Articles | Volume 8, issue 10
https://doi.org/10.5194/gmd-8-3199-2015
https://doi.org/10.5194/gmd-8-3199-2015
Development and technical paper
 | 
08 Oct 2015
Development and technical paper |  | 08 Oct 2015

A new sub-grid surface mass balance and flux model for continental-scale ice sheet modelling: testing and last glacial cycle

K. Le Morzadec, L. Tarasov, M. Morlighem, and H. Seroussi

Related authors

A Python library for solving ice sheet modeling problems using Physics Informed Neural Networks, PINNICLE v1.0
Gong Cheng, Mansa Krishna, and Mathieu Morlighem
EGUsphere, https://doi.org/10.5194/egusphere-2025-1188,https://doi.org/10.5194/egusphere-2025-1188, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Simulating the Holocene evolution of Ryder Glacier, North Greenland
Jamie Barnett, Felicity Alice Holmes, Joshua Cuzzone, Henning Åkesson, Mathieu Morlighem, Matt O'Regan, Johan Nilsson, Nina Kirchner, and Martin Jakobsson
EGUsphere, https://doi.org/10.5194/egusphere-2025-653,https://doi.org/10.5194/egusphere-2025-653, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
ISEFlow v1.0: A Flow-Based Neural Network Emulator for Improved Sea Level Projections and Uncertainty Quantification
Peter Van Katwyk, Baylor Fox-Kemper, Sophie Nowicki, Hélène Seroussi, and Karianne J. Bergen
EGUsphere, https://doi.org/10.5194/egusphere-2025-870,https://doi.org/10.5194/egusphere-2025-870, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
A history-matching analysis of the Antarctic Ice Sheet since the Last Interglacial – Part 1: Ice sheet evolution
Benoit S. Lecavalier and Lev Tarasov
The Cryosphere, 19, 919–953, https://doi.org/10.5194/tc-19-919-2025,https://doi.org/10.5194/tc-19-919-2025, 2025
Short summary
Realistic ice-shelf/ocean state estimates (RISE) of Antarctic basal melting and drivers
Benjamin Keith Galton-Fenzi, Richard Porter-Smith, Sue Cook, Eva Cougnon, David E. Gwyther, Wilma G. C. Huneke, Madelaine G. Rosevear, Xylar Asay-Davis, Fabio Boeira Dias, Michael S. Dinniman, David Holland, Kazuya Kusahara, Kaitlin A. Naughten, Keith W. Nicholls, Charles Pelletier, Ole Richter, Helene L. Seroussi, and Ralph Timmermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-4047,https://doi.org/10.5194/egusphere-2024-4047, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary

Related subject area

Cryosphere
Towards deep-learning solutions for classification of automated snow height measurements (CleanSnow v1.0.2)
Jan Svoboda, Marc Ruesch, David Liechti, Corinne Jones, Michele Volpi, Michael Zehnder, and Jürg Schweizer
Geosci. Model Dev., 18, 1829–1849, https://doi.org/10.5194/gmd-18-1829-2025,https://doi.org/10.5194/gmd-18-1829-2025, 2025
Short summary
Quantitative sub-ice and marine tracing of Antarctic sediment provenance (TASP v1.0)
James W. Marschalek, Edward Gasson, Tina van de Flierdt, Claus-Dieter Hillenbrand, Martin J. Siegert, and Liam Holder
Geosci. Model Dev., 18, 1673–1708, https://doi.org/10.5194/gmd-18-1673-2025,https://doi.org/10.5194/gmd-18-1673-2025, 2025
Short summary
Tuning parameters of a sea ice model using machine learning
Anton Korosov, Yue Ying, and Einar Ólason
Geosci. Model Dev., 18, 885–904, https://doi.org/10.5194/gmd-18-885-2025,https://doi.org/10.5194/gmd-18-885-2025, 2025
Short summary
WRF-Chem simulations of snow nitrate and other physicochemical properties in northern China
Xia Wang, Tao Che, Xueyin Ruan, Shanna Yue, Jing Wang, Chun Zhao, and Lei Geng
Geosci. Model Dev., 18, 651–670, https://doi.org/10.5194/gmd-18-651-2025,https://doi.org/10.5194/gmd-18-651-2025, 2025
Short summary
Clustering simulated snow profiles to form avalanche forecast regions
Simon Horton, Florian Herla, and Pascal Haegeli
Geosci. Model Dev., 18, 193–209, https://doi.org/10.5194/gmd-18-193-2025,https://doi.org/10.5194/gmd-18-193-2025, 2025
Short summary

Cited articles

Abe-Ouchi, A. and Blatter, H.: On the initiation of ice sheets, Ann. Glaciol., 18, 203–203, 1993.
Abe-Ouchi, A., Saito, F., Kawamura, K., Raymo, M. E., Okuno, J., Takahashi, K., and Blatter, H.: Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume, Nature, 500, 190–193, 2013.
BODC: British oceanographic data centre, The GEBCO_08 Grid, version 20091120, available at: http://www.gebco.net (last access: 6 October 2013), 2010.
Budd, W. F. and Smith, I.: The growth and retreat of ice sheets in response to orbital radiation changes, Sea Level, Ice, and Climatic Change, 369–409, 1981.
Clarke, G. K.: Fast glacier flow: ice streams, surging, and tidewater glaciers, J. Geophys. Res.-Sol. Ea., 92, 8835–8841, 1987.
Download
Short summary
A long-term challenge for any model of complex large-scale processes is accounting for the impact of unresolved sub-grid (SG) processes. We quantify the impact of SG mass-balance and ice fluxes on glacial cycle ensemble results for North America. We find no easy solutions to accurately capture these impacts. We show that SG process representation and associated parametric uncertainties can have significant impact on coarse resolution model results for glacial cycle ice sheet evolution.
Share