is the air temperature at

the time of peak canopy activity, when the highest values of

absorbed photosynthetically active radiation and minimum

values of vapour pressure deficit occur. Further details of the

PT-JPL model can be found in Fisher et al. (2008).

2.2.3 PM-Mu

The PM-Mu was expanded from a two-source Penman–

Monteith implementation (Mu et al., 2007) to a three-source

version (Mu et al., 2011), which forms the basis behind the

estimation of global evaporation in the MOD16 product (Mu

et al., 2013) (NB the PM-Mu nomenclature used herein re-

flects an identical description used in Michel et al. (2015) and

Miralles et al. (2015), where it is referred to as PM-MOD).

Evaporation in the PM-Mu model is the sum of soil evapora-

tion, canopy transpiration and evaporation of the intercepted

water in the canopy, i.e. (λE = λEs+ λEt+ λEi). Estima-

tion of evaporation for interception and transpiration com-

ponents is based on the Penman–Monteith equation (Mon-

teith, 1965). Actual soil evaporation is calculated using po-

tential soil evaporation and a soil moisture constraint func-

tion from the Fisher et al. (2008) model. This function is

based on the complementary hypothesis (Bouchet, 1963),

which defines land–atmosphere interactions from air vapour

pressure deficit and relative humidity. Evaporation compo-

nents are weighted based on the fractional vegetation cover,

relative surface wetness and available energy. Parameterisa-

tion of aerodynamic and surface resistances for each source

is based on extending biome-specific conductance parame-

ters from the stomata to the canopy scale, using vegetation

phenology and meteorological data. In contrast to the ma-

jority of Penman–Monteith type models, the PM-Mu does

not require wind speed and soil moisture data for parame-

terisation of resistances. However, global application of the

model requires consideration of the fact that resistance pa-

rameters were calibrated against data from a set of eddy-

covariance towers. One issue that may influence model simu-

lations is that this parameterisation approach was developed

at the daily scale. However, both the present and also a re-

cent related study (Miralles et al. 2015) suggest no obvious

impact for sub-daily application. Further details on PM-Mu

can be found in Mu et al. (2011, 2013).

2.2.4 GLEAM

GLEAM (Miralles et al., 2011a) has been used not only in

estimating global evaporation (Miralles et al., 2011b) but

also in detection and evaluation of heatwaves (Miralles et

al., 2014a), climate variability (Miralles et al., 2014b) and

land–atmospheric feedbacks (Guillod et al., 2015). Designed

as a satellite data-based model, GLEAM first estimates in-

terception loss using the analytical method of Gash (1979)

and then applies the Priestley–Taylor equation to calculate

potential evaporation for soil and vegetation. Like PT-JPL,

the model constrains the potential evaporation values to ac-

tual values by applying a stress factor, although GLEAM is

based on different assumptions and encompasses both mois-

ture availability in a multi-layered soil system and vegeta-

tion water content inferred from vegetation optical depth data

(Liu et al., 2011b). In contrast to SEBS, PT-JPL and PM-

www.geosci-model-dev.net/9/283/2016/ Geosci. Model Dev., 9, 283–305, 2016



290 M. F. McCabe et al.: The GEWEX LandFlux project

Mu, the GLEAM model is equipped with routines to quantify

sublimation of snow-covered regions, to estimate open-water

evaporation and to assimilate remote sensing soil moisture

data. Routine application of GLEAM is usually performed in

time-series mode, in which the model tracks the changes of

soil moisture state across time steps. Here, to allow for the

application of the model at the tower-scale, gaps in the tower

data were filled by establishing correlation between the vari-

ables in tower- and grid-based data. Simulated evaporation

values were filtered from the analysis for these gap-filled pe-

riods. Further details on GLEAM can be found in Miralles et

al. (2011a, b).

2.3 Model simulation and analysis

The four selected models were forced with both tower- and

grid-based data. The results were then filtered for daytime-

only periods, defined as when the shortwave downward ra-

diation exceeds 20 W m−2, to avoid issues associated with

negative net radiation and night-time condensation. The data

were also filtered for rain events, for negative sensible and la-

tent heat flux observations, for low quality or gap-filled tower

records, for frozen land surfaces and for times in which air

temperature was less than or equal to 0 ◦C. The performance

of the models was evaluated for individual towers, for the

collection of data from all towers, for towers classified across

biome types and for towers classified across climate zones.

To evaluate the skill of the models, we used traditional

scatter plots and common statistical metrics including the

coefficient of determination (R2), slope (m) and y intercept

(b) of the linear regression, the root mean square difference

(RMSD), relative error [RE=RMSD /mean(λEobs)] and the

Nash–Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970).

In developing these performance metrics, simulated evapora-

tion was compared with tower-observed evaporation (λEobs)

that were corrected for non-closure using the energy residual

technique, as described in Ershadi et al. (2014). Scatter plots

of matching percentiles (referred to hereafter as percentile

plots) of observed evaporation vs. simulated values from the

1st to 99th percentile increment were also used (Sect. 3.1).

The 25th percentile (Q25), median (Q50) and 75th percentile

(Q75) were used for further model assessment. To estab-

lish the response of the models to water availability at in-

dividual tower sites, we calculated an aridity index as AI=

P/Ep, with P the annual precipitation (mm yr−1) and Ep the

annual potential evaporation (mm yr−1), calculated using a

Priestley–Taylor equation and assuming an alpha-coefficient

of 1.26. LandFlux V-0 data (Sect. 2.1.2) at 3-hourly resolu-

tion were used to calculate aridity index values and an aver-

age value was calculated to represent the state of water avail-

ability at specific tower locations.

