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Abstract. Subglacial drainage models represent water flow
at the ice–bed interface through coupled distributed and
channelized systems to determine water pressure, discharge,
and drainage system geometry. While they are used to under-
stand processes such as the relationship between surface melt
and ice flow, the number of uncertain model parameters and
the computational cost of running models makes it difficult
to adequately explore the high-dimensional parameter space
and evaluate uncertainty in model predictions. Here, we de-
velop Gaussian process (GP) emulators that make fast pre-
dictions with associated uncertainty of subglacial drainage
model outputs. Using a truncated principal component (PC)
basis representation, we construct a GP emulator for diur-
nally averaged subglacial water pressure. We also explore
emulation of scalar variables describing drainage efficiency
and configuration. We train the emulators using ensembles
of up to 512 simulations varying eight parameters of the
Glacier Drainage System (GlaDS) model on a synthetic do-
main intended to represent an ice-sheet margin. The emula-
tors make predictions ∼ 1000 times faster than GlaDS sim-
ulations, with errors < 3% for the water pressure field and
∼ 5 %–9 % for drainage efficiency and configuration. We ap-
ply the emulators to explore the eight-dimensional parameter
space by computing variance-based parameter sensitivity in-
dices, finding that three parameters (ice flow coefficient, bed
bump aspect ratio, and the subglacial cavity system conduc-
tivity) explain 90 % of the variance in modelled water pres-
sure in response to parameter changes. The GP emulator ap-
proach described here is well suited to integrating observa-
tional data with models to make calibrated, credible predic-
tions of subglacial drainage.

1 Introduction

Subglacial hydrologic processes influence a variety of lo-
cal and downstream physical, chemical, and biological pro-
cesses. Chemical weathering processes and the composition
of subglacial microbial communities, and their influence on
downstream environments, are modulated by water residence
time (Crompton et al., 2015; Dubnick et al., 2017; Graly and
Rezvanbehbahani, 2022); discharge rates (Prestrud Ander-
son et al., 1997; Hodson et al., 2008; Dubnick et al., 2017);
the partitioning between channelized, distributed, and dis-
connected portions of the subglacial drainage system (Hod-
son et al., 2008; Graly and Rezvanbehbahani, 2022; Dubnick
et al., 2017); and the rate of mixing between water sourced
from the surface and the bed (Sharp et al., 1999; Hodson
et al., 2008; Crompton et al., 2015; Dubnick et al., 2017).
Greenland fjord productivity is influenced by buoyant sub-
glacial meltwater plumes created by channelized discharge
across the grounding line (e.g. Meire et al., 2017). Most com-
monly, studies of subglacial hydrology are motivated by the
influence on ice flow velocities of glaciers (e.g. Iken and
Bindschadler, 1986; Mair et al., 2002) and ice sheets (e.g.
Joughin et al., 2008; Moon et al., 2014) through effective
pressure-dependent basal slip.

Conventional physically based subglacial drainage models
(e.g. Schoof, 2010; Werder et al., 2013; Sommers et al., 2018;
Hoffman et al., 2018) are computationally intensive, in part
due to the short timescale associated with water flow driven
by surface melt inputs that vary on sub-daily timescales and
because models must resolve large spatiotemporal variations
in drainage system capacity and efficiency related to evolv-
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ing drainage pathways. Their computational cost is com-
pounded by uncertainty in model parameters and the neces-
sarily limited subset of physics included in models. Field ex-
periments and observations can be used to constrain the val-
ues of certain physical parameters, such as the friction factor
in ice-walled channels (e.g. Pohle et al., 2022; Werder and
Funk, 2009) and channel size and sinuosity (e.g. Werder and
Funk, 2009); infer plausible distributions of parameters of
hydrology models and sliding models (e.g. Brinkerhoff et al.,
2016, 2021); and learn about drainage system configuration
(e.g. Irarrazaval et al., 2019, 2021; Rada and Schoof, 2018;
Rada Giacaman and Schoof, 2023; Nanni et al., 2021; Gim-
bert et al., 2016). The high-dimensional space of uncertain
parameters, combined with the cost of running model sim-
ulations, makes it difficult to adequately explore the input
space to quantify the uncertainty in model outputs.

Emulators provide a fast approximation to physics-based
models to overcome limitations related to long model run-
times. Emulation is gaining traction as a tool in the glacio-
logical literature, for example, to speed up model simulations
(e.g. Jouvet et al., 2022), compute probability distributions
of sea-level change (e.g. Berdahl et al., 2021; Edwards et al.,
2021), infer parameter values (e.g. Chang et al., 2014; Gil-
ford et al., 2020; Wernecke et al., 2020) or parameterizations
(e.g. Wernecke et al., 2020; Bolibar et al., 2020, 2023), and
infer bed topography from surface observables (e.g. Jouvet,
2023). For subglacial drainage modelling, neural network
emulators have been used to calibrate subglacial drainage
model parameters and sliding-law parameters given surface
velocity data (Brinkerhoff et al., 2021) and to predict spa-
tially distributed hydraulic potential given geometry (bed to-
pography and ice thickness) and surface melt forcing for the
purpose of providing improved basal boundary conditions for
ice-sheet modelling (Verjans and Robel, 2024).

To overcome some of the limitations of subglacial
drainage models identified above, and to increase the diver-
sity of subglacial drainage emulators, we explore Gaussian
process (GP) emulation of subglacial drainage model out-
puts. We choose to use GP emulation for its quantification
of prediction uncertainty, where each emulator prediction is
a probability distribution rather than a point estimate, and its
simplicity in terms of the number of parameters that must
be estimated relative to a neural network. The Gaussian pro-
cess emulators we develop take subglacial drainage model
parameters as their inputs and predict spatially and season-
ally resolved flotation fraction (the ratio of water pressure
to ice overburden pressure), along with scalar descriptions
of drainage configuration and efficiency. As an example of
an application that is rendered computationally feasible by
the emulators, we compute variance-based global sensitivity
indices that precisely determine the combinations of param-
eters that most strongly control modelled subglacial hydrol-
ogy.

2 Numerical and statistical models

2.1 Subglacial drainage model

We use the Glacier Drainage System (GlaDS) model (Werder
et al., 2013) to simulate subglacial drainage. GlaDS com-
putes water flow through coupled distributed and channelized
drainage systems. Distributed drainage is modelled as macro-
porous sheet flow with sheet geometry specified by the aver-
age water layer thickness, aiming to describe area-averaged
flow through subglacial cavities. Channelized drainage is
modelled as flow through a network of one-dimensional ice-
walled channels, with the channel radius determined by the
balance between creep closure of ice and opening by melt.
The governing equations, arising from conservation of mass
and energy, are discretized on an unstructured triangular
mesh. Variables describing the continuum distributed (sheet)
drainage system are represented using finite elements with
degrees of freedom located on the mesh nodes, with possi-
ble channel locations defined by element edges. We use the
implementation of GlaDS within the Ice-sheet and Sea-level
System Model (ISSM; Larour et al., 2012; Ehrenfeucht et al.,
2023), v4.24, with the laminar–turbulent sheet flow parame-
terization introduced by Hill et al. (2024b). See Appendix A
for a summary of the GlaDS governing equations and Table 1
for variable definitions.

For each time step in a model run, GlaDS computes the
subglacial hydraulic potential φ (in Pa), the cavity height hs
(in m), and the channel cross-sectional area S (in m2). From
these three state variables, additional quantities of interest
may be computed. For example, from the hydraulic potential
and prescribed domain geometry, hydraulic potential can be
rewritten in terms of water pressure pw (Pa), effective pres-
sure N (Pa), or flotation fraction fw (unitless):

φ = pw+ ρwgzb, (1)
N = pi−pw, (2)

fw =
pw

pi
, (3)

where gravitational acceleration g and the densities of water
(ρw) and ice (ρi) are given in Table 2, zb is the bed elevation,
and pi = ρigH is the ice overburden pressure for ice thick-
nessH . For a mesh with ns nodes and for a simulation with nt
time steps, φ, N , and fw are two-dimensional, time-varying
fields with ns× nt values.

2.2 Gaussian process model

The numerical model GlaDS, described above, is compu-
tationally intensive: model runs of ice-sheet outlet glaciers
with seasonal surface melt forcing routinely take hours or
days per modelled year. Emulators provide one solution to
overcome the cost of running GlaDS simulations. This sec-
tion briefly provides a high-level overview of the Gaus-
sian process (GP) model and the architecture that we use
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Table 1. Subglacial drainage model variables (first group) and Gaussian process model variables and parameters (second group).

