Articles | Volume 9, issue 6
Geosci. Model Dev., 9, 2167–2189, 2016
https://doi.org/10.5194/gmd-9-2167-2016
Geosci. Model Dev., 9, 2167–2189, 2016
https://doi.org/10.5194/gmd-9-2167-2016

Model experiment description paper 15 Jun 2016

Model experiment description paper | 15 Jun 2016

Determining lake surface water temperatures worldwide using a tuned one-dimensional lake model (FLake, v1)

Aisling Layden et al.

Related authors

The Copernicus Surface Velocity Platform drifter with Barometer and Reference Sensor for Temperature (SVP-BRST): genesis, design, and initial results
Paul Poli, Marc Lucas, Anne O'Carroll, Marc Le Menn, Arnaud David, Gary K. Corlett, Pierre Blouch, David Meldrum, Christopher J. Merchant, Mathieu Belbeoch, and Kai Herklotz
Ocean Sci., 15, 199–214, https://doi.org/10.5194/os-15-199-2019,https://doi.org/10.5194/os-15-199-2019, 2019
Short summary
High-performance software framework for the calculation of satellite-to-satellite data matchups (MMS version 1.2)
Thomas Block, Sabine Embacher, Christopher J. Merchant, and Craig Donlon
Geosci. Model Dev., 11, 2419–2427, https://doi.org/10.5194/gmd-11-2419-2018,https://doi.org/10.5194/gmd-11-2419-2018, 2018
Short summary
Uncertainty information in climate data records from Earth observation
Christopher J. Merchant, Frank Paul, Thomas Popp, Michael Ablain, Sophie Bontemps, Pierre Defourny, Rainer Hollmann, Thomas Lavergne, Alexandra Laeng, Gerrit de Leeuw, Jonathan Mittaz, Caroline Poulsen, Adam C. Povey, Max Reuter, Shubha Sathyendranath, Stein Sandven, Viktoria F. Sofieva, and Wolfgang Wagner
Earth Syst. Sci. Data, 9, 511–527, https://doi.org/10.5194/essd-9-511-2017,https://doi.org/10.5194/essd-9-511-2017, 2017
Short summary
The surface temperatures of Earth: steps towards integrated understanding of variability and change
C. J. Merchant, S. Matthiesen, N. A. Rayner, J. J. Remedios, P. D. Jones, F. Olesen, B. Trewin, P. W. Thorne, R. Auchmann, G. K. Corlett, P. C. Guillevic, and G. C. Hulley
Geosci. Instrum. Method. Data Syst., 2, 305–321, https://doi.org/10.5194/gi-2-305-2013,https://doi.org/10.5194/gi-2-305-2013, 2013

Related subject area

Numerical Methods
An N-dimensional Fortran interpolation programme (NterGeo.v2020a) for geophysics sciences – application to a back-trajectory programme (Backplumes.v2020r1) using CHIMERE or WRF outputs
Bertrand Bessagnet, Laurent Menut, and Maxime Beauchamp
Geosci. Model Dev., 14, 91–106, https://doi.org/10.5194/gmd-14-91-2021,https://doi.org/10.5194/gmd-14-91-2021, 2021
Short summary
A framework to evaluate IMEX schemes for atmospheric models
Oksana Guba, Mark A. Taylor, Andrew M. Bradley, Peter A. Bosler, and Andrew Steyer
Geosci. Model Dev., 13, 6467–6480, https://doi.org/10.5194/gmd-13-6467-2020,https://doi.org/10.5194/gmd-13-6467-2020, 2020
Inequality-constrained free-surface evolution in a full Stokes ice flow model (evolve_glacier v1.1)
Anna Wirbel and Alexander Helmut Jarosch
Geosci. Model Dev., 13, 6425–6445, https://doi.org/10.5194/gmd-13-6425-2020,https://doi.org/10.5194/gmd-13-6425-2020, 2020
Short summary
A fast and efficient MATLAB-based MPM solver: fMPMM-solver v1.1
Emmanuel Wyser, Yury Alkhimenkov, Michel Jaboyedoff, and Yury Y. Podladchikov
Geosci. Model Dev., 13, 6265–6284, https://doi.org/10.5194/gmd-13-6265-2020,https://doi.org/10.5194/gmd-13-6265-2020, 2020
Short summary
Necessary conditions for algorithmic tuning of weather prediction models using OpenIFS as an example
Lauri Tuppi, Pirkka Ollinaho, Madeleine Ekblom, Vladimir Shemyakin, and Heikki Järvinen
Geosci. Model Dev., 13, 5799–5812, https://doi.org/10.5194/gmd-13-5799-2020,https://doi.org/10.5194/gmd-13-5799-2020, 2020
Short summary

Cited articles

Armengol, J., Caputo, L., Comerma, M., Feijoó, C., García, J. C., Marcé, R., Navarro, E., and Ordoñez, J.: Sau reservoir's light climate: relationships between Secchi depth and light extinction coefficient, Limnetica, 22, 195–210, 2003.
Ashton, G. D.: River and Lake Ice Engineering, Water Resources Publication, Littleton, CO, 355 pp., 1986.
Austin, J. A. and Colman, S. M.: Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: a positive ice-albedo feedback, Geophys. Res. Lett., 34, L06604, https://doi.org/10.1029/2006GL029021, 2007.
Bernhardt, J., Engelhardt, C., Kirillin, G., and Matschullat, J.: Lake ice phenology in Berlin-Brandenburg from 1947–2007: observations and model hindcasts, Climatic Change, 112, 791–817, 2012.
Brown, L. C. and Duguay, C. R.: The response and role of ice cover in lake-climate interactions, Prog. Phys. Geogr., 34, 671–704, https://doi.org/10.1177/0309133310375653, 2010.
Download
Short summary
With the availability of lake surface water temperature (LSWT) satellite data for 246 globally distributed large lakes, we tune a lake model, FLake, by varying 3 basic lake properties, shown to have the most influence over the modelled LSWTs. Tuning reduces the mean absolute difference (between model and satellite LSWTs) from an average of 3.38 ºC per day (untuned model) to 0.85 ºC per day (tuned model). The effect of several LSWT drivers, such as wind speed and lake depth are also demonstrated.