3 Results

3.1 Relative performance of the models when using

tower-based and gridded data

Figures 2 and 3 show scatter plots, percentile plots and

relevant statistical metrics of the modelled evaporation for

all of the available 3-hourly data records from across

the 45 towers (representing 115 153 records in total). For

the tower-based analysis (see Fig. 2), PT-JPL presents

the best overall performance with lower model spread

and an RMSD= 61 W m−2, RE= 0.41, R2
= 0.71 and an

NSE= 0.65. The model slightly underestimates evapora-

tion, with a slope of linear regression equal to 0.91 and

with the majority of the percentile plot (up to Q75) lo-

cated just under the 1 : 1 line. When considering results

across all towers, GLEAM presents comparable statisti-

cal performance to PT-JPL, with an RMSD= 64 W.m−2,

RE= 0.43 and an NSE= 0.62. GLEAM tends to slightly

underestimate evaporation, with the slope of linear regres-

sion equal to 0.84 and with the percentile plot being lo-

cated under the 1 : 1 line. SEBS generally overestimates

evaporation and has the lowest overall performance, with

an RMSD= 101 W m−2, RE= 0.68 and NSE= 0.24, even

though it has one of the highest R2 values at 0.72. For PM-

Mu, the model tends to underestimates evaporation, result-

ing in an RMSD= 78 W m−2, RE= 0.52 and an NSE= 0.45.

Overall, the PT-JPL and GLEAM seem to present as more ro-

bust candidate models for estimation of evaporation, at least

in terms of their statistical response at the tower scale. All

models show a large spread around the fitted linear regres-

sion line. While the summary statistics are useful metrics of

performance, the inter-tower variability of the models is an

important element of this work and will be discussed further

in the following sections.

The effect of using globally gridded forcing data on the

evaporation models is presented in Fig. 3. Apart from pro-

viding a direct evaluation on the accuracy of the global Land-

Flux product, assessing flux response to a change in forcing

aids in diagnosing the model sensitivity to data uncertainties

(which are inherent in any data product). Likewise, an indi-

rect assessment of the issue of footprint mismatch between

the gridded data (0.5◦) and the eddy-covariance tower (hun-

dreds of metres) can also be inferred. Figure 3 clearly shows

that use of the grid-based data reduces the performance of all

models relative to the tower-based runs, with all statistics de-

grading with a change in forcing resolution. SEBS displayed

the largest sensitivity to forcing data, with a 0.4 decrease in

NSE and a 28 W m−2 increase in RMSD. The sensitivity of

PT-JPL and GLEAM to the use of gridded data was lower,

with both showing an approximately 0.3 decrease in NSE

and around 22 W m−2 increase in RMSD when assessing the

grid-based analysis. Overall, PM-Mu shows the lowest sensi-

tivity to forcing, with a 0.26 decrease in NSE and 18 W m−2
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Figure 2. Scatter plots of observed vs. simulated latent heat flux for

tower-based data. Colors show the frequency of values from high

(red) to low (yellow). The thick black line represents the linear re-

gression, while the thin line is the 1 : 1 line. The series of small

circles show the percentile increments of data from the 1st to 99th,

with large circles denoting the 25th, 50th and 75th percentiles. The

statistics shown on each figure provide coefficient of determination

(R2), slope (m), y intercept (b), number of data records (n), the

root-mean-squared difference (RMSD), relative error (RE) and the

Nash–Sutcliffe efficiency (NSE).

increase in RMSD, albeit presenting the lowest correlation

and slope of linear regression for all model responses.

Overall, these results confirm that all models display a rel-

atively high sensitivity to changes in the type and quality of

input forcing data. While gridded forcing data are expected

to have a mismatch with the tower-based forcing due to their

larger pixel (and footprint) sizes, this spatial mismatch will

impact all of the applied models, albeit to a lesser or greater

extent, depending on forcing data requirements. Although

spatial scale no doubt plays a major role in decreasing model

efficiencies at grid scales, a key reason for the differences in

tower- vs. grid-based results relates to internal inconsisten-

cies within the gridded forcing data. For instance, SEBS is

known to be particularly sensitive to the temperature gradient

between the land surface and the atmosphere (van der Kwast

et al., 2009; Ershadi et al., 2013). While the temperature gra-

dient at the tower scale is more reliable due to application of

the tower-based sensors for air temperature and land surface

temperature, obtaining such consistency is harder when dif-

ferent sources of forcing data are employed (see Sect. 2.1).

Not surprisingly, results also indicate that those models that

use fewer inputs show lower sensitivity to changes in the

forcing. As such, any inconsistency between the tower and

Figure 3. Scatter plots of observed vs. simulated evaporation for

grid-based data. Colors show the frequency of values from high

(red) to low (yellow). The thick black line is the linear regression

and the thin line is the 1 : 1 line. The series of small circles show the

percentile increments of data from the 1st to 99th, with large circles

denoting the 25th, 50th and 75th percentiles. The statistics shown on

the graphs are coefficient of determination (R2), slope (m), y inter-

cept (b), number of data records (n), the root mean squared differ-

ence (RMSD), relative error (RE) and the Nash–Sutcliffe efficiency

(NSE).

gridded data is likely to have less influence on the PT-JPL,

GLEAM and PM-Mu models than it will on SEBS, which

in addition to vegetation height, requires both land surface

temperature and wind speed data: two variables with con-

siderable spatial variability. Disentangling the varying influ-

ence of model structural and forcing data uncertainty requires

focused attention and is examined further in the Discussion

section.

The large spread of data in the scatter plots indicates that

there is considerable variability in the performance of the

models at individual towers, irrespective of whether tower

or gridded data are used. Of course, it may also be indicative

of systematic biases in the in situ data, which vary from one

tower to another and subsequently impact on model spread;

however, this is non-trivial to determine. To investigate the

nature of this variability, we extend the analysis by devel-

oping time series of R2, RE and NSE at 3-hourly resolution

for individual tower locations, as shown in Fig. 4. To exam-

ine performance as a function of hydrological condition, the

towers are arranged by degree of increasing aridity, as deter-

mined by calculation of an aridity index (see Sect. 2.3), with

left-to-right representing the transition from wet-to-dry and

www.geosci-model-dev.net/9/283/2016/ Geosci. Model Dev., 9, 283–305, 2016
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Figure 4. Comparison of the performance skill of the models in

reproducing evaporation for the tower-based analyses. R2 is the

coefficient of determination, RE is relative error (lower is better)

and NSE is the Nash–Sutcliffe efficiency (higher is better). Towers

are arranged from left to right based on an aridity index (secondary

y axis).

describing an aridity index varying between approximately 2

and 0.