Symbol Equation Description

φ (1), (A3) Hydraulic potential (Pa)
hs (A1)–(A2) Water sheet thickness (m)
S (A4)–(A5) Channel cross-sectional area (m2)
N (2) Effective pressure (Pa)
fw (3) Flotation fraction (unitless)
fq – Fraction of channelized discharge (unitless)
Ts – Sheet transit time (a)
Lc – Channel network length (m)

X – Design matrix
Y (9) Simulation output matrix
k (13) Covariance function
6 (4) Covariance matrix
λ (13) Gaussian process precision (inverse variance)
β (13) Gaussian process input sensitivity vector
θ (13) (λ,β) Gaussian process hyperparameter vector
d – Sample dimension (number of GlaDS parameters)
m – Number of simulations
ns – Number of spatial locations in simulation outputs
nt – Number of time steps in simulation outputs
p (12) Number of principal components

Table 2. Constants (top group), fixed model parameters for GlaDS simulations (middle group), and GlaDS parameters and ranges used for
training the GP emulator (bottom group).

Parameter Value Units

ρw Density of water 1000 kg m−3

ρi Density of ice 910 kg m−3

g Gravitational acceleration 9.81 m s−2

L Latent heat 3.34× 105 J kg−1

cw Specific heat capacity of water 4.22× 103 J kg−1

ct Pressure-melting coefficient −7.50× 10−8 KPa−1

ν Kinematic viscosity of water at 0 °C 1.793× 10−6 m s−2

αc Channel flow exponent 5/4 –
βc Channel flow exponent 3/2 –
ub Basal velocity 30 m a−1

As Ice flow law coefficient when N < 0 0 s−1 Pa−3

n Ice flow exponent 3 –
ṁs Basal melt rate 0.05 m w.e. a−1

ks Sheet conductivity [0.01, 1] Pa s−1

kc Channel conductivity [0.05, 0.5] m3/2 s−1

hb Bed bump height [0.05, 1] m
rb Bed bump aspect ratio [10, 100] –
A Ice flow law coefficient [10−24, 10−23] s−1 Pa−3

lc Width of sheet beneath channels [1, 100] m
ω Laminar–turbulent transition parameter [1/5000, 1/500] –
ev Englacial void fraction [5× 10−5, 5× 10−4] –
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to emulate spatially and temporally resolved GlaDS out-
puts. For background on Gaussian processes, see Jones et al.
(1998) and Rasmussen and Williams (2005); see Higdon
et al. (2008) for a complete description of the emulators con-
structed here. Following tuning and evaluation of the emu-
lators, we apply them to quantify the relationship between
GlaDS parameters and GlaDS output.

Emulating GlaDS outputs is a type of regression problem:
given a set of model simulations with various parameter val-
ues, we want to estimate the simulation response for untested
parameter values for which we do not have GlaDS output.
More precisely, for an ensemble of m (e.g. 256) GlaDS sim-
ulations, let xi denote the ith vector of the d = 8 GlaDS pa-
rameter values. We store the parameter values for the entire
ensemble in the m× d design matrix X (Fig. B1), where the
rows specify the GlaDS parameter values used in each of the
m simulations. Each simulation produces spatiotemporally
resolved hydraulic potential φ, water sheet thickness hs, and
channel area S. Let yi denote the vectorized model output
of interest, with ns rows representing spatial positions and nt
columns representing time steps, corresponding to the set of
parameter values xi . The ensemble of simulations is stored in
the nsnt×m simulation output matrix Y, with columns con-
taining the simulation outputs corresponding to the parame-
ters in X. The emulation task is to predict the simulation out-
put for new parameter values which are not included in the
design matrix X. Following the vocabulary of Higdon et al.
(2008) and Verjans and Robel (2024), these GlaDS model
parameters are called the inputs to the emulator. The steps
involved in constructing the GP emulator and making pre-
dictions are summarized in Fig. 1.

2.2.1 Univariate Gaussian process emulator

Gaussian process regression as applied here may be thought
of as an extension of kriging, where sparse observations are
spatially interpolated to produce a gapless two-dimensional
field (Krige, 1951), to an arbitrary number of input dimen-
sions that represent model parameters rather than spatial po-
sitions. This section describes the basics of Gaussian process
emulation for the case of scalar model outputs (i.e. where
each yi is a scalar). Section 2.2.2 generalizes this approach
to models with multivariate outputs (e.g. GlaDS).

A Gaussian process emulator makes predictions of the
GlaDS output of interest for new parameter values based on a
weighted combination of them GlaDS simulations in the en-
semble. The weights assigned to each simulation are based
on the covariance corresponding to the parameter values
of the simulation ensemble and the parameter values being
used for emulator predictions. The GP is completely speci-
fied by the mean function µ(x) and the covariance function
k(xi,xj ;θ) with hyperparameters θ . The covariance matrix
6 is constructed to represent the pairwise covariance be-

tween model outputs in the simulation ensemble,

6ij = k(xi,xj ;θ). (4)

The parameters of the covariance function θ are referred to
as hyperparameters to distinguish them from GlaDS param-
eters. The hyperparameters typically control the variance of
the Gaussian process and the sensitivity to each input, but
their interpretation depends on the type of covariance func-
tion that is used. Gaussian processes typically have a similar
number of hyperparameters to the number of inputs to the
emulator. The hyperparameters must be optimized to obtain
an accurate emulator.

We make the common choice to set the prior mean to zero
everywhere (e.g. Kennedy and O’Hagan, 2001). The zero-
mean prior specifies that, before training the GP with the en-
semble (X, Y), the pointwise mean of many GP predictions is
zero for all parameter values. Since we standardize the simu-
lation outputs, this corresponds to predicting the mean of the
ensemble once the GP predictions are converted back into
physical units. Additional structure could be included by us-
ing a nonzero prior mean function, for instance, a linear re-
gression mean term. In cases where prior knowledge of the
functional form of the model’s response to parameter varia-
tions is available (for example, if it is known that the model
responds nearly linearly to parameter variations), the mean
function can be used to encode this knowledge (Rasmussen
and Williams, 2005). We have found that the GP with zero
prior mean is able to learn how the model output changes as
parameters are varied without the additional structure intro-
duced by a mean function, while producing a simpler model
with fewer hyperparameters to estimate.

The GP emulator is trained by using the simulation out-
puts Y as the basis for predictions and to infer the hyper-
parameter values θ . Since predictions with the trained emu-
lator, called posterior predictions, depend on the simulation
outputs Y and hyperparameters θ , they are said to be condi-
tioned on Y and θ . Unlike a neural network, which typically
produces a deterministic prediction, the GP predictions form
a probability distribution. For GlaDS parameters xp, the cor-
responding emulator prediction is denoted yp, with a corre-
sponding normal distribution:

yp|Y,θ ,xp ∼N
(
µp,σp

)
, (5)

with estimated mean

µ̂p = kp6
−1Y (6)

and variance

σ̂ 2
p = σ

2
− kT

p6
−1kp. (7)

The vector kp = k(xp,x) contains the pairwise covariance
between the model outputs from the simulation ensemble
and the estimated output for parameters xp, while σ 2

=
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Figure 1. Overview of steps involved in constructing the Gaussian process emulator for the GlaDS flotation fraction. X is the design matrix
of GlaDS parameters (defined in Table 2) with corresponding GlaDS outputs Y. The Gaussian process emulator is constructed as a truncated
linear combination of p principal components wi(θ) and basis vectors vj for i = 1, . . .,p, where θ stands for Gaussian process hyperparam-
eters that are inferred by Markov chain Monte Carlo (MCMC) sampling. Emulators are fit using m-member subsets of the training data and
constructed using different numbers of principal components p. The performance is evaluated on the independent set of 100 test simulations.
The emulator is used to compute the sensitivity of model outputs to model parameters (Sect. 5).

k(xp,xp;θ) is the GP variance (Jones et al., 1998; Ras-
mussen and Williams, 2005). The form of the estimated mean
(Eq. 6) reveals that the mean prediction is a covariance-
weighted sum of the model outputs Y. The estimated vari-
ance (Eq. 7) shows that the uncertainty in the emulator pre-
diction is determined by the GP variance σ 2 and the covari-
ance kp, with lower uncertainty when predictions are made
close to parameter values used in the ensemble (i.e. higher
covariance kp).

The prediction mean (Eq. 6) and variance (Eq. 7) estimates
depend on the values of the GP hyperparameters θ through

the covariance function (Eq. 4). To include a full assessment
of uncertainty, we sample θ from its posterior distribution
using Markov chain Monte Carlo (MCMC) sampling (e.g.
Rasmussen and Williams, 2005; Higdon et al., 2008). From
Bayes’ rule (e.g. Gelman et al., 2013), the probability dis-
tribution of the GP hyperparameters θ given the simulation
outputs Y, called the posterior distribution, can be written as

p(θ |Y)∝ p(Y|θ)p(θ), (8)
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where p(Y|θ), called the likelihood, takes the usual form for
a multivariate normal distribution with covariance 6,

p(Y|θ)=
1

(2π)m/2|6|1/2
exp

(
−

1
2

YT6−1Y
)
. (9)

The prior distribution, p(θ), quantifies prior beliefs in plausi-
ble values of the emulator hyperparameters θ . MCMC sam-
pling (Fig. B2) produces a set of θ values which result in GP
predictions that appropriately fit the simulation outputs. Em-
ulator predictions yp are made by sampling hyperparameter
values from the MCMC simulations that are used to draw re-
alizations of the GP predictions yp from the GP predictive
distribution (Eq. 5). In addition to the probabilistic specifica-
tion that includes emulator uncertainty (Eq. 5), the fact that
the GP model is simple enough to allow Bayesian inference
of the emulator hyperparameter values θ , where uncertainty
in the hyperparameters is reflected in the uncertainty in the
emulator predictions, is a key advantage compared to a neu-
ral network for uncertainty quantification.

