Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.240 IF 5.240
  • IF 5-year value: 5.768 IF 5-year
    5.768
  • CiteScore value: 8.9 CiteScore
    8.9
  • SNIP value: 1.713 SNIP 1.713
  • IPP value: 5.53 IPP 5.53
  • SJR value: 3.18 SJR 3.18
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 71 Scimago H
    index 71
  • h5-index value: 51 h5-index 51
Volume 9, issue 5
Geosci. Model Dev., 9, 1697–1723, 2016
https://doi.org/10.5194/gmd-9-1697-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 9, 1697–1723, 2016
https://doi.org/10.5194/gmd-9-1697-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Methods for assessment of models 04 May 2016

Methods for assessment of models | 04 May 2016

Large ensemble modeling of the last deglacial retreat of the West Antarctic Ice Sheet: comparison of simple and advanced statistical techniques

David Pollard et al.

Related authors

Improvements in one-dimensional grounding-line parameterizations in an ice-sheet model with lateral variations
David Pollard and Robert DeConto
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-131,https://doi.org/10.5194/gmd-2020-131, 2020
Preprint under review for GMD
Short summary
Simulating Marine Isotope Stage 7 with a coupled climate-ice sheet model
Dipayan Choudhury, Axel Timmermann, Fabian Schloesser, Malte Heinemann, and David Pollard
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-46,https://doi.org/10.5194/cp-2020-46, 2020
Revised manuscript under review for CP
Short summary
Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2)
Anders Levermann, Ricarda Winkelmann, Torsten Albrecht, Heiko Goelzer, Nicholas R. Golledge, Ralf Greve, Philippe Huybrechts, Jim Jordan, Gunter Leguy, Daniel Martin, Mathieu Morlighem, Frank Pattyn, David Pollard, Aurelien Quiquet, Christian Rodehacke, Helene Seroussi, Johannes Sutter, Tong Zhang, Jonas Van Breedam, Reinhard Calov, Robert DeConto, Christophe Dumas, Julius Garbe, G. Hilmar Gudmundsson, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, William H. Lipscomb, Malte Meinshausen, Esmond Ng, Sophie M. J. Nowicki, Mauro Perego, Stephen F. Price, Fuyuki Saito, Nicole-Jeanne Schlegel, Sainan Sun, and Roderik S. W. van de Wal
Earth Syst. Dynam., 11, 35–76, https://doi.org/10.5194/esd-11-35-2020,https://doi.org/10.5194/esd-11-35-2020, 2020
Short summary
Results of the third Marine Ice Sheet Model Intercomparison Project (MISMIP+)
Stephen L. Cornford, Helene Seroussi, Xylar S. Asay-Davis, G. Hilmar Gudmundsson, Rob Arthern, Chris Borstad, Julia Christmann, Thiago Dias dos Santos, Johannes Feldmann, Daniel Goldberg, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, Gunter Leguy, William H. Lipscomb, Nacho Merino, Gaël Durand, Mathieu Morlighem, David Polllard, Martin Rückamp, C. Rosie Williams, and Hongju Yu
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-326,https://doi.org/10.5194/tc-2019-326, 2020
Revised manuscript accepted for TC
Short summary
Nonlinear response of the Antarctic Ice Sheet to late Quaternary sea level and climate forcing
Michelle Tigchelaar, Axel Timmermann, Tobias Friedrich, Malte Heinemann, and David Pollard
The Cryosphere, 13, 2615–2631, https://doi.org/10.5194/tc-13-2615-2019,https://doi.org/10.5194/tc-13-2615-2019, 2019
Short summary

Related subject area

Cryosphere
Description and validation of the ice-sheet model Yelmo (version 1.0)
Alexander Robinson, Jorge Alvarez-Solas, Marisa Montoya, Heiko Goelzer, Ralf Greve, and Catherine Ritz
Geosci. Model Dev., 13, 2805–2823, https://doi.org/10.5194/gmd-13-2805-2020,https://doi.org/10.5194/gmd-13-2805-2020, 2020
Short summary
Evaluating integrated surface/subsurface permafrost thermal hydrology models in ATS (v0.88) against observations from a polygonal tundra site
Ahmad Jan, Ethan T. Coon, and Scott L. Painter
Geosci. Model Dev., 13, 2259–2276, https://doi.org/10.5194/gmd-13-2259-2020,https://doi.org/10.5194/gmd-13-2259-2020, 2020
Short summary
SICOPOLIS-AD v1: an open-source adjoint modeling framework for ice sheet simulation enabled by the algorithmic differentiation tool OpenAD
Liz C. Logan, Sri Hari Krishna Narayanan, Ralf Greve, and Patrick Heimbach
Geosci. Model Dev., 13, 1845–1864, https://doi.org/10.5194/gmd-13-1845-2020,https://doi.org/10.5194/gmd-13-1845-2020, 2020
Short summary
On the calculation of normalized viscous–plastic sea ice stresses
Jean-François Lemieux and Frédéric Dupont
Geosci. Model Dev., 13, 1763–1769, https://doi.org/10.5194/gmd-13-1763-2020,https://doi.org/10.5194/gmd-13-1763-2020, 2020
Short summary
Modelling thermomechanical ice deformation using an implicit pseudo-transient method (FastICE v1.0) based on graphical processing units (GPUs)
Ludovic Räss, Aleksandar Licul, Frédéric Herman, Yury Y. Podladchikov, and Jenny Suckale
Geosci. Model Dev., 13, 955–976, https://doi.org/10.5194/gmd-13-955-2020,https://doi.org/10.5194/gmd-13-955-2020, 2020
Short summary

Cited articles

Anderson, J. B., Conway, H., Bart, P. J., Witus, A. E., Greenwood, S. L., McKay, R. M., Hall, B. L., Ackert, R. P., Licht, K., Jakobsson M., and Stone, J. O.: Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM, Quaternary Sci. Res., 100, 31–54, 2014.
Applegate, P. J., Kirchner, N., Stone, E. J., Keller, K., and Greve, R.: An assessment of key model parametric uncertainties in projections of Greenland Ice Sheet behavior, The Cryosphere, 6, 589–606, https://doi.org/10.5194/tc-6-589-2012, 2012.
Bassett, S. E., Milne, G. A., Mitrovica, J. X., and Clark, P. U.: Ice sheet and solid Earth influences on far-field sea-level histories, Science, 309, 925–928, 2005.
Benn, D. I., Warren, C. R., and Mottram, R. H.: Calving processes and the dynamics of calving glaciers, Earth-Sci. Rev., 82, 143–179, 2007.
Briggs, R. D. and Tarasov, L.: How to evaluate model-derived deglaciation chronologies: a case study using Antarctica, Quaternary. Sci. Rev., 63, 109–127, 2013.
Publications Copernicus
Download
Short summary
Computer modeling of variations of the Antarctic Ice Sheet help to understand the ice sheet's sensitivity to climate change. We apply a numerical model to its retreat over the last 20 000 years, from its maximum glacial extent to modern. An ensemble of 625 simulations is performed with systematic combinations of uncertain model parameter values. Results are analyzed using (1) simple averaging, and (2) advanced statistical techniques, and reasonable agreement is found between the two.
Computer modeling of variations of the Antarctic Ice Sheet help to understand the ice sheet's...
Citation