From Fig. 4 it can be observed that there is a general down-

ward trend in both R2 and NSE as aridity increases, with a

slight upward trend reflected in RE. In terms of R2, most

of the models (except for PM-Mu) show some consistency

in performance until an aridity index of around 0.7, wherein

models start to diverge. Similar agreement is seen in the rel-

ative error plot, although the outlier here is SEBS, which

shows variable performance unrelated to aridity changes. Ex-

amining the Nash–Sutcliffe efficiency allows for a clearer

evaluation of model response to be obtained. For this met-

ric, PT-JPL and GLEAM display relatively good correspon-

dence for most of the towers, but start to diverge more regu-

larly for aridity indices below 0.8. Overall, PT-JPL presents a

marginally better response than GLEAM, with higher values

of NSE and R2 and lowest values of RE produced across the

majority of towers. Similar results are expressed in Fig. A2,

which presents the same tower-based inter-comparison as in

Fig. 4, but for the grid-scale model simulations.

From Fig. 2 it was observed that SEBS presented the low-

est values of NSE and highest values of RE, while PM-Mu

had the lowest values of R2. Highlighting the importance

of examining a range of statistical metrics, the R2 values

for SEBS are actually comparable to those of PT-JPL and

GLEAM, or even higher for a majority of towers that have

an aridity index less than 0.7. Inspection of individual tower-

based scatter plots for each of the models (not shown) illus-

trated that while the SEBS evaporation has a strong linear

relationship with observed values for a majority of towers,

the linear regression line exhibits a large slope, indicating an

overestimation in SEBS predictions. Those towers that ex-

hibit drops in NSE (and rise in RE) for the SEBS model (e.g.

DE-Tha, NL-Loo, US-Wrc, FR-Pue; see Table A1) are lo-

cated mainly in shrubland and forest biomes, suggesting a

dependency of SEBS model performance that is tied to land

surface vegetation characteristics. Although statistical vari-

ations are evident in all models, the greater response vari-

ability in SEBS is likely due to problems in simulating heat

transfer within the roughness sub-layer (RSL), which often

forms over tall and heterogeneous land surfaces (Harman,

2012). We explore the issue of skill dependency of certain

models to biome type and climate zone in Sect. 3.2 and 3.3.

As noted, Fig. 4 shows a general decrease in the predictive

skill in all models where towers have an aridity index less

than 0.7, but particularly so for PM-Mu and SEBS. These

reductions may in part be due to data uncertainties in tower

observations that originate from the advection of dry air into

the tower footprint, or to a reduced capacity of the models to

reproduce the evaporative response when evaporation repre-

sents a small fraction of the total available energy. Two tow-

ers at which all models display poor performance are IT-Noe

and IL-Yat (see Fig. 1). It seems likely that IT-Noe is in-

fluenced by strong advection of moist air from the Mediter-

ranean Sea, while IL-Yat is influenced by advection of hot

and dry air from surrounding desert regions. None of the

models in this study are able to specifically account for ad-

vection and are thus prone to misrepresenting the observed

evaporative response.

3.2 Performance of the models across biomes

The variability in model performance across the tower sites

observed in Figs. 4 and A2, indicates that a biome-specific

assessment could be useful to determine whether the perfor-

mance of the models is also correlated to the underlying land

cover, in addition to any aridity influence. Figure 5 presents

the R2, RE and NSE for each of the models for the seven

different biome classes. The analysis was conducted using

the higher quality tower-based simulations for all available

3-hourly data. One immediate highlight from Fig. 5 is the

relatively poor performance of all models over shrubland

sites, where low values of NSE (i.e. NSE≤ 0.05) and re-

duced R2 can be observed. Ershadi et al. (2014) observed a

similarly poor response over shrublands in a separate tower-

based analysis that employed some of the same models ex-

amined here. They attributed the result to difficulties in the

parameterisation of the models over such landscapes due to

the strong heterogeneities present in these environments, as

well as inherent water limitations. For instance, the capac-

ity of the GIMMS NDVI data with 8 km spatial resolution is

clearly insufficient in effectively parameterising the rough-

ness for SEBS, resistances for PM-Mu and constraint func-

tions for the PT-JPL.

Excluding shrublands from the analysis, the PT-JPL is one

of the best performing models across the remaining biomes,
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Figure 5. Coefficient of determination (R2), relative error (RE) and
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ber of towers shown on the secondary y axis of the R2 plot in red.

NSE for the shrubland response of SEBS is printed.

having the highest values of NSE and R2 and lowest rela-

tive errors. Consistency in the performance of PT-JPL across

biome types has been reported in earlier studies (Vinukollu

et al., 2011a; Ershadi et al., 2014) and was variously ascribed

to the formulation of its constraint functions (see Sect. 2.2.2)

and the minimal forcing data requirements, which reduce its

sensitivity to uncertainties in input data. GLEAM closely fol-

lows PT-JPL for evergreen needleleaf forest and grassland

biomes, but shows marginally lower NSE values for other

biomes. Figure 5 also indicates that while SEBS has rela-

tively high values of R2 over the majority of biome types, it

fails to provide sufficient predictive skill for the estimation of

evaporation over shrublands and forest biomes. These biome

types are characterised by tall and heterogeneous canopies,

within which the roughness sub-layer forms. The reduced

capacity of the SEBS flux gradient functions in simulating

heat transfer within the roughness sub-layer has been high-

lighted previously (Weligepolage et al., 2012; Ershadi et al.,

2014). Although performing poorly in shrubland and forest

biomes, the SEBS model exhibits a comparatively good per-

formance across wetlands, grasslands and croplands, where

shorter canopies dominate. PM-Mu presents the lowest val-

ues of R2 across all biomes, although the model presents rea-

sonable NSE values over cropland (0.64) and broadleaf for-

est (> 0.54) biomes. Improved performance of the PM-Mu

model over croplands has been observed in a recent study

(Ershadi et al., 2015), but the key reasons for low R2 values

of the model across other biomes is not immediately apparent

and requires further investigation.