2.2.2 Multivariate Gaussian process emulator

The GP emulator described above does not directly trans-
fer to multivariate or spatiotemporally resolved models. One
approach to emulating spatiotemporal outputs would be to
view the simulation output as a scalar value that is predicted
as a function of position, time, and the parameters of the
numerical model (i.e. GlaDS). To emulate GlaDS simula-
tion outputs defined on ns mesh nodes at nt time steps (e.g.
daily) and using m simulations with different parameter val-
ues, this approach would result in a covariance matrix with
nsntm rows and columns. For the GlaDS simulation ensem-
bles, this would be at least 108 rows and columns, making
computing the determinants and inverses of the covariance
matrix required to evaluate the GP likelihood (Eq. 9) infea-
sible. There are a variety of solutions to this issue of GP
scalability (e.g. Liu et al., 2020), such as limiting the quan-
tity of training data (e.g. Chalupka et al., 2013), reducing the
rank (e.g. Smola and Bartlett, 2000; Quinonero-Candela and
Rasmussen, 2005) or number of nonzero entries in the co-
variance matrix (e.g. Kaufman et al., 2011), and using local
approximations that make predictions based only on nearby
points (e.g. Gramacy, 2016).

We follow a common approach for multivariate outputs,
proposed by Higdon et al. (2008), that views the simula-
tion output as a spatiotemporal field which is a function only
of the scalar parameter values of the numerical model. This
choice corresponds to the model

yi = η(xi)+ εi, (10)

where yi is the simulation output (a spatiotemporal field) cor-
responding to GlaDS parameter values xi and η(xi) is the
vector-valued emulator. The error term εi ∼N

(
0, 1
λsim

I
)

is
taken to be multivariate normal, parameterized by the pre-
cision hyperparameter λsim. This error model assumes that

errors at each spatial position and time step are uncorrelated,
which might not be strictly true for our application. The cor-
responding likelihood is constructed from the univariate GP
likelihood (Eq. 9) by augmenting the simulation covariance
matrix 6 with the covariance associated with the error term
εi ,

p(Y|θ)=
1

(2π)m/2
∣∣∣6+ 1

λsim
I
∣∣∣1/2

× exp

(
−

1
2

YT
[
6+

1
λsim

I
]−1

Y

)
. (11)

In order to reduce the dimensionality of the simulation
outputs, which leads to the obstacles described above, the
multivariate output field is modelled directly by using a prin-
cipal component (PC) decomposition. The PC decomposi-
tion represents the nsnt×m simulation output matrix with
a smaller p×m matrix of principal components (where p
is much smaller than the number of simulations m) by en-
coding the space and time dimensions in the PC coefficients,
rather than explicitly modelling the dependence. In this way,
the principal component step can be viewed as a dimension
reduction in the simulation outputs.

The PC decomposition writes each simulation output yi
and emulator prediction η(xi) as the sum of scalar principal
components (PCs) wij multiplied by basis vectors vj . For
example, for the simulation output yi ,

yi ≈

p∑
j=1

wijvj . (12)

Note that the truncated basis approximation becomes the ex-
act singular value decomposition of Y by retaining all p =m
PCs. However, a much smaller number of PCs can often
sufficiently approximate Y. Since the simulation output ma-
trix Y is large, with many more rows than columns (i.e.
nsnt�m), the principal components wij and basis vectors
vj are efficiently computed using a randomized low-rank sin-
gular value decomposition (Halko et al., 2011).

Following Higdon et al. (2008), since the PCs are orthog-
onal, independent univariate GPs are fit to model the rela-
tionship between the emulator inputs X and the PC vectors
wj = (w1j ,w2j , . . .,wmj ) for j = 1, . . .,p. For each univari-
ate GP, letting j index the principal components, we choose
to use a squared exponential covariance function,

k(x,x′
;λj ,βj )=

1
λj

exp

(
−

d∑
l=1

βj l(xl − x
′

l)
2

)
, (13)

where λj specifies the precision of the GP predictions for PC
j (inverse of the variance) and βj l specifies the sensitivity
to each emulator input Xl for PC j . The squared exponential
covariance function (Eq. 13) results in highly smooth GP pre-
dictions (e.g. Rasmussen and Williams, 2005). Other covari-
ance functions are available, for example, the Matérn family,
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that are more permissive in the imposed degree of smooth-
ness. While the flotation fraction field need not be smooth in
space and in time, the principal components wij (θ) tend to
vary smoothly with respect to the GlaDS parameters, since
the spatiotemporal complexity is captured by the principal
component basis.

Spatiotemporally resolved emulator predictions, η(xi), are
constructed from the p individual GPs by substituting poste-
rior GP realizations for wij in Eq. (12) using posterior sam-
ples of the GP hyperparameters θ . Predictions of the simu-
lation outputs for GlaDS parameter values xp are made by
sampling from the GP η(xp) and the error εi (Eq. 10). The
prediction mean and intervals containing 95 % of the predic-
tions can then be computed from these posterior samples of
Eq. (12) (Fig. 1).

This PC-based approach for modelling multivariate sim-
ulation outputs assumes that the original data Y can be ef-
fectively modelled with just a small number (p�m) of
PCs. We are optimistic that this assumption will hold, in
part because Brinkerhoff et al. (2021) developed a neural
network hydrology–dynamics emulator based on a principal
component decomposition of annual average surface veloci-
ties. We note that the complete statistical model (Eq. 10) has
p(d+1)+1 hyperparameters to estimate (in addition to p it-
self). To find an appropriate number of principal components
p, we develop subglacial drainage emulators for a range of
p values. In practice, GP predictions can be less accurate for
later principal components that explain a small fraction of the
ensemble variance (e.g. Higdon et al., 2008). Since including
GPs for these later PCs does not meaningfully improve pre-
dictions, we select a model with a modest number of prin-
cipal components that nonetheless has similar performance
obtained by using more components.

3 Experimental design

We run a large ensemble of simulations using an all-at-once
parameter sampling strategy to uniformly explore the input
parameter space and generate the simulation data used to fit
the GP emulators. This section describes the setup of the
GlaDS model, the experimental design to generate param-
eters for the simulation ensembles, and the outputs that are
extracted from the simulations for GP emulation.

3.1 Synthetic ice-sheet outlet glacier

3.1.1 Domain and geometry

The GlaDS model is applied to a 100km× 25km synthetic
ice-sheet margin domain (Fig. 2b). The synthetic domain is
modified from the synthetic ice-sheet geometry used in Sub-
glacial Hydrology Model Intercomparison Project (SHMIP)
experiments A–D (de Fleurian et al., 2018) to represent the
land-terminating regions near the K transect on the western
Greenland ice sheet (van de Wal et al., 2005; Smeets et al.,

2018). The synthetic geometry consists of a flat bed with an
elevation of 350 m (adjusted from 0 m in the SHMIP exper-
iment) and surface elevation between 390–1910 m (adjusted
from 1–1520 m in the SHMIP experiment) to match the ob-
served elevation range of this part of the ice sheet.

3.1.2 Melt forcing

GlaDS is forced with prescribed basal melt rates and surface
melt inputs through moulins. We impose a steady basal melt
rate of 0.05 m w.e. a−1, representing the total melt rate from
the geothermal flux and basal sliding. This basal melt rate is
in line with modelled basal melt rates in western Greenland
(e.g. 0.001–0.1 m w.e. a−1; Karlsson et al., 2021) but lacks
the seasonality associated with basal sliding. Surface melt
rate is computed with a positive degree-day model forced
with daily mean air temperatures recorded in 2014 at the
PROMICE lower K-transect (KAN_L, 670 m a.s.l.) weather
station (Fausto et al., 2021; How et al., 2022) (Fig. 2a).
We randomly place 60 moulins within the domain follow-
ing a moulin density that varies with elevation. Based on a
satellite-derived supraglacial drainage map (Yang and Smith,
2016), moulin density is parameterized by a normal distri-
bution with a mean of 1138 m and a standard deviation of
280 m. Surface melt is accumulated within sub-catchments
surrounding each moulin defined by a Voronoi diagram and
instantaneously routed to the bed.

