Articles | Volume 9, issue 5
Geosci. Model Dev., 9, 1697–1723, 2016
https://doi.org/10.5194/gmd-9-1697-2016
Geosci. Model Dev., 9, 1697–1723, 2016
https://doi.org/10.5194/gmd-9-1697-2016

Methods for assessment of models 04 May 2016

Methods for assessment of models | 04 May 2016

Large ensemble modeling of the last deglacial retreat of the West Antarctic Ice Sheet: comparison of simple and advanced statistical techniques

David Pollard et al.

Related authors

Improvements in one-dimensional grounding-line parameterizations in an ice-sheet model with lateral variations (PSUICE3D v2.1)
David Pollard and Robert M. DeConto
Geosci. Model Dev., 13, 6481–6500, https://doi.org/10.5194/gmd-13-6481-2020,https://doi.org/10.5194/gmd-13-6481-2020, 2020
Short summary
Simulating Marine Isotope Stage 7 with a coupled climate–ice sheet model
Dipayan Choudhury, Axel Timmermann, Fabian Schloesser, Malte Heinemann, and David Pollard
Clim. Past, 16, 2183–2201, https://doi.org/10.5194/cp-16-2183-2020,https://doi.org/10.5194/cp-16-2183-2020, 2020
Short summary
Results of the third Marine Ice Sheet Model Intercomparison Project (MISMIP+)
Stephen L. Cornford, Helene Seroussi, Xylar S. Asay-Davis, G. Hilmar Gudmundsson, Rob Arthern, Chris Borstad, Julia Christmann, Thiago Dias dos Santos, Johannes Feldmann, Daniel Goldberg, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, Gunter Leguy, William H. Lipscomb, Nacho Merino, Gaël Durand, Mathieu Morlighem, David Pollard, Martin Rückamp, C. Rosie Williams, and Hongju Yu
The Cryosphere, 14, 2283–2301, https://doi.org/10.5194/tc-14-2283-2020,https://doi.org/10.5194/tc-14-2283-2020, 2020
Short summary
Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2)
Anders Levermann, Ricarda Winkelmann, Torsten Albrecht, Heiko Goelzer, Nicholas R. Golledge, Ralf Greve, Philippe Huybrechts, Jim Jordan, Gunter Leguy, Daniel Martin, Mathieu Morlighem, Frank Pattyn, David Pollard, Aurelien Quiquet, Christian Rodehacke, Helene Seroussi, Johannes Sutter, Tong Zhang, Jonas Van Breedam, Reinhard Calov, Robert DeConto, Christophe Dumas, Julius Garbe, G. Hilmar Gudmundsson, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, William H. Lipscomb, Malte Meinshausen, Esmond Ng, Sophie M. J. Nowicki, Mauro Perego, Stephen F. Price, Fuyuki Saito, Nicole-Jeanne Schlegel, Sainan Sun, and Roderik S. W. van de Wal
Earth Syst. Dynam., 11, 35–76, https://doi.org/10.5194/esd-11-35-2020,https://doi.org/10.5194/esd-11-35-2020, 2020
Short summary
Nonlinear response of the Antarctic Ice Sheet to late Quaternary sea level and climate forcing
Michelle Tigchelaar, Axel Timmermann, Tobias Friedrich, Malte Heinemann, and David Pollard
The Cryosphere, 13, 2615–2631, https://doi.org/10.5194/tc-13-2615-2019,https://doi.org/10.5194/tc-13-2615-2019, 2019
Short summary

Related subject area

Cryosphere
SNICAR-ADv3: a community tool for modeling spectral snow albedo
Mark G. Flanner, Julian B. Arnheim, Joseph M. Cook, Cheng Dang, Cenlin He, Xianglei Huang, Deepak Singh, S. McKenzie Skiles, Chloe A. Whicker, and Charles S. Zender
Geosci. Model Dev., 14, 7673–7704, https://doi.org/10.5194/gmd-14-7673-2021,https://doi.org/10.5194/gmd-14-7673-2021, 2021
Short summary
STEMMUS-UEB v1.0.0: integrated modeling of snowpack and soil water and energy transfer with three complexity levels of soil physical processes
Lianyu Yu, Yijian Zeng, and Zhongbo Su
Geosci. Model Dev., 14, 7345–7376, https://doi.org/10.5194/gmd-14-7345-2021,https://doi.org/10.5194/gmd-14-7345-2021, 2021
Short summary
A versatile method for computing optimized snow albedo from spectrally fixed radiative variables: VALHALLA v1.0
Florent Veillon, Marie Dumont, Charles Amory, and Mathieu Fructus
Geosci. Model Dev., 14, 7329–7343, https://doi.org/10.5194/gmd-14-7329-2021,https://doi.org/10.5194/gmd-14-7329-2021, 2021
Short summary
Ice Algae Model Intercomparison Project phase 2 (IAMIP2)
Hakase Hayashida, Meibing Jin, Nadja S. Steiner, Neil C. Swart, Eiji Watanabe, Russell Fiedler, Andrew McC. Hogg, Andrew E. Kiss, Richard J. Matear, and Peter G. Strutton
Geosci. Model Dev., 14, 6847–6861, https://doi.org/10.5194/gmd-14-6847-2021,https://doi.org/10.5194/gmd-14-6847-2021, 2021
Short summary
A Gaussian process emulator for simulating ice sheet–climate interactions on a multi-million-year timescale: CLISEMv1.0
Jonas Van Breedam, Philippe Huybrechts, and Michel Crucifix
Geosci. Model Dev., 14, 6373–6401, https://doi.org/10.5194/gmd-14-6373-2021,https://doi.org/10.5194/gmd-14-6373-2021, 2021
Short summary

Cited articles

Anderson, J. B., Conway, H., Bart, P. J., Witus, A. E., Greenwood, S. L., McKay, R. M., Hall, B. L., Ackert, R. P., Licht, K., Jakobsson M., and Stone, J. O.: Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM, Quaternary Sci. Res., 100, 31–54, 2014.
Applegate, P. J., Kirchner, N., Stone, E. J., Keller, K., and Greve, R.: An assessment of key model parametric uncertainties in projections of Greenland Ice Sheet behavior, The Cryosphere, 6, 589–606, https://doi.org/10.5194/tc-6-589-2012, 2012.
Bassett, S. E., Milne, G. A., Mitrovica, J. X., and Clark, P. U.: Ice sheet and solid Earth influences on far-field sea-level histories, Science, 309, 925–928, 2005.
Benn, D. I., Warren, C. R., and Mottram, R. H.: Calving processes and the dynamics of calving glaciers, Earth-Sci. Rev., 82, 143–179, 2007.
Briggs, R. D. and Tarasov, L.: How to evaluate model-derived deglaciation chronologies: a case study using Antarctica, Quaternary. Sci. Rev., 63, 109–127, 2013.
Download
Short summary
Computer modeling of variations of the Antarctic Ice Sheet help to understand the ice sheet's sensitivity to climate change. We apply a numerical model to its retreat over the last 20 000 years, from its maximum glacial extent to modern. An ensemble of 625 simulations is performed with systematic combinations of uncertain model parameter values. Results are analyzed using (1) simple averaging, and (2) advanced statistical techniques, and reasonable agreement is found between the two.