Percentile plots of the 3-hourly tower-based results were

used to identify whether a model under- or over-estimates

evaporation across its distribution function. From Fig. 6 it

can be seen that SEBS clearly overestimates while PM-Mu

underestimates evaporation across all biome types, reflect-

ing those results presented in Fig. 2. The percentile plots for

SEBS are close to the 1 : 1 line for grassland and cropland

biomes that have short canopy height, confirming the obser-
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Figure 6. Percentile plots of observed (x axis) vs. estimated latent

heat flux (y axis) at 3-hourly resolution for the tower-based analysis

across the seven studied biomes. Percentiles encompass the 1st to

99th range in 1 percent increments, withQ25,Q50 andQ75 denoted

by large coloured circles.

vations made for Figs. 4 and 5. PT-JPL shows good model re-

production of observed values over grassland and deciduous

broadleaf forest biomes, with the percentile plots close to the

1 : 1 line. However, the model slightly underestimated evap-

oration for croplands and overestimated evaporation for wet-

lands, with the tails (percentiles greater than Q75) reflecting

greater divergence than the bulk of the distribution. The rate

of overestimation was higher for evergreen needleleaf forest,

evergreen broadleaf forest and for shrubland biomes. Fig-

ure 6 also shows that GLEAM presents strong performance

over grasslands, croplands and evergreen needleleaf forest

sites, underestimated evaporation across deciduous broadleaf

forest sites and tended to overestimate evaporation across

the remaining biomes (wetlands, shrublands and evergreen

broadleaf forests).

Overall, all models show a tendency towards reduced

performance when applied over forest biomes, but im-

proved performance over shorter canopies. These results

may be reflecting the fundamental physical basis behind

approaches such as the base Penman–Monteith (Penman,

1948), Priestley–Taylor (Priestley and Taylor, 1972) and

Monin–Obukhov flux gradient functions, which were devel-

oped for such surface types (Brutsaert, 1982), highlighting

the challenges inherent in global-scale application of such

models, especially over diverse land cover types.

To further evaluate the influence of biome type on evap-

oration estimation and to discriminate the role of individual

forcing variables in impacting model efficiencies, the NSE

and R2 values between tower- and grid-based data were cal-
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culated for the flux response, as well as for key forcing vari-

ables such as net radiation, land surface temperature, air tem-

perature, wind speed, specific humidity, fractional vegetation

cover and leaf area index. As can be seen in Fig. 7, agreement

between tower-based and grid-based net radiation data is rel-

atively high across all biomes, but especially so over forest

biomes (NSE≥ 0.67). Grid-based wind speed data have the

most variable agreement with tower data, with R2 and NSE

values generally lower than other selected variables across all

of the examined biomes. Air temperature shows good agree-

ment, with both high NSE values (NSE≥ 0.7) and high R2

values (R2
≥ 0.84). Specific humidity data are also well re-

produced (NSE≥ 0.72), as is land surface temperature with

an NSE≥ 0.80 for all biomes. In sharing a common GIMMS-

NDVI-based derivation, the agreement for fractional vege-

tation cover and leaf area index data is reasonable over the

majority of biomes, except over evergreen broadleaf forest,

where both the R2 and NSE are low.

The lower panel of Fig. 7 show R2 and NSE values for

both the tower- and grid-based simulations against eddy-

covariance observations for each of the models, discrimi-

nated by biome type. As can be seen, the performance of all

models is reduced across all biomes when grid-based forcing

data is used, a result reflected in all cases by relatively lower

NSE and R2 values. PM-Mu had the smallest and SEBS had

the largest decrease in performance over a majority of the

biomes, in accordance with the findings of Sect. 3.1. PT-JPL

and PM-Mu had a relatively constant decrease in NSE and

R2 for the grid-based simulations. Decreased modelling per-

formance was also maintained for GLEAM, except over the

single evergreen broadleaf forest tower, where a more sig-

nificant departure (relative to the other biome types), was

observed. SEBS showed a much larger variability in perfor-

mance reduction, with smaller variations due to forcing over

forest biomes and larger reductions over biomes with shorter

canopies. The significant decrease in NSE for SEBS over

grassland, cropland and to some extent the wetland biome,

cannot be immediately associated with NSE or R2 changes

in any of the forcing variables. It is interesting that the agree-

ment over grassland and cropland biomes between tower-

and grid-based variables is amongst the highest (especially

for wind speed, fractional vegetation cover and for leaf area

index data), yet the subsequent model performance is among

the worst. The use of global statistics to evaluate model re-

sponse makes discriminating the cause of this variability dif-

ficult. It is possible that the statistics are biased low due to

the influence of one or a few individual towers, by errors in

the forcing fields driving model parameterisations (i.e. vege-

tation height) or in response to model sensitivities to partic-

ular forcing variables. Either way, these results highlight the

difficulties in diagnosing the cause of performance response

and related sensitivity to forcing data variables in complex

process-based models, which often display a high degree of

interactions between the variables. Indeed, diagnosing the

forcing variables responsible for reducing the efficiency of
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Figure 7. The upper panel presents Nash–Sutcliffe efficiency (NSE;

x axis) and R2 (colour tone) between tower- and grid-based val-

ues for net radiation, land surface temperature, air temperature,

wind speed, specific humidity, fractional vegetation cover and leaf

area index, across the seven studied biome types. The lower panel

presents the NSE (x axis) and R2 of model simulated evaporation

against closure-corrected observed values. The number of towers

for each biome type used in the analysis are shown in red font on

the secondary (right) axis in each of the plots. Statistics for those

results beyond the range of the x axis are printed separately on the

plot.

particular models is not feasible with a simple correlation

analysis of the input data fields, but requires a separate and

focused sensitivity analysis.