3.1.3 Boundary and initial conditions

The model is posed on an unstructured triangular mesh
consisting of 3693 nodes with a mean edge length of
∼ 900 m. We impose an atmospheric pressure boundary con-
dition along the 25 km wide terminus to represent a land-
terminating outlet and apply a zero-flux condition elsewhere.
Model runs are initialized with zero channel area, cavity
height equal to 20 % of the bed bump height, and water pres-
sure equal to ice overburden pressure. The model evolves
from this initial condition to a steady state with respect to
hydraulic potential within the first winter. We run the model
for 2 complete years with identical melt forcing, discarding
the first year as a spinup period to minimize the influence of
channel initialization. For certain parameter combinations, a
steady-state channel network may not be reached after these
two melt seasons, as large channels that develop under thin
ice near the terminus may take 5 or more years to reach a
periodic steady state. Since the focus of the current work
is developing a subglacial drainage model emulator rather
than studying the subglacial hydrology of a particular physi-
cal system, we limit the simulations to 2 years in an effort to
minimize the time required to run large ensembles of simu-
lations.
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Figure 2. Synthetic ice-sheet margin experiment configuration. (a) Terminus (390 m a.s.l.) air temperature forcing and surface melt rate
derived from KAN_L weather station daily temperature (How et al., 2022) assuming a lapse rate of 5 °C km−1 and degree-day factor
0.01 m w.e. d−1 °C−1. (b) Surface elevation, bed elevation, moulins (black dots), and glacier centreline positions 15, 30, and 50 km from the
terminus (indicated by corresponding squares in panel d). (c) Example of a flotation fraction time series at the 30 km position. (d) Example
of a flotation fraction field on 24 July (indicated by the dashed vertical line in panel c) with moulins (black dots) and glacier centreline
positions.

3.2 Ensemble design

3.2.1 Model parameters

We vary eight uncertain GlaDS model parameters in ensem-
bles of simulations (Table 2). Consistent with Brinkerhoff
et al. (2021), we apply a log transformation to all GlaDS pa-
rameters to capture variations over the ranges that span 1 or
more orders of magnitude. The ranges for model parameters
used as emulator inputs (Table 2) have been chosen to bal-
ance maximizing the variation in each parameter and mini-
mizing the proportion of nonphysical model outputs. Given
the large variations in surface melt rates on diurnal and multi-
day timescales which result in large variations in water pres-
sure, we have had to choose narrower parameter ranges than
used by Brinkerhoff et al. (2021). We have found that broad-
ening the parameter ranges results in numerous nonphysi-
cal simulations with nearly zero water pressure during the
melt season, transient negative flotation fraction as low as
fw <−10, or flotation fraction as high as fw� 100, which
degrade the performance of the principal component decom-
position. These problems are symptomatic of the limitations
of the GlaDS model physics, and, since we are not interested
in training the emulator to reproduce these nonphysical out-
puts, we restrict the parameter ranges (and therefore restrict
the domain over which GP predictions can be reliably made)
to curate an ensemble with fewer nonphysical members. We
sample from the entire region described by the bounds listed
in Table 2 without filtering or discarding nonphysical train-
ing runs (cf. Jantre et al., 2024). The ensemble still contains
some instances of negative or extremely high flotation frac-
tion, but these do not appear to negatively impact the prin-
cipal component decomposition or the emulator predictions.

Since the goal of the emulator is to reproduce GlaDS outputs
as closely as possible, we do not constrain the emulator to
predicting a realistic flotation fraction fw ≥ 0.

We construct separate ensembles for emulator training and
evaluation. The training design consists of 512 samples from
a space-filling Sobol’ sequence (Sobol’, 1967). Sobol’ se-
quences were chosen for their sequential design properties:
each 2k subset (for positive integer k) of the sequence is itself
an approximately uniformly space-filling design (Fig. B1).
The trade-off between computational investment to gener-
ate training data and GP prediction performance can then
be assessed by fitting GP models with subsets of the origi-
nal sequence. The test design for model evaluation consists
of 100 samples from a space-filling, centred-discrepancy-
minimized Latin hypercube (McKay et al., 1979). A differ-
ent sampling strategy is used for the test design to minimize
the overlap between the training and test sets to ensure a fair
evaluation of model performance.

3.2.2 Simulation outputs

The primary output from each subglacial drainage model run
is a flotation fraction field (Eq. 3) defined at ns spatial loca-
tions and for nt time steps (Fig. 2c, d). We could alternatively
treat water pressure, effective pressure, or hydraulic potential
as our target variable to measure distributed water pressure,
but we have chosen flotation fraction for its natural scaling
that lies mostly between [0,1] and since it removes much
of the baseline geometric signal related to bed elevation and
ice thickness. Other model outputs (e.g. sheet thickness hs,
channel area S) could equally be considered targets for em-
ulation, but here we focus on measures of distributed water
pressure.
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In addition to emulating the spatiotemporal flotation frac-
tion fw, we also explore the possibility of emulating scalar
quantities derived from the full output fields to describe
the distributed and channelized drainage systems. We define
three scalar quantities of interest as proxies for key physi-
cal processes taking place in the subglacial drainage system.
Each drainage system component (sheet, channel network)
is described by an aggregate quantity of interest, with a third
quantity describing the partitioning between the components:

1. The channel discharge fraction fQ quantifies the parti-
tioning between distributed and channelized drainage.
For a fluxgate at a fixed distance from the terminus, the
channel discharge fraction is defined as the ratio of the
melt-season-integrated discharge crossing the fluxgate
through channels to the total melt-season-integrated dis-
charge crossing the fluxgate through both the sheet and
channel network. We evaluate the channel discharge
fraction for flux gates placed every 5 km between 5 km
and 30 km from the terminus and compute the average
across the six fluxgate positions to limit the influence
of the particularities of moulin position on this met-
ric. The channel discharge fraction fQ potentially in-
fluences glacial ecosystems (e.g. Hodson et al., 2008;
Dubnick et al., 2017), subglacial chemical weathering
(e.g. Graly and Rezvanbehbahani, 2022), and channel-
ized grounding line discharge of tidewater glaciers (e.g.
Meire et al., 2017).

2. Sheet transit time Ts describes the efficiency of the dis-
tributed (sheet) drainage system. Starting at a fluxgate
placed a fixed distance from the terminus, the sheet
transit time is the downstream-integrated and width-
averaged time it would take a parcel of water to travel
to the terminus through the distributed drainage system.
The sheet transit time is computed as the average time
starting from each of the same six fluxgate positions be-
tween 5 and 30 km. As a proxy for water residence time
in the subglacial drainage system, sheet transit time Ts
may be a factor in controlling chemical weathering rates
(e.g. Crompton et al., 2015; Graly and Rezvanbehba-
hani, 2022) and subglacial microbial composition (e.g.
Dubnick et al., 2017).

3. The extent of channel network development is described
by the total channel network length Lc. Given a pre-
scribed channel radius threshold R, the total channel
network length is the sum of the length of all chan-
nel segments (defined on mesh edges) with radius ≥ R.
The total channel network length is computed for ra-
dius threshold R = hb = 0.5m, corresponding to the
maximum bed bump height so that a channel segment
is never smaller than the largest cavities. By approxi-
mately determining the extent of the bed which is af-
fected by channelized discharge, the total channel net-
work length Lc potentially influences weathering rates

(e.g. Sharp et al., 1999) and glacial ecosystems (e.g.
Hodson et al., 2008).

4 Evaluation of the Gaussian process emulator

4.1 Principal component decomposition

Before evaluating the GP emulator for flotation fraction, we
investigate the assumption that the GlaDS simulation outputs
can be appropriately represented by the first several principal
components. The error in truncating the PC approximation to
retain only the first p PCs is quantified by (1) the root-mean-
square error (RMSE) between the original simulation outputs
and the PC approximation and (2) the cumulative proportion
of explained variance (Fig. 3). For all ensembles, the RMSE
and cumulative proportion of variance rapidly converge as
the number of PCs increases. For example, no more than 9
PCs are needed to capture at least 95 % of the variance of
the simulation ensemble, with RMSE not exceeding 0.045,
compared to the system response expected to be between 0
and 1. Larger ensembles (which include more simulations)
require more PCs to obtain the same RMSE value and ex-
plain the same cumulative proportion of variance, perhaps
since the input space has been explored more thoroughly. The
RMSE (0.045) and cumulative proportion of variance (95 %)
with 9 PCs together provide evidence that the GlaDS simula-
tion outputs can be effectively represented by a small number
(. 10) of PCs. This PC representation compresses the origi-
nal simulation data by a factor of approximately 105, reduc-
ing the number of columns in the simulation output matrix
from O(106) to O(10).

The principal component decomposition produces a set of
basis vectors representing the dominant modes of flotation
fraction variation in space and time (Fig. 3b1–b7). Note that
the signs of the PCs and basis vectors are arbitrary, since
inverting the sign of both the basis vj and the PC wij in
Eq. (12) yields identical results. Based on the first PC basis
vector being nonzero in winter and upstream of the maxi-
mum surface melt extent (∼ 80km), and not contributing to
the solution at low elevations during the melt season, the
first and most important PC in terms of its explained vari-
ance (80.6 %) appears to control the baseline water pressure
in the absence of surface melt inputs. PC2 is expressed most
strongly in the lower half of the domain and during the melt
season, suggesting that PC2 controls surface-melt-influenced
summer water pressure. The remaining PCs are expressed as
mixed positive/negative regions mostly confined to the melt
season, making them more difficult to interpret.

