Articles | Volume 18, issue 13
https://doi.org/10.5194/gmd-18-4045-2025
https://doi.org/10.5194/gmd-18-4045-2025
Model description paper
 | 
03 Jul 2025
Model description paper |  | 03 Jul 2025

Computationally efficient subglacial drainage modelling using Gaussian process emulators: GlaDS-GP v1.0

Tim Hill, Derek Bingham, Gwenn E. Flowers, and Matthew J. Hoffman

Related authors

Misidentified subglacial lake beneath the Devon Ice Cap, Canadian Arctic: a new interpretation from seismic and electromagnetic data
Siobhan F. Killingbeck, Anja Rutishauser, Martyn J. Unsworth, Ashley Dubnick, Alison S. Criscitiello, James Killingbeck, Christine F. Dow, Tim Hill, Adam D. Booth, Brittany Main, and Eric Brossier
The Cryosphere, 18, 3699–3722, https://doi.org/10.5194/tc-18-3699-2024,https://doi.org/10.5194/tc-18-3699-2024, 2024
Short summary
The impact of surface melt rate and catchment characteristics on Greenland Ice Sheet moulin inputs
Tim Hill and Christine F. Dow
The Cryosphere, 17, 2607–2624, https://doi.org/10.5194/tc-17-2607-2023,https://doi.org/10.5194/tc-17-2607-2023, 2023
Short summary

Cited articles

Andrews, L. C., Catania, G. A., Hoffman, M. J., Gulley, J. D., Lüthi, M. P., Ryser, C., Hawley, R. L., and Neumann, T. A.: Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet, Nature, 514, 80–83, https://doi.org/10.1038/nature13796, 2014. a
Berdahl, M., Leguy, G., Lipscomb, W. H., and Urban, N. M.: Statistical emulation of a perturbed basal melt ensemble of an ice sheet model to better quantify Antarctic sea level rise uncertainties, The Cryosphere, 15, 2683–2699, https://doi.org/10.5194/tc-15-2683-2021, 2021. a
Bolibar, J., Rabatel, A., Gouttevin, I., Galiez, C., Condom, T., and Sauquet, E.: Deep learning applied to glacier evolution modelling, The Cryosphere, 14, 565–584, https://doi.org/10.5194/tc-14-565-2020, 2020. a
Bolibar, J., Sapienza, F., Maussion, F., Lguensat, R., Wouters, B., and Pérez, F.: Universal differential equations for glacier ice flow modelling, Geosci. Model Dev., 16, 6671–6687, https://doi.org/10.5194/gmd-16-6671-2023, 2023. a
Brinkerhoff, D., Meyer, C. R., Bueler, E., Truffer, M., and Bartholomaus, T. C.: Inversion of a glacier hydrology model, Ann. Glaciol., 57, 84–95, https://doi.org/10.1017/aog.2016.3, 2016. a
Download
Short summary
Subglacial drainage models represent water flow beneath glaciers and ice sheets. Here, we train fast statistical models called Gaussian process (GP) emulators to accelerate subglacial drainage modelling by ~ 1000 times. We use the fast emulator predictions to show that three of the model parameters are responsible for > 90 % of the variance in model outputs. The fast GP emulators will enable future uncertainty quantification and calibration of these models.
Share