3.3 Performance of the models over climate zones

Similar to the biome-wise analyses, an evaluation of the mod-

els was conducted across a number of distinct climate zones,

with R2, RE and NSE values for tower-based 3-hourly evap-

oration estimations shown in Fig. 8. Yet again, the results

highlight the importance of considering a range of evalua-

tion metrics, as the models display some variability relative

to the statistical measure being employed. Overall, both PT-

JPL and GLEAM maintain a consistently good performance

over the majority of climate zones, with PT-JPL expressing a

slightly improved response over all zones except temperate,

where GLEAM shows an improved simulation. In terms of

R2, PM-Mu presents the lowest values overall, while SEBS

exhibits high values over the majority of climate zones, sim-

ilar to the biome-based analysis. However, SEBS generally

fails to reproduce the observed evaporation response, with

high RE and low NSE. All models have their best per-

formance over the temperate-continental climate zone, with

high NSE andR2 and low RE, which was followed closely by
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Figure 8. Coefficient of determination (R2), relative error (RE) and

Nash–Sutcliffe efficiency (NSE) for model simulated results across

the five different climate zones (y axis). The zones are represented

by dryland (DRY), temperate continental (TempCONT), temper-

ate (TEMP), sub-tropical (subTRO) and boreal (BOR). Each point

represents the collection of all towers located within the selected

climate zone, with the number of towers shown on the secondary

y axis of the R2 panel in red.

the temperate climate zone. The lowest overall performance

for all models corresponded to the dry climate zone, again

reflecting the aridity-based results in Fig. 4. As discussed in

Sect. 3.1, data uncertainties due to the role of advection in

dry regions and difficulties in the accurate estimation when

confronted with low evaporative fractions are likely reasons

behind such performance reductions in dry regions.

Figure 9 displays the corresponding percentile plots of

model performance over the five different climate zones.

As can be seen, PT-JPL and GLEAM provide gener-

ally good performance over all climate zones, although

GLEAM slightly underestimates evaporation for temperate-

continental and boreal climate zones. SEBS overestimates

relative to tower-based evaporation across all biomes, while

PM-Mu generally underestimates, except over temperate and

temperate-continental climate zones, for which the percentile

plot of PM-Mu are relatively close to the 1 : 1 line.

Similar to Fig. 7, Fig. 10 outlines the model response dif-

ferentiated for the different climate zones when using grid-

based forcing data. As can be seen from the lower panel, the

simulation performance is reduced across all climate zones,

relative to the tower data. In particular, SEBS is significantly

impacted across the majority of climate zones, with both a

reduction in NSE and R2, except over boreal forests. One

possible reason for this smaller variation over boreal forests

could be due to lower surface-to-air temperature gradients

over forests, which contributes to smaller sensible heat fluxes

and consequently larger evaporative fraction values (in con-

trast to model performance over dry climates, where the tem-

perature gradient is large). Nevertheless, the relationship be-

tween uncertainty in individual variables and the reduction

of modelling performances is not able to be determined here.

Further analysis examining the sensitivity of individual mod-

els to their forcing is required.
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Figure 9. Percentile plots of observed (x axis) vs. estimated latent

heat flux (y axis) at 3-hourly resolution for tower-based analysis and

across the different climate zones. Percentiles encompass the 1st to

99th range in 1 percent increments. Q25, Q50 and Q75 are denoted

by large circles.
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Grid-based:	
NSE	=		-0.66		
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Figure 10. The upper panel shows Nash–Sutcliffe efficiency (NSE;

x axis) and R2 (colour tone) between tower-based and grid-based

values for net radiation, land surface temperature, air temperature,

wind speed, specific humidity, fractional vegetation cover and leaf

area index across the five different climate zones. The lower panel

shows NSE (x axis) and R2 of model simulated evaporation against

closure-corrected observed values across climate zones. The num-

ber of towers for each biome are shown in red font on the secondary

(right) axis of the plots. Statistics for the grid-based SEBS result

over dry climate zone are printed.
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4 Discussion

Understanding the role of model forcing in influencing simu-

lation results, as well as examining the impacts of biome type

and climate zone on flux response, are important elements in

the development of robust globally distributed evaporation

products. The focus of this study was on evaluating a set of

process-based models, to support the development of glob-

ally distributed and long-term observations of surface fluxes

as part of the GEWEX LandFlux project. Overall, the PT-

JPL and GLEAM models provided the most consistent per-

formance, while PM-Mu tended to underestimate and SEBS

overestimate evaporation relative to the 45 eddy-covariance

tower observations examined here. However, while statistical

analysis allows for a pseudo-ranking of model performance,

more detailed evaluation across towers, and biome and cli-

mate types highlighted the considerable within-model vari-

ability in performance. Results also demonstrated that chang-

ing the scale of input forcing data from tower- to grid-based

reduced the quality of model estimates in all cases, but espe-

cially for SEBS, where a sensitivity to surface-air tempera-

ture gradients plays a strong role. In the following, we exam-

ine these results and interpret any implications for large-scale

global applications.

With its relatively simple modelling structure, PT-JPL per-

formed consistently well relative to the other models that

have more complex structures and parameterisation config-

urations. One possible reason for this response may relate

to the constraint functions of PT-JPL serving a wide range

of hydro-meteorological conditions, encompassing energy-

limited (e.g. boreal climate) to water-limited (e.g. dry cli-

mate) conditions. The good performance of PT-JPL was also

observed in a recent multi-model evaluation study, with a

summary of the strengths and limitations of the model pre-

sented in Ershadi et al. (2014). GLEAM also performed well,

both at the tower and at the grid-scale (see Figs. 4 and A2).

Previous studies have shown that the model is sensitive to

the accuracy of precipitation data (Miralles et al., 2011b),

as this determines the partitioning of intercepted evapora-

tion in the model and the root-zone soil moisture. Unfortu-

nately, testing for such sensitivities was not possible here, as

both tower- and grid-based records were filtered for rainfall

events in post-processing steps, in response to the limitation

of eddy-covariance observations during such events.