4.2 Emulator performance for flotation fraction field

4.2.1 Model selection

With PC truncation error quantified, we apply the Gaussian
process emulator described in Sect. 2.2.2 to the GlaDS sim-
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Figure 3. Principal component decomposition of spatiotemporal flotation fraction field. (a1) RMSE of the truncated principal component
representation and (a2) cumulative proportion of variance explained for the first 100 PCs of ensembles of 16–512 simulations. (b) Width-
averaged representation of the first seven flotation fraction fw spatiotemporal principal component basis vectors vj (Eq. 12) for the ensemble
with 256 simulations. Note that the PC basis is defined in time and both horizontal dimensions but has been width-averaged for ease of
visualization.

ulation outputs. Rather than selecting an appropriate num-
ber of principal components based on an arbitrary explained
variance threshold (e.g. 99 %), we fit GPs for a range of 1–
11 PCs and evaluate the resulting performance based on error
metrics (RMSE and mean absolute percent error, MAPE) and
whether GP predictions capture the essential features of the
simulation data. Since the convergence rate of the PC trunca-
tion error varies with ensemble size (Fig. 3), we repeat fitting
each GP using subsets of the Sobol’ design (Sect. 3.2.1) to
identify how the appropriate number of PCs changes for dif-
ferent training ensembles. Prediction performance is quan-
tified by the RMSE and MAPE between the test simulation
data (not seen by the emulators during the fitting) and em-
ulator predictions on the 100-member test ensemble. These
metrics are complementary, since RMSE is an absolute error
that is more sensitive to large deviations from the test data,
while MAPE is a relative error that is more sensitive to con-
sistent bias (Fig. 4).

The RMSE and MAPE curves provide some evidence that
more PCs should be included for larger ensembles. For the
ensemble with 32 simulations, there is no significant benefit,
in terms of RMSE and MAPE reduction, to using more than
4 PCs. For ensembles with at least 128 simulations, there
are slight reductions in RMSE and MAPE by adding addi-
tional PCs. However, the reductions are within the interquar-
tile range of the test errors, suggesting the improvement in
model prediction performance compared to simpler models
is small.

To identify the appropriate reference model for further
evaluation, we look in more detail at the prediction per-
formance of a GP based on 256 training simulations. Fig-
ure 5a–c show the distribution of the RMSE, the MAPE,
and the spatiotemporally averaged 95 % prediction interval
evaluated on the test ensemble for emulators constructed us-
ing different numbers of PCs. The RMSE and MAPE distri-
butions (Fig. 5a, b) again suggest that including more than
4 PCs slightly reduces the median and range of prediction
performance across the test ensemble. Prediction uncertainty
as measured by the spread of the central 95 % of emulator
predictions (Fig. 5c) initially decreases as more PCs are in-
cluded, reflecting the reduction in PC truncation error, with
minimal further reduction in uncertainty for 8–11 PCs. The
fact that the 95 % prediction intervals (Fig. 5c) overlap nearly
95 % of the simulated values for all but the smallest subset of
16 training runs (Fig. B4) suggests that the emulators have
well-calibrated uncertainty estimates. Figure 5 seems to sug-
gest that the RMSE and MAPE are converging to nonzero
values. This is an expected outcome, since the total error rep-
resents the sum of the basis truncation error associated with
using at most 11 PCs (Fig. 3) and the error in the GP predic-
tions of the principal components.

Insight into the common modes of GP prediction error can
be found by computing the mean RMSE spatial patterns and
time series. To assess how the spatial and temporal patterns
change as more PCs are included in the model, we consider
models based on 256 training simulations and 2, 5, and 8 PCs
(Fig. 6). For all models, the spatial pattern of prediction er-
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Figure 4. Median root-mean-square error (RMSE; a) and mean ab-
solute percent error (MAPE; b) for GP emulator predictions across
the 100-member test ensemble based on 16–512 simulations in the
training set and using 1–11 principal components. Vertical bars in-
dicate interquartile (25th to 75th percentile) ranges of RMSE and
MAPE.

ror is highest near the terminus, where seasonal variations in
flotation fraction are largest, and near moulins where surface
melt is injected to the bed. The simple model with 2 PCs has
larger and more widespread errors over the lowest ∼ 60 km
of the domain, while the models with 5 and 8 PCs have sim-
ilar moulin-influenced spatial distributions (Fig. 6a–c). The
seasonal evolution of prediction error (Fig. 6d) reaches a
maximum in the spring and decreases through summer, with
higher error occurring during periods with high melt inputs.
The simplest model results in higher maximum RMSE in
spring and in each melt event through the summer. Using 8
PCs reduces the height of the RMSE peaks in summer rel-
ative to the model with 5 PCs. All models have a similar
RMSE during the September melt event, with relatively little

improvement obtained by including more PCs. We take the
GP with 8 PCs as the reference model for further evaluation.

The trade-off between computation time to run the sim-
ulation ensemble and the resulting GP prediction accuracy
is evaluated by comparing the prediction RMSE, MAPE,
and uncertainty for GPs with the same architecture (p = 8
PCs) but restricted to subsets of the training data (Fig. 5d–
f). Increasing the number of simulations monotonically de-
creases prediction RMSE and MAPE, since the distance the
GP must interpolate from training points to test points is
smaller (Fig. 4). Prediction uncertainty is similar for mod-
els trained with 64–512 simulations (Fig. 3). We select 256
simulations as our reference training set. However, the sim-
ilar median RMSE and MAPE, and the overlapping predic-
tion uncertainty distributions, suggest that using 128 or 512
simulations would also be an appropriate trade-off between
investment in generating the ensemble and GP performance.

4.2.2 Model evaluation

With the reference model architecture selected, consisting of
8 PCs and trained using the first 256 GlaDS simulations, we
evaluate the GP emulator in more detail by comparing pre-
dictions on the set of 100 test parameter values to the unseen
GlaDS simulations. The median on the test set of the GP pre-
diction RMSE is 0.047, and the median MAPE is 2.0 % (Ta-
ble 3). Emulator predictions have negligible consistent bias
and explain 97 % of the variance in the GlaDS ensemble. Er-
rors are higher in the lower part of the domain and in the sum-
mer (months JJA), although the median coefficient of deter-
mination R2 is higher below 30 km (0.95) than above 30 km
(0.92).

To assess how emulator performance varies across the test
set, we evaluate the performance on test simulations with
95th percentile (“high error”), 50th percentile (“median er-
ror”), and 5th percentile (“low error”) RMSE. While emula-
tor predictions capture the primary spatial (Fig. 7) and sea-
sonal (Fig. 8) flotation fraction patterns for each of these
three test simulations, many of the GlaDS simulations pro-
duce unrealistically high water pressure exceeding overbur-
den (fw� 1) for long periods of time and over a large por-
tion of the domain (e.g. Figs. 7a2 and 8a2, b2) for the ranges
of parameters used in designing the ensembles. However, the
purpose of the emulator is to produce predictions similar to
the simulation values, rather than to produce flotation frac-
tion fields that align with expectations of realistic subglacial
hydrology.

For the high-error and median-error simulations, with un-
realistically high flotation fraction values, prediction error is
highest during the spring pressure peak, when simulated val-
ues are least reasonable (Figs. 7, 8). For test simulations with
lower error, and at times of year where flotation fraction val-
ues are more realistic, emulator predictions are closer to sim-
ulated values. The 95 % prediction intervals mostly overlap
the simulated values (Fig. 8), suggesting the emulator has
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Figure 5. Gaussian process emulator prediction performance, evaluated using the common 100-member test set, for varying model complex-
ity (a–c) and using subsets of the training data (d–f). (a, d) RMSE of predictions. (b, e) MAPE of predictions. (c, f) Width of 95 % prediction
intervals for each test simulation (boxes, whiskers, and crosses). The solid line in panel (f) indicates the number of CPU hours needed to run
the GlaDS training simulations for each subset. Boxplots show the median (horizontal line), the interquartile range (shaded box), and the
interval between the lowest and highest data points within 1.5 times the interquartile range from the median (whiskers), with outliers beyond
the whisker extents (crosses). Note the logarithmic horizontal axis in panels (d)–(f).

Figure 6. GP prediction RMSE for emulators using 2, 5, and 8 PCs. (a–c) Time- and input-averaged RMSE spatial patterns. (d) Domain-
and input-averaged RMSE time series.

reasonably accounted for interpolation and basis truncation
error. In the higher-error simulation, however, the predic-
tion intervals do not overlap the simulation outputs in spring,
when the mean prediction significantly overestimates flota-
tion fraction (Fig. 8a1, b1). In other words, the emulator has
amplified the unrealistically high GlaDS flotation fraction in
the case of the 95th percentile RMSE test simulation.

