Articles | Volume 9, issue 6
https://doi.org/10.5194/gmd-9-2167-2016
https://doi.org/10.5194/gmd-9-2167-2016
Model experiment description paper
 | 
15 Jun 2016
Model experiment description paper |  | 15 Jun 2016

Determining lake surface water temperatures worldwide using a tuned one-dimensional lake model (FLake, v1)

Aisling Layden, Stuart N. MacCallum, and Christopher J. Merchant

Related authors

Factors influencing lake surface water temperature variability in West Greenland and the role of the ice sheet
Laura Carrea, Christopher J. Merchant, Richard I. Woolway, and Niall McCarroll
EGUsphere, https://doi.org/10.5194/egusphere-2024-2926,https://doi.org/10.5194/egusphere-2024-2926, 2024
Short summary
Global sea-level budget and ocean-mass budget, with a focus on advanced data products and uncertainty characterisation
Martin Horwath, Benjamin D. Gutknecht, Anny Cazenave, Hindumathi Kulaiappan Palanisamy, Florence Marti, Ben Marzeion​​​​​​​, Frank Paul, Raymond Le Bris, Anna E. Hogg, Inès Otosaka, Andrew Shepherd, Petra Döll, Denise Cáceres, Hannes Müller Schmied, Johnny A. Johannessen, Jan Even Øie Nilsen, Roshin P. Raj, René Forsberg, Louise Sandberg Sørensen, Valentina R. Barletta, Sebastian B. Simonsen, Per Knudsen, Ole Baltazar Andersen, Heidi Ranndal, Stine K. Rose, Christopher J. Merchant, Claire R. Macintosh, Karina von Schuckmann, Kristin Novotny​​​​​​​, Andreas Groh, Marco Restano, and Jérôme Benveniste
Earth Syst. Sci. Data, 14, 411–447, https://doi.org/10.5194/essd-14-411-2022,https://doi.org/10.5194/essd-14-411-2022, 2022
Short summary
The Copernicus Surface Velocity Platform drifter with Barometer and Reference Sensor for Temperature (SVP-BRST): genesis, design, and initial results
Paul Poli, Marc Lucas, Anne O'Carroll, Marc Le Menn, Arnaud David, Gary K. Corlett, Pierre Blouch, David Meldrum, Christopher J. Merchant, Mathieu Belbeoch, and Kai Herklotz
Ocean Sci., 15, 199–214, https://doi.org/10.5194/os-15-199-2019,https://doi.org/10.5194/os-15-199-2019, 2019
Short summary
High-performance software framework for the calculation of satellite-to-satellite data matchups (MMS version 1.2)
Thomas Block, Sabine Embacher, Christopher J. Merchant, and Craig Donlon
Geosci. Model Dev., 11, 2419–2427, https://doi.org/10.5194/gmd-11-2419-2018,https://doi.org/10.5194/gmd-11-2419-2018, 2018
Short summary
Uncertainty information in climate data records from Earth observation
Christopher J. Merchant, Frank Paul, Thomas Popp, Michael Ablain, Sophie Bontemps, Pierre Defourny, Rainer Hollmann, Thomas Lavergne, Alexandra Laeng, Gerrit de Leeuw, Jonathan Mittaz, Caroline Poulsen, Adam C. Povey, Max Reuter, Shubha Sathyendranath, Stein Sandven, Viktoria F. Sofieva, and Wolfgang Wagner
Earth Syst. Sci. Data, 9, 511–527, https://doi.org/10.5194/essd-9-511-2017,https://doi.org/10.5194/essd-9-511-2017, 2017
Short summary

Related subject area

Numerical methods
Hydro-geomorphological modelling of leaky wooden dam efficacy from reach to catchment scale with CAESAR-Lisflood 1.9j
Joshua M. Wolstenholme, Christopher J. Skinner, David Milan, Robert E. Thomas, and Daniel R. Parsons
Geosci. Model Dev., 18, 1395–1411, https://doi.org/10.5194/gmd-18-1395-2025,https://doi.org/10.5194/gmd-18-1395-2025, 2025
Short summary
Enhancing single precision with quasi-double precision: achieving double-precision accuracy in the Model for Prediction Across Scales – Atmosphere (MPAS-A) version 8.2.1
Jiayi Lai, Lanning Wang, Qizhong Wu, Yizhou Yang, and Fang Wang
Geosci. Model Dev., 18, 1089–1102, https://doi.org/10.5194/gmd-18-1089-2025,https://doi.org/10.5194/gmd-18-1089-2025, 2025
Short summary
Advances in land surface forecasting: a comparison of LSTM, gradient boosting, and feed-forward neural networks as prognostic state emulators in a case study with ecLand
Marieke Wesselkamp, Matthew Chantry, Ewan Pinnington, Margarita Choulga, Souhail Boussetta, Maria Kalweit, Joschka Bödecker, Carsten F. Dormann, Florian Pappenberger, and Gianpaolo Balsamo
Geosci. Model Dev., 18, 921–937, https://doi.org/10.5194/gmd-18-921-2025,https://doi.org/10.5194/gmd-18-921-2025, 2025
Short summary
Subgrid corrections for the linear inertial equations of a compound flood model – a case study using SFINCS 2.1.1 Dollerup release
Maarten van Ormondt, Tim Leijnse, Roel de Goede, Kees Nederhoff, and Ap van Dongeren
Geosci. Model Dev., 18, 843–861, https://doi.org/10.5194/gmd-18-843-2025,https://doi.org/10.5194/gmd-18-843-2025, 2025
Short summary
Introducing Iterative Model Calibration (IMC) v1.0: a generalizable framework for numerical model calibration with a CAESAR-Lisflood case study
Chayan Banerjee, Kien Nguyen, Clinton Fookes, Gregory Hancock, and Thomas Coulthard
Geosci. Model Dev., 18, 803–818, https://doi.org/10.5194/gmd-18-803-2025,https://doi.org/10.5194/gmd-18-803-2025, 2025
Short summary

Cited articles

Armengol, J., Caputo, L., Comerma, M., Feijoó, C., García, J. C., Marcé, R., Navarro, E., and Ordoñez, J.: Sau reservoir's light climate: relationships between Secchi depth and light extinction coefficient, Limnetica, 22, 195–210, 2003.
Ashton, G. D.: River and Lake Ice Engineering, Water Resources Publication, Littleton, CO, 355 pp., 1986.
Austin, J. A. and Colman, S. M.: Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: a positive ice-albedo feedback, Geophys. Res. Lett., 34, L06604, https://doi.org/10.1029/2006GL029021, 2007.
Bernhardt, J., Engelhardt, C., Kirillin, G., and Matschullat, J.: Lake ice phenology in Berlin-Brandenburg from 1947–2007: observations and model hindcasts, Climatic Change, 112, 791–817, 2012.
Brown, L. C. and Duguay, C. R.: The response and role of ice cover in lake-climate interactions, Prog. Phys. Geogr., 34, 671–704, https://doi.org/10.1177/0309133310375653, 2010.
Download
Short summary
With the availability of lake surface water temperature (LSWT) satellite data for 246 globally distributed large lakes, we tune a lake model, FLake, by varying 3 basic lake properties, shown to have the most influence over the modelled LSWTs. Tuning reduces the mean absolute difference (between model and satellite LSWTs) from an average of 3.38 ºC per day (untuned model) to 0.85 ºC per day (tuned model). The effect of several LSWT drivers, such as wind speed and lake depth are also demonstrated.
Share