In terms of the NSE, R2 and RE, PM-Mu followed PT-

JPL and GLEAM, with the model tending to underestimate

evaporation when applied to most of the tower- and grid-

based records. While reasons for this underestimation are

not immediately clear, a recent study examining the struc-

ture and parameterisation of Penman–Monteith type models

(Ershadi et al., 2015) showed that the PM-Mu, which has a

three-source structure, under-performed relative to a single-

source (Monteith, 1965) and a two-layer approach (Shuttle-

worth and Wallace, 1985) across all studied biome types ex-

cept croplands. An interesting aspect of Ershadi et al. (2015)

was that application of the canopy transpiration resistance

scheme of the PM-Mu in those simpler models improved

their prediction skills. As such, the reduced performance of

the PM-Mu predictions might relate to underlying structural

and parameterisation issues in the model. As the operational

model behind the generation of the current MOD16 global

evaporation product (Mu et al., 2013), further studies to di-

agnose the cause of these responses are required.

Regarding assessment against the tower-based eddy-

covariance observations, SEBS performed relatively poorly

in most statistical metrics when compared to the other mod-

els, as it overestimated evaporation across a majority of stud-

ied biomes and climate zones, except over grasslands and

cropland sites with short canopies (e.g. less than 3 m). In-

terestingly, even though generally over-predicting results, it

had one of the highest R2 values, indicating good correla-

tion with the eddy-covariance observations. Findings from

Ershadi et al. (2014) confirm the good performance of the

model over short canopies and its lack of performance over

shrublands and forests. In terms of performance against un-

derlying biome type, it was observed that any performance

reduction was observed mainly across shrublands and for-

est biomes, where the roughness sub-layer forms above the

canopy (Harman, 2012). Importantly, the flux-gradient func-

tions of the SEBS model are not parameterised to effectively

simulate the heat transfer process in the roughness sub-layer,

and hence the model fails to perform well (Weligepolage et

al., 2012). The reliance of SEBS on an accurate represen-

tation of the surface-air temperature gradient also limits the

effectiveness of the model for global application, demand-

ing improvements in characterizing the spatial and temporal

representativeness of such variables.

It is apparent from Sect. 3.2 and 3.3 that the application

of gridded data for modelling evaporation inevitably reduces

the predictive performance of all models, regardless of their

complexity in the evaporation process or their economy in

forcing data requirements. In fact, the footprint mismatch be-

tween the tower- and grid-based simulations is likely to in-

crease uncertainties in the forcing data and cause discrepan-

cies between the simulated and tower-based evaporation val-

ues. Importantly, comparing the models for their relative per-

formance (see Figs. 7 and 10) reveals that the performance

decrease for grid-based analysis was not equal amongst all

of the models. For instance, SEBS was observed to be more

sensitive to the use of gridded forcing data, most likely as

a result of inconsistencies in temperature gradient fields: an

aspect that has been noted previously (van der Kwast et al.,

2009; Ershadi et al., 2013). Although input uncertainty also

impacts the performance of PT-JPL, PM-Mu and GLEAM,

the NSE and R2 of gridded simulations for those models are

closer to their tower-based counterparts. Apart from indicat-

ing a robust model structure, the reduced impact seen in these

schemes may also be a consequence of avoiding the use of

forcing data such as land surface temperature and wind speed

data, which are known to be uncertain at both the grid and
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tower scale. Regardless of the culprit behind the observed

performance discrepancy between tower and grid-based sim-

ulations, it is clear that some models are better suited to

global application than others – at least given the quality of

currently available global forcing data sets.

Importantly, the results presented in Sect. 3.2 and 3.3

showed that evaluating tower or grid-based statistical re-

sponses alone is not enough to identify those forcing vari-

ables most impacting model performance. Diagnosing forc-

ing sensitivity is not trivial given non-linearities in the mod-

els and the high level of interaction within model variables

and parameters. Indeed, caution is warranted in any ap-

proaches seeking to evaluate evaporation models using grid-

ded data in isolation, as this is likely to yield unreliable per-

formance metrics of the models. It is important to perform a

parallel tower-based data assessment to increase confidence

in any single models performance (Su et al., 2005) in any

evaluation approach, particularly those occurring at global

scales.

Although the largest possible set of eddy-covariance tow-

ers and a common set of forcing data was used to evaluate

the different model simulations, there are still inevitable lim-

itations in the evaluations. Identifying such limitations is im-

portant not only for the current evaluations but also in guid-

ing future contributions. One such example relates to the

period of tower data used for evaluation in this study (see

Fig. A1), as the data record length varies amongst the tow-

ers and the data are not uniformly distributed across seasons.

Moreover, the towers are not evenly distributed across the

studied biomes and climate zones (see Fig. 1, Table A1), with

only one tower covering the entire evergreen broadleaf forest

biome and two towers covering the wetland biome. Further,

no towers were available for use in arctic and tropical climate

zones. Although the tropical climate zone, especially Ama-

zonian forests, is accounted as a critical component in stud-

ies of the global water and energy cycles (Chahine, 1992;

Wohl et al., 2012), relatively few towers in this zone pro-

vide land surface temperature and longwave upward radia-

tion data needed for the SEBS model. An additional limi-

tation is the coarse (8 km) spatial resolution of the GIMMS

NDVI data used in the models for the tower-based analysis,

as this resolution certainly does not correspond with the foot-

print of eddy-covariance sensors at any of the towers. De-

velopments towards improving the availability and access to

long-term high-resolution Landsat images (e.g. via Google

Earth Engine; https://earthengine.google.org) might be one

way to improve model forcing and evaluation exercises, es-

pecially with the development of high-resolution vegetation

products (Houborg et al. 2016).