The GP emulator predicts flotation fraction fields signif-
icantly faster than running GlaDS directly (Table 4). Each

GlaDS run takes ∼ 24 min, and, with the simulation ensem-
ble in hand, it takes 47 min to fit the emulator by drawing
5000 hyperparameter samples. From that point on, emulator
predictions of GlaDS outputs take < 2 s on the same hard-
ware using 32 posterior samples, or 22 s using 512 posterior
samples, allowing a denser exploration of the GlaDS input
space.

In Sect. 2.1, effective pressure, water pressure, and hy-
draulic potential were mentioned as alternative variables
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Table 3. Median spatiotemporally averaged Gaussian process emulator prediction RMSE, MAPE, bias, and coefficient of determination R2.
Bracketed numbers indicate the 5th and 95th percentile values across the 100 test simulations.

RMSE MAPE Bias R2

Overall 0.047 0.020 0.00 0.97
(0.022, 0.088) (0.012, 0.036) (−0.009, 0.009) (0.90, 0.99)

Lower 30 km 0.075 0.12 −0.001 0.95
(0.034, 0.14) (0.070, 0.21) (−0.021, 0.017) (0.85, 0.98)

Upper 70 km 0.025 0.010 0.00 0.92
(0.011, 0.059) (0.006, 0.020) (−0.008, 0.006) (0.78, 0.97)

Winter (DJF) 0.010 0.006 0.00 0.998
(0.006, 0.035) (0.002, 0.023) (−0.005, 0.007) (0.98, 0.999)

Summer (JJA) 0.078 0.045 0.00 0.92
(0.038, 0.16) (0.027, 0.075) (−0.037, 0.024) (0.78, 0.97)

Figure 7. Width-averaged seasonal evolution of simulated (a) and emulated (b) flotation fraction fw, GP prediction error (c), and width of
the 95 % prediction interval (d). Predictions are compared for three input settings corresponding to high (95th percentile, row 1), median
(50th percentile, row 2), and low (5th percentile, row 3) prediction error. Rows are labelled with the index of the corresponding simulation
(i.e. the index of the test simulation with median error is m0.5 = 24), and associated parameter values are listed in Table B1.

to flotation fraction. For the flotation fraction emulator,
performance varies when predictions are subsequently re-
expressed in terms of each of these variables (Fig. 9). Predic-
tion performance as measured by the coefficient of variation
R2 is slightly worse when flotation fraction predictions are
subsequently converted into effective pressure (R2

= 0.936)
compared to using flotation fraction directly (R2

= 0.961),
while predictions are best if they are converted into hydraulic
potential (R2

= 0.993). The higher coefficient of variation
obtained by converting predictions into hydraulic potential
suggests that φ is the weakest of the three indicators of GP
prediction performance. Since converting emulator outputs
changes the coefficient of variation, any subglacial drainage

emulation application should identify the most relevant vari-
able to model. For example, if the output of the subglacial
emulator is to be used for ice flow coupling with an effective-
pressure-dependent basal slow law, the subglacial emulator
should be trained to predict effective pressure N directly
based on an ensemble of effective pressure fields, rather than
computing effective pressure from flotation fraction or hy-
draulic potential.

4.3 Emulator performance for scalar variables

In addition to the flotation fraction emulator described above,
we explore GP emulation of the three scalar variables. Taking
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Figure 8. Time series of GlaDS-simulated floatation fraction and mean GP emulator predictions on the test set with shaded 95 % prediction
intervals for nodes along the glacier centreline at (a) 15 km, (b) 30 km, and (c) 50 km from the terminus. Time series are extracted for
predictions with the 95th percentile (row 1), median (row 2), and 5th percentile (row 3) RMSE. Rows are labelled with the index of the
corresponding simulation, and associated parameter values are listed in Table B1.

Table 4. Computation time for GlaDS simulations, PC representa-
tion of the ensemble of simulations, estimation of GP hyperparame-
ters (i.e. training), and GP prediction for the reference emulator with
8 PCs and the 256-member training ensemble. Computations were
timed on AMD Rome 7532 CPUs on the Digital Research Alliance
of Canada Narval cluster.

Task Computation time
(HH:MM:SS)

Single GlaDS simulation 00:25:00
512-simulation ensemble 216:00:00
Principal components 00:00:18
MCMC sampling (5000 draws) 00:47:01
GP prediction 00:00:1.4

the same strategy as with the flotation fraction emulator to
assess the computation time–prediction performance trade-
off for these aggregate variables, we fit GPs using subsets of
the simulation ensemble (Fig. 10). These scalar variables are
emulated directly with univariate GPs, so we do not need to
tune the appropriate number of PCs.

As expected, adding simulations to the training ensem-
ble improves prediction accuracy and decreases prediction
uncertainty for each of the scalar variables. The slow rate
at which prediction error decreases for 128–512 simulations
suggests that 128 simulations may be sufficient for predic-
tions of the scalar variables. For consistency with the flota-
tion fraction emulator, we use m= 256 training simulations.
We obtain the lowest percent error for the channel discharge
fraction emulator (MAPE 5.2 %), with similar percent error
for the sheet transit time (8.8 %) and channel network length
emulators (9.0 %; Table 5). For all three scalar variables, the
MAPE is higher than for the flotation fraction field (2.0 %).

However, it is important to consider that the flotation fraction
field consists of many closely spaced, correlated time steps
and nodes and a long winter period with minimal variance
which may influence the error metrics. With this caveat in
mind, the MAPE suggests it is not necessarily more difficult
to model the spatiotemporal field itself than scalar descrip-
tions of drainage configuration and efficiency.

5 Sensitivity analysis

As an application of the fast emulator, we investigate the
model parameters and processes that most strongly control
the seasonal flotation fraction fields and the scalar variables
using variance-based first-order and total sensitivity indices
(e.g. Sobol’, 2001; Saltelli et al., 2007). These global indices,
sometimes called Sobol’ indices, differ from the common
practice of carrying out one-at-a-time sensitivity tests previ-
ously used for subglacial drainage models (e.g. Werder et al.,
2013; Dow, 2022; Khan et al., 2024) by varying all parame-
ters simultaneously. We compute both first-order sensitivity
indices and total sensitivity indices to capture the individual
and cumulative effects of each parameter.

The first-order effect of parameter xi on Y quantifies how
varying xi alone controls the output Y while averaging out
the effect of all other parameters. The first-order sensitivity
index for parameter xi (e.g. Saltelli et al., 2007) can be writ-
ten as

Si =
Var

(
EX∼i (Y|Xi)

)
Var(Y )

, (14)

where 0≤ Si ≤ 1 and a value close to 1 indicates that the
parameter xi is important. The notation EX∼i means the ex-
pectation over all parameters except xi . A low value near 0,
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Table 5. Emulator performance statistics using 256 training simulations on the 100-member test set for channel discharge fraction fQ, sheet
transit time logTs, and channel network length Lc variables. The range of values from the test simulation ensemble is provided to indicate
the scale of each variable to interpret the error metrics.

Variable Range Units RMSE MAPE (%) Median error (bias) (5 %, 95 %) error

fQ [0.0015, 0.99] – 0.034 5.2 0.0029 (−0.041, 0.059)
logTs [−1.28, 1.67] a 0.097 8.8 −7.5× 10−5 (−0.14, 0.18)
Lc [16, 1581] km 90 9.0 −0.89 (−116, 126)

Figure 9. Pointwise comparison of simulated and emulated vari-
able values, labelled with the coefficient of determination (R2).
(a) Flotation fraction fw (this study). (b) Flotation fraction re-
expressed as effective pressure N and (c) hydraulic potential φ.
Since the elevation potential is constant for the flat synthetic bed to-
pography, performance would be identical between water pressure
and hydraulic potential. Note the logarithmic colour scale.

however, does not indicate that xi is unimportant, since its
influence may come in the form of interactions with other
groups of parameters. We therefore compute the total effect
of parameter xi on Y. The total effect, quantified by the total
sensitivity index STi ,

STi = 1−
Var(E(Y|X∼i))

Var(Y)
, (15)

considers all ways that xi may influence the output Y, such
as through pairwise or higher-order interactions. We use the
recommended estimators in Table 2 of Saltelli et al. (2010) to
compute the indices. Confidence intervals for the sensitivity
estimates are computed by bootstrap resampling. Confidence
intervals extending > 1 are a result of numerical errors in
the estimators, which are only guaranteed to converge in the
limit of infinite simulation runs (Saltelli et al., 2010).

These methods are generally expensive, requiring thou-
sands of simulations or more to accurately estimate sensi-
tivity (Saltelli et al., 2010), depending on the dimensional-
ity of the input space. Here, we use a total of 5120 simula-
tions to quantify the sensitivity indices, which would require
∼ 100 CPU days using GlaDS directly. Using the emulator,
the computation takes ∼ 4 h. As with all sensitivity metrics,
it is important to highlight that these sensitivity indices are
dependent on the prescribed range of each model input (Ta-
ble 2), with the ranges in this study chosen based on require-
ments placed on model outputs (Sect. 3.2.2).

