Articles | Volume 7, issue 2
https://doi.org/10.5194/gmd-7-631-2014
https://doi.org/10.5194/gmd-7-631-2014
Model evaluation paper
 | 
22 Apr 2014
Model evaluation paper |  | 22 Apr 2014

Simulating high-latitude permafrost regions by the JSBACH terrestrial ecosystem model

A. Ekici, C. Beer, S. Hagemann, J. Boike, M. Langer, and C. Hauck

Related authors

Ground subsidence effects on simulating dynamic high-latitude surface inundation under permafrost thaw using CLM5
Altug Ekici, Hanna Lee, David M. Lawrence, Sean C. Swenson, and Catherine Prigent
Geosci. Model Dev., 12, 5291–5300, https://doi.org/10.5194/gmd-12-5291-2019,https://doi.org/10.5194/gmd-12-5291-2019, 2019
Short summary
Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models
Sarah E. Chadburn, Gerhard Krinner, Philipp Porada, Annett Bartsch, Christian Beer, Luca Belelli Marchesini, Julia Boike, Altug Ekici, Bo Elberling, Thomas Friborg, Gustaf Hugelius, Margareta Johansson, Peter Kuhry, Lars Kutzbach, Moritz Langer, Magnus Lund, Frans-Jan W. Parmentier, Shushi Peng, Ko Van Huissteden, Tao Wang, Sebastian Westermann, Dan Zhu, and Eleanor J. Burke
Biogeosciences, 14, 5143–5169, https://doi.org/10.5194/bg-14-5143-2017,https://doi.org/10.5194/bg-14-5143-2017, 2017
Short summary
Quantifying uncertainties of permafrost carbon–climate feedbacks
Eleanor J. Burke, Altug Ekici, Ye Huang, Sarah E. Chadburn, Chris Huntingford, Philippe Ciais, Pierre Friedlingstein, Shushi Peng, and Gerhard Krinner
Biogeosciences, 14, 3051–3066, https://doi.org/10.5194/bg-14-3051-2017,https://doi.org/10.5194/bg-14-3051-2017, 2017
Short summary
A vertical representation of soil carbon in the JULES land surface scheme (vn4.3_permafrost) with a focus on permafrost regions
Eleanor J. Burke, Sarah E. Chadburn, and Altug Ekici
Geosci. Model Dev., 10, 959–975, https://doi.org/10.5194/gmd-10-959-2017,https://doi.org/10.5194/gmd-10-959-2017, 2017
Short summary
Process-based modelling of the methane balance in periglacial landscapes (JSBACH-methane)
Sonja Kaiser, Mathias Göckede, Karel Castro-Morales, Christian Knoblauch, Altug Ekici, Thomas Kleinen, Sebastian Zubrzycki, Torsten Sachs, Christian Wille, and Christian Beer
Geosci. Model Dev., 10, 333–358, https://doi.org/10.5194/gmd-10-333-2017,https://doi.org/10.5194/gmd-10-333-2017, 2017
Short summary

Related subject area

Cryosphere
Coupling framework (1.0) for the Úa (2023b) ice sheet model and the FESOM-1.4 z-coordinate ocean model in an Antarctic domain
Ole Richter, Ralph Timmermann, G. Hilmar Gudmundsson, and Jan De Rydt
Geosci. Model Dev., 18, 2945–2960, https://doi.org/10.5194/gmd-18-2945-2025,https://doi.org/10.5194/gmd-18-2945-2025, 2025
Short summary
A gradient-boosted tree framework to model the ice thickness of the world's glaciers (IceBoost v1.1)
Niccolò Maffezzoli, Eric Rignot, Carlo Barbante, Troels Petersen, and Sebastiano Vascon
Geosci. Model Dev., 18, 2545–2568, https://doi.org/10.5194/gmd-18-2545-2025,https://doi.org/10.5194/gmd-18-2545-2025, 2025
Short summary
Towards deep-learning solutions for classification of automated snow height measurements (CleanSnow v1.0.2)
Jan Svoboda, Marc Ruesch, David Liechti, Corinne Jones, Michele Volpi, Michael Zehnder, and Jürg Schweizer
Geosci. Model Dev., 18, 1829–1849, https://doi.org/10.5194/gmd-18-1829-2025,https://doi.org/10.5194/gmd-18-1829-2025, 2025
Short summary
Quantitative sub-ice and marine tracing of Antarctic sediment provenance (TASP v1.0)
James W. Marschalek, Edward Gasson, Tina van de Flierdt, Claus-Dieter Hillenbrand, Martin J. Siegert, and Liam Holder
Geosci. Model Dev., 18, 1673–1708, https://doi.org/10.5194/gmd-18-1673-2025,https://doi.org/10.5194/gmd-18-1673-2025, 2025
Short summary
Tuning parameters of a sea ice model using machine learning
Anton Korosov, Yue Ying, and Einar Ólason
Geosci. Model Dev., 18, 885–904, https://doi.org/10.5194/gmd-18-885-2025,https://doi.org/10.5194/gmd-18-885-2025, 2025
Short summary

Cited articles

ACIA: Arctic Climate Impact Assessment, Cambridge University Press, New York, USA, 1042 pp., 2005.
Alexeev, V. A., Nicolsky, D. J., Romanovsky, V. E., and Lawrence, D. M.: An evaluation of deep soil configurations in the CLM3 for improved representation of permafrost, Geophys. Res. Lett., 34, L09502, https://doi.org/10.1029/2007GL029536, 2007.
Beer, C.: The Arctic carbon count, Nat. Geosci., 1, 569–570, https://doi.org/10.1038/ngeo292, 2008.
Beer, C., Lucht, W., Gerten, D., Thonicke, K., and Schmullius, C.: Effects of soil freezing and thawing on vegetation carbon density in Siberia: A modeling analysis with the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM), Global Biogeochem. Cy., 21, GB1012, https://doi.org/10.1029/2006GB002760, 2007.
Beer, C., Fedorov, A. N., and Torgovkin, Y.: Permafrost temperature and active-layer thickness of Yakutia with 0.5-degree spatial resolution for model evaluation, Earth Syst. Sci. Data, 5, 305–310, https://doi.org/10.5194/essd-5-305-2013, 2013.
Download
Share