While the accuracy of individual variables in the LandFlux

data set were enhanced by bias correction against indepen-

dent data sources (see Sect. 2.1), diagnosing the internal con-

sistency of the data fields (McCabe et al., 2008), especially

for air temperature, land surface temperature, wind speed and

humidity, is a concept that has not received much attention to

date and demands more considered investigations and anal-

ysis. Internal consistency is an extremely challenging objec-

tive, but is critically important for flux estimation, where so

many different forcing data are required. Essentially it de-

mands that all required model data are derived from a com-

mon set of forcing variables, rather than by the standard ap-

proach of compilation based on availability and accessibil-

ity. The most illustrative example would be in the develop-

ment of radiation data, derived here from NASA-GEWEX

SRB sources (Stackhouse et al., 2011). Calculation of radi-

ation components requires air temperature, surface tempera-

ture, land surface and vegetation features, as well as numer-

ous other elements. However, these underlying variables are

rarely if ever retained to provide a consistent overall forc-

ing data set (i.e. the meteorological variables used in pro-

ducing the SRB data are not subsequently used to drive the

models). Interdependencies in forcing affect many variables

in the estimation of evaporation, yet products are not devel-

oped with this simple consistency principle in mind. Apart

from introducing further biases and uncertainties into model

simulations, until such consistency is attained, discriminat-

ing between the impact of forcing vs. the model sensitivity

to that forcing will remain extremely challenging.

From one perspective, the performance of the evapora-

tion models examined here seems relatively poor, even when

they are forced with high-quality tower-based data. PT-JPL,

which was identified as one of the most consistent and best

performing models, still presented a relative error of 41 %,

with errors for GLEAM, PM-Mu and SEBS of 43, 52 and

72 %, respectively. However, it is important to recognise that

tower-based evaluation represents one of the strictest mea-

sure of model performance and comes with its own caveats.

One question that remains unanswered is whether it is even

appropriate to expect models run with large-scale gridded

forcing to replicate the small-scale response observed by

eddy-covariance towers. The alternative perspective, given

inherent uncertainties in forcing, observations and specifica-

tion of model parameters, is that these results are encourag-

ing. Broader-scale metrics such as hydrological consistency

(McCabe et al., 2008), catchment-based assessments or wa-

ter budget closure approaches would provide a better guide

(Sheffield et al., 2009) and indeed, such evaluations will need

to be performed. These questions highlight the difficulties in

not just producing global estimates, but perhaps more impor-

tantly, in evaluating their quality.

The observed variability of modelling performance across

the studied biomes and climate zones implies that caution is

required in advocating any single model for large-scale or

global application. These results are consistent with previous

findings undertaken across a smaller number of towers and

biome and climate types, that any one modelling approach is

incapable of accurately reflecting the range of flux responses

occurring across diverse landscapes (Ershadi et al., 2014,

2015). One possible solution to address this inherent model

limitation is to assemble a mosaicked product based on the
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predictive skill of the model(s) over particular biomes or cli-

mate zones. Another approach might be to develop an en-

semble product using a suitable multi-model blending tech-

nique, such as a Bayesian Model Averaging approach (Hoet-

ing et al., 1999; Yao et al., 2014). Either way, it is clear that

further multi-model assessments are required for progressing

global-scale flux characterisation and to ensure a robust and

representative product is developed.

5 Conclusions

It is something of a contradiction that the global-scale es-

timation of surface fluxes is both straightforward and ex-

tremely challenging at the same time. It is more straightfor-

ward than ever due to the availability of needed forcing data

from various sources, such as numerical weather prediction

or other operational products, as well as the increased de-

velopment of global satellite-based data sets. However, the

comparative ease with which products can be developed be-

lies the difficulties in actually developing robust and coherent

simulations. Uncertainties in the use of internally inconsis-

tent forcing data, the influence of untested model parameter-

isations over different land surface and climate types, viola-

tion of model assumptions in their graduation from the local

scale to global scale and the perennial question on how to

best evaluate model output all seek to confound global flux

efforts.

The evaluation of four process-based evaporation models

as part of the GEWEX LandFlux project undertaken here

over a range of biome types and climate zones, highlighted

the variable performance and verified the sentiment that no

single model is able to consistently outperform any other.

While individual model results at the tower scale allowed

for a relative performance ranking, the overall model errors

when considered globally were high. Of those models as-

sessed here and being considered as potential candidates for

a GEWEX LandFlux product, PT-JPL and GLEAM repre-

sent the most likely schemes for providing consistent sim-

ulation response over a range of biome and climate types.

In a challenge for the development of more accurate global

flux products, application of gridded data reduces the perfor-

mance of all models, even if the overall performance rank-

ing does not change between simulation runs. Such a re-

sponse has obvious implications when model simulations at

the continental and global scales are increasingly required in

many applications and where not only the forcing data have

large uncertainties, but also the underlying assumptions of

the models themselves are likely to be questioned. Further

investigations on the reasons for such variable performance

and ways to offset the inherent uncertainties in global forc-

ing are required. Additional research is also needed to im-

prove the structure and parameterisation of some of these

candidate models, to understand model sensitivities to forc-

ing (by conducting a thorough sensitivity analysis) and to de-

velop and implement an appropriate ensemble modelling and

merging technique that takes advantage of individual model

performance over defined regions. Further detailed compar-

isons against estimates from more complex modelling sys-

tems, such as reanalysis and numerical weather prediction

models, are needed to provide greater context and additional

benchmarking metrics to guide future investigations.

Geosci. Model Dev., 9, 283–305, 2016 www.geosci-model-dev.net/9/283/2016/



M. F. McCabe et al.: The GEWEX LandFlux project 299

Appendix A: Description of tower locations

Table A1. Selected eddy-covariance and their attributes. Further details and information on individual tower sites can be found via the

FLUXNET data portal (http://fluxnet.fluxdata.org/).