5.1 Flotation fraction field

These sensitivity indices are well defined for scalar model
outputs but are not directly applicable to the modelled flota-
tion fraction fields. Given the principal-component-based GP
emulator, it is natural to apply these sensitivity methods to
each individual principal component (e.g. Lamboni et al.,
2011; Xiao et al., 2017). For the flotation fraction field, we
recover p× d sensitivity indices, specifying the groups of
parameters that most strongly control each principal com-
ponent. A generalized sensitivity index measuring the total
impact of each input on the output field is computed as the
sum of the sensitivity indices for each of the p PCs weighted
by the squared singular values (Lamboni et al., 2011; Xiao
et al., 2017). The first-order and total sensitivity indices for
the first 5 PCs reveal that a few distinct groups of parameters
control each PC (Fig. 11b–f). The first PC is most sensitive
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Figure 10. GP prediction performance for channel discharge fraction (fQ, row 1), log sheet transit time (logTs, row 2), and channel network
length (Lc, row 3). (a) Distribution of simulated values from the test ensemble. (b) Prediction error evaluated on the 100 test simulations.
(c) Mean 95 % prediction interval.

to the sheet conductivity (ks), the bed bump aspect ratio (rb),
and the ice flow law coefficient (A). These variables con-
trol the sheet capacity and hydraulic gradient in the absence
of channels, supporting the interpretation of PC1 as repre-
senting water pressure in the absence of surface melt inputs
(Fig. 3). The second PC is most sensitive to channel conduc-
tivity with minimal sensitivity to other parameters, providing
some evidence that PC2 represents summer water pressure
controlled by channelized drainage. PC3 is most sensitive to
the englacial storage parameter (ev), with small sensitivity to
most other parameters. Since ev controls the amplitude and
duration of summer pressure peaks, PC3 appears to represent
corrections to the amplitude and duration of summer pressure
fluctuations controlled by englacial storage. PC4 and PC5
have less definitive first-order sensitivity with higher total
sensitivity indices, suggesting they are driven by interactions
between parameters.

Since PC1 explains ∼ 80 % of the total variance, the sen-
sitivity profile of the full flotation fraction field (Fig. 11a)
resembles the sensitivity of PC1. Only the sheet conductiv-
ity, bed bump aspect ratio, and ice flow law coefficient have
sensitivity indices greater than 0.1. The weak sensitivity to
channel conductivity, bed bump height, and englacial storage
suggests that these parameters together contribute to minor
corrections to the flotation fraction field related to channel-
ization and summer pressure fluctuations.

5.2 Scalar variables

Each scalar quantity is sensitive to a large group of pa-
rameters, with distinct sensitivity profiles between outputs

(Figs. 12, B5). In terms of physical processes, the channel
discharge fraction appears to be controlled by the rate of
cavity opening, as evidenced by the high sensitivity to the
bed bump aspect ratio, rb. Sheet transit time is most sensitive
to the sheet conductivity, ks, perhaps due to the linear scal-
ing between conductivity and flow velocity. The extent of the
channel network is controlled by the rate of channel initiation
through lc. We see very weak sensitivity of both the flotation
fraction field and the scalar variables to the transition param-
eter ω, suggesting it might be reasonable to remove ω from
the ensemble by holding it at a physically realistic value.

6 Discussion

6.1 What is the fidelity of the subglacial drainage
model emulator?

The GP emulators capture the essential features of seasonal
variations in modelled subglacial hydrology on a synthetic
domain. Predicted flotation fraction fields exhibit similar tim-
ing, amplitude, and duration of variations as GlaDS simula-
tions, with the highest discrepancy in the early melt season
(Fig. 8). Across the space of model parameters, prediction er-
rors are small relative to the variations across the ensemble of
simulations: prediction RMSE is < 20% of the standard de-
viation of the 100-member test ensemble. The flotation frac-
tion emulator, which captures 97 % (90 %–99 %) of the vari-
ance in GlaDS simulations (Table 3), therefore has sufficient
fidelity to resolve the influence of model parameter values
on spatiotemporally resolved flotation fraction, with similar

Geosci. Model Dev., 18, 4045–4074, 2025 https://doi.org/10.5194/gmd-18-4045-2025



T. Hill et al.: Subglacial drainage modelling using Gaussian process emulators 4061

Figure 11. First-order and total sensitivity indices (bars) with bootstrap confidence intervals for the eight GlaDS parameters (Table 2). (a) Full
flotation fraction field. (b–f) The 5 PCs that individually explain at least 1 % of variance in the flotation fraction field.

Figure 12. First-order and total sensitivity indices (bars) with boot-
strap confidence intervals for the effect of the eight GlaDS parame-
ters (Table 2) on channel discharge fraction fQ (a), log sheet transit
time log(Ts) (b), and channel network length Lc (c).

results for the scalar variables describing drainage configura-
tion and efficiency. Emulator performance was not assessed
when extrapolating outside of the range of parameters used
for training the model. For predictions far outside the train-
ing range, the zero-mean GP that we used would revert to
predicting the mean of the ensemble of simulations, likely
producing significantly higher errors than we found in the
test data. Predictions should therefore only be made within
the parameter ranges used in the GlaDS simulation ensem-
ble.

Prediction accuracy is limited by both GP error (reflecting
the finite number of training simulations) and the error as-
sociated with truncating the basis after at most 11 PCs. Of
the two error sources, PC truncation error is the larger con-
tributor for the p = 8 PCs and m= 256 training runs used
for the reference emulator. PC truncation RMSE on the test
set for the reference model with 8 PCs is 0.034 (Fig. 3a1).
GP prediction RMSE, representing truncation error and er-
ror in the GP predictions of the PCs, is 0.055, suggesting the
PC truncation error contributes more than half of the total
prediction error (Fig. B3). Increasing the number of princi-
pal components from 8 to 11 reduces basis truncation error
(Fig. 3a1) but only slightly reduces prediction error (Fig. 5a–
c), indicating that the balance between basis truncation error
and GP error depends on the number of principal components
used. The upper bound on prediction performance introduced
by the truncation error suggests that alternative methods for
multivariate simulation outputs (e.g. Liu et al., 2020) may
be helpful in constructing emulators of spatiotemporally re-
solved subglacial drainage model outputs if significantly im-
proved prediction accuracy is needed. Given the spatiotem-
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poral density of GlaDS outputs, local approximations (e.g.
Gramacy, 2016) may be an attractive alternative.

6.2 What is the trade-off between CPU investment in
generating training data and emulator fidelity?

Based on the diminishing returns in prediction accuracy ob-
tained by including more simulations (Fig. 4), using 128–
512 simulations appears to be an appropriate trade-off be-
tween emulator performance and the investment in generat-
ing training data (∼ 50–210 CPU hours) for the emulation
tasks considered here. This ensemble contain a large volume
of data: the ensemble consists of up to 512 simulations, each
with 365 time steps and ∼ 4000 nodes. Some improvement
can be obtained with additional simulations, since the emu-
lator will have closer neighbouring simulations to constrain
predictions for new input values. However, since only a mod-
est reduction in error is obtained while doubling computation
time, this may not be worth the cost for all applications.

Once the ensemble of ∼ 128–512 simulations has been
run, fitting the GP takes less time than a single additional
simulation (Table 4). For any applications requiring more
than ∼ 128–512 simulations, constructing the GP emulator
is worthwhile, since additional GP mean predictions are ob-
tained in < 2 s. These results, however, are specific to the
geometry and experimental design that we have used.

6.3 What are the spatial and temporal scales of
emulator prediction errors?

For the reference emulator, predictions recover spatial pat-
terns in flotation fraction better than they capture variations
in time (Fig. 6). The time-integrated spatially distributed
error patterns show that the highest emulator errors occur
within a few kilometres of moulins (Fig. 6a–c). These lo-
calized errors would be partially averaged out if the emu-
lated fields were used as part of the basal boundary condi-
tion for ice flow modelling, given that ice flow models act as
a low-pass filter with a wavelength threshold of several ice
thicknesses (e.g. Kamb and Echelmeyer, 1986; Joughin et al.,
2004). The impact of large errors in predicting the spring
pressure maximum may be reduced for ice flow modelling
applications if the difference is only in the amplitude and
not the duration of the pressure maximum. Both the GlaDS
simulations and the emulator predict water pressure exceed-
ing overburden (i.e. fw > 1; Fig. 7). Ice-sheet models would
typically cap effective pressure, and therefore restrict flota-
tion fraction, in order to ensure basal drag does not become
negative (e.g. fw ≤ 0.94; Ehrenfeucht et al., 2023; Verjans
and Robel, 2024). By contrast, errors in emulator predictions
with lower flotation fraction values, or errors in the duration
of water pressure exceeding the prescribed cap, would prop-
agate through the ice-sheet model to produce discrepancy
to some extent in modelled velocity fields relative to using
GlaDS directly (Verjans and Robel, 2024).

6.4 How does the GP emulator compare to neural
network emulators?

Table 6 compares characteristics of the GP emulator
presented here to previous neural-network-based models
(Brinkerhoff et al., 2021; Verjans and Robel, 2024). In terms
of prediction skill, the GP emulator has similar performance
to the model of Verjans and Robel (2024), who report the co-
efficient of variation (R2) between simulated and emulated
hydraulic potential fields of 0.96–0.998. When we convert
our flotation fraction predictions into hydraulic potential, we
obtain R2

= 0.993. Relative to the neural network models,
the GP has fewer parameters to fit (p(d+1)+1= 73 for the
reference model). The small number of parameters may help
avoid overfitting without requiring additional steps, such as
bootstrap aggregation (e.g. Brinkerhoff et al., 2021).

Verjans and Robel (2024) suggest that, without varying
GlaDS parameters, it is more difficult to predict hydraulic po-
tential for ice thickness and bed elevation fields that the em-
ulator has not seen during training than for different surface-
melt-forcing time series. While significant differences in
model setup, emulator architecture, and experimental design
prevent a direct comparison between our study and theirs,
the similar performance that the GP achieves when general-
izing to new values of eight model parameters suggests that
the parameter generalization task is of a similar difficulty to
domain or melt input transferability.

Compared to a neural network, which typically predicts
a single flotation fraction field without an accompanying
prediction uncertainty, the GP emulator predicts a distribu-
tion of plausible flotation fraction values (e.g. shaded inter-
vals in Fig. 8). This foundation in uncertainty quantification
is important for parameter inference tasks (e.g. Brinkerhoff
et al., 2021), for example, since the resulting posterior dis-
tributions of model parameters derived using the emulator
will be broader than would be obtained using the numerical
model directly (e.g. Downs et al., 2023). Prediction uncer-
tainty can be approximated for neural network models (e.g.
Gawlikowski et al., 2023), but it is an inherent component of
the GP emulator.

We have chosen to force GlaDS and emulate its output
at daily resolution, resulting in high variance in flotation
fraction time series. Smoother, averaged melt inputs (e.g.
monthly, Table 6) would likely lead to reduced PC trunca-
tion error and therefore more accurate GP predictions, since
GlaDS simulations tend to have smaller variations in time
and between simulations with lower-frequency melt inputs
(Hill et al., 2024b). For certain applications, daily resolution
is excessively fine. For example, for projecting long-term
changes in subglacial hydrology forced by climate model
projections, daily resolution may be incompatible with run-
ning 100–300-year simulations, despite the fact that daily
resolution is important for eliciting realistic water pressure
responses (e.g. Werder et al., 2013). For other applications,
such as constraining the model using time series observa-
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tions of borehole or moulin water pressure, the amplitude and
phase of daily variations may be important.

The GP emulator approach that we have described is clos-
est in spirit and in practical applications to that of Brinker-
hoff et al. (2021). By emulating model outputs for differ-
ent model parameter values, the GP emulator constructed in
this study and the Brinkerhoff et al. (2021) neural network
emulator are well suited for quantifying parametric uncer-
tainty, calibrating model parameters given data, and explor-
ing parameter sensitivity (e.g. Fig. 11). Both approaches use
a principal component decomposition that nicely introduces
interpretability for the emulator (e.g. Fig. 3, 11). Aside from
structural differences in the type of emulator, the major dif-
ferences between our work and that of Brinkerhoff et al.
(2021) is that we explicitly resolve subglacial water pres-
sure and drainage characteristics and obtain a built-in predic-
tion uncertainty estimate, whereas Brinkerhoff et al. (2021)
implicitly represent subglacial conditions through the influ-
ence on surface velocities and take extra steps to estimate
prediction uncertainty. Both approaches are tied to a partic-
ular study area, limiting their utility for large-scale forward
modelling. On the other hand, Verjans and Robel (2024) use
a convolutional neural network that can generalize to arbi-
trary melt forcing and study areas, making it an ideal tool
for forward modelling of ice-sheet evolution forced with a
basal boundary condition that is influenced by the hydrology
emulator. Since Verjans and Robel (2024) do not predict wa-
ter pressure for different model parameters, their emulator is
not ideally suited for uncertainty quantification, calibration
of drainage model parameters, or sensitivity analysis.

None of the subglacial drainage model emulators have
yet included structural constraints or constructed loss func-
tions to enforce governing equations or other physical con-
straints. For example, Jouvet and Cordonnier (2023) use a
loss function that is based on conservation of momentum as
part of a neural network ice flow velocity emulator. Such
“physics-informed” models have improved skill for inter-
polating between sparse observations and extrapolating out-
side the training data, but they come with additional costs
and complexity (e.g. Lai et al., 2024). Considering the dis-
continuous nature of the channelized drainage system and
the tendency of GlaDS to produce unrealistically high water
pressure, it remains an open problem to apply physical con-
straints, such as mass conservation, to the subglacial drainage
model emulation task and determine the applications which
would benefit from such constraints.

6.5 Limitations

The PC-based multivariate GP emulator introduces addi-
tional truncation error and prediction uncertainty when only
a small number of PCs (p = 8) are retained. Performance
can be minimally improved by running more training simu-
lations and adding more PCs, but the additional cost may not
be worth the modest improvements. While the interpretabil-

ity of the PC-based emulator is attractive, the choice of us-
ing GlaDS parameters as the only emulator inputs combined
with the basis representation produces an emulator that is
not transferable to different domains or melt inputs, since the
fixed basis encodes both (cf. Verjans and Robel, 2024).

Relative to the GlaDS simulations, the GP loses some fi-
delity, especially in the spring melt event and in capturing
the local influence of moulins on water pressure. For some
parameter combinations, the 95 % prediction intervals nearly
span the full range of temporal variations in melt season
flotation fraction. These predictions, associated with high-
variance portions of the input space or being far from train-
ing simulations, include a wide range of plausible flotation
fraction time series, suggesting there are some cases where
the emulator may not be suitably constrained by the training
data.

The synthetic ice-sheet domain excludes realistic varia-
tions in bed topography and ice thickness which influence
the location and configuration of channelized drainage and
the spatial patterns of flotation fraction. The simple spatial
patterns of flotation fraction in our simulations may partially
explain the relatively higher prediction skill in space than in
time (Fig. 6). This may not be the case for transferable em-
ulators, as Verjans and Robel (2024) found their emulator
had higher prediction skill generalizing to new melt-forcing
time series than new geometries. Future case studies should
explore the application of GP emulation of the subglacial hy-
drology of real ice-sheet basins.

6.6 Applications and considerations

When should an emulator be used instead of the numeri-
cal model directly? Since each simulation in the ensemble
used to train the emulator is independent, the ensemble of
simulations is efficiently parallelized, so generating training
data is not a serious bottleneck in absolute time. Applica-
tions for subglacial drainage emulation include inverse prob-
lems (computing distributions of model inputs or parameters
that produce model outputs consistent with data); forward
sensitivity problems (i.e. propagating distributions of input
parameters through the model to derive distributions of out-
put variables); and forward modelling, where aggregating the
subglacial drainage modelling cost offline is more convenient
(e.g. ice-sheet modelling using emulated effective pressure as
an input to a sliding law).

The number and type of emulator inputs (e.g. scalar model
parameters, model input fields such as topography and melt
forcing) and outputs are another important consideration,
since they will influence the flexibility and complexity of the
emulator. Increasing the number of emulator inputs will de-
grade performance for a given computational budget for run-
ning ensembles, especially if the variables to be emulated
are sensitive to the additional inputs, since adding dimen-
sions to the input space reduces the density of samples. Does
a specific task require predicting large fields (e.g. predicting
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Table 6. Comparison of subglacial drainage model emulation studies. N/A indicates criteria that are not applicable.

Criteria Brinkerhoff et al. (2021) Verjans and Robel (2024) This study

Emulator configuration

Emulator architecture Artificial neural net Convolutional neural net Gaussian process

Principal components
retained

50+ PCs to retain 99.99 % variance N/A 8 PCs based on prediction error and un-
certainty

Emulator inputs 5 subglacial drainage (ks, kc, hb, rb, ev)
and 3 sliding-law parameters (friction
coefficient γ 2 and friction exponents p,
q)

Bed topography, ice thickness, ice sur-
face velocity, surface melt rate aggre-
gated over 6 preceding epochs

8 GlaDS parameters (ks, kc, hb, rb, lc,
A, ω, ev)

Emulator output Multi-year average logarithmic surface
velocity

Spatially and seasonally resolved hy-
draulic potential

Spatially and seasonally resolved flota-
tion fraction; scalar channel discharge
fraction, sheet transit time, channel net-
work length

Training minimization
objective

Area-integrated squared velocity misfit Surface-velocity-weighted squared hy-
draulic potential misfit

GP posterior, (Eq. 8)

Number of training
simulations

5000 8 