Site-ID Country Lat. Lon. Ground Tower IGBP Climate Climate Reference

elev. height class zone

(m a.s.l.) (m)

BW-Ma1 Botswana −19.9 23.6 947 12.6 WSA BSh Dry Veenendaal et al. (2004)

CA-Ca1 Canada 49.9 −125.3 324 43 ENF Cfb Temperate Humphreys et al. (2006)

CA-Mer Canada 45.4 −75.5 68 3 WET Dfb Temperate-continental Kross et al. (2013)

CA-Oas Canada 53.6 −106.2 594 39 DBF Dfc Boreal Fu et al. (2014)

CA-Obs Canada 54.0 −105.1 593 25 ENF Dfc Boreal Fu et al. (2014)

CA-Ojp Canada 53.9 −104.7 517 28 ENF Dfc Boreal Hilton et al. (2014)

CA-Qfo Canada 49.7 −74.3 389 25 ENF Dfc Boreal Flanagan et al. (2012)

CN-Do2 China 31.6 121.9 4 5 WET Cfa Sub-tropical Yan et al. (2008)

DE-Geb Germany 51.1 10.9 159 6 CRO Cfb Temperate Smith et al. (2010)

DE-Hai Germany 51.1 10.5 458 43.5 DBF Cfb Temperate Rebmann et al. (2005)

DE-Kli Germany 50.9 13.5 480 3.5 CRO Cfb Temperate Smith et al. (2010)

DE-Meh Germany 51.3 10.7 289 3 GRA Cfb Temperate Don et al. (2009)

DE-Tha Germany 51.0 13.6 387 42 ENF Cfb Temperate Delpierre et al. (2009)

DE-Wet Germany 50.5 11.5 789 27 ENF Cfb Temperate Richardson et al. (2010)

FR-LBr France 44.7 −0.8 71 41 ENF Cfb Temperate Göckede et al. (2008)

FR-Lam France 43.5 1.2 182 3.65 CRO Cfb Temperate Merlin et al. (2011)

FR-Pue France 43.7 3.6 271 13 EBF Csa Sub-tropical Soudani et al. (2014)

IL-Yat Israel 31.3 35.1 654 18 ENF BSh Dry Sprintsin et al. (2011)

IT-BCi Italy 40.5 15.0 9 2 CRO Csa Sub-tropical Reichstein et al. (2003)

IT-Col Italy 41.8 13.6 1534 25 DBF Cfa Sub-tropical Chiti et al. (2010)

IT-Lav Italy 46.0 11.3 1367 33 ENF Cfb Temperate Stoy et al. (2013)

IT-MBo Italy 46.0 11.0 1563 2.5 GRA Cfb Temperate Gamon et al. (2010)

IT-Noe Italy 40.6 8.2 27 3.6 CSH Csa Sub-tropical Carvalhais et al. (2010)

IT-Ro1 Italy 42.4 11.9 174 20 DBF Csa Sub-tropical Chiti et al. (2010)

JP-Tom Japan 42.7 141.5 133 42 MF Dfb Temperate-continental Saigusa et al. (2010)

NL-Ca1 Netherlands 52.0 4.9 −1 5 GRA Cfb Temperate Gioli et al. (2004)

NL-Loo Netherlands 52.2 5.7 34 27 ENF Cfb Temperate Sulkava et al. (2011)

PT-Mi2 Portugal 38.5 −8.0 191 2.5 GRA Csa Sub-tropical Gilmanov et al. (2007)

RU-Fyo Russia 56.5 32.9 274 29 ENF Dfb Temperate-continental Smith et al. (2010)

SE-Nor Sweden 60.1 17.5 35 103 ENF Dfb Temperate-continental Zierl et al. (2007)

US-ARM USA 36.6 −97.5 318 60 CRO Cfa Sub-tropical Lokupitiya et al. (2009)

US-Aud USA 31.6 −110.5 1474 4 GRA BSk Dry Horn and Schulz (2011)

US-Bkg USA 44.3 −96.8 496 4 GRA Dfa Temperate-continental Hollinger et al. (2010)

US-Bo1 USA 40.0 −88.3 218 10 CRO Dfa Temperate-continental Hollinger et al. (2010)

US-Bo2 USA 40.0 −88.3 220 10 CRO Dfa Temperate-continental Hollinger et al. (2010)

US-CaV USA 39.1 −79.4 993 4 GRA Cfb Temperate Hollinger et al. (2010)

US-FPe USA 48.3 −105.1 632 3.5 GRA BSk Dry Horn and Schulz (2011)

US-Goo USA 34.3 −89.9 94 4 GRA Cfa Sub-tropical Hollinger et al. (2010)

US-MMS USA 39.3 −86.4 290 48 DBF Cfa Sub-tropical Dragoni et al. (2011)

US-MOz USA 38.7 −92.2 238 30 DBF Cfa Sub-tropical Hollinger et al. (2010)

US-NR1 USA 40.0 −105.5 3053 26 ENF Dfc Boreal Hilton et al. (2014)

US-SRM USA 31.8 −110.9 1120 6.4 WSA BSk Dry Cavanaugh et al. (2011)

US-WCr USA 45.8 −90.1 524 30 DBF Dfb Temperate-continental Curtis et al. (2002)

US-Wkg USA 31.7 −109.9 1522 6.4 GRA BSk Dry Scott (2010)

US-Wrc USA 45.8 −122.0 391 85 ENF Csb Temperate Wharton et al. (2009)
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Figure A1. Temporal duration of the eddy-covariance-based flux

and tower meteorological observations for each of the 45 sites used

in this study.
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Figure A2. Comparison of the performance skill of the models in

reproducing evaporation for the grid-based analyses. R2 is the co-

efficient of determination, RE is relative error (lower is better) and

NSE is the Nash–Sutcliffe efficiency (higher is better). Towers are

arranged from left to right based on an aridity index (secondary

y axis).
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Code availability

The PM-Mu, SEBS and PT-JPL models were coded in MAT-

LAB as part of the GEWEX LandFlux and WACMOS-ET

projects, in discussion with (but independent of) the principal

model authors, as referenced in the relevant publications. The

GLEAM model was developed in MATLAB by Diego Mi-

ralles and Brecht Martens. All model code can be made avail-

able upon an emailed request to hydrology@kaust.edu.sa, in-

cluding a brief description of the intended purpose and appli-

cation.

Data availability

Evaporation model output presented here for both the grid-

ded and tower-based analyses can be provided upon an

emailed request to hydrology@kaust.edu.sa. The request

should include a brief description of the intended purpose

and application of the model data. Further details can be

found at http://hydrology.kaust.edu.sa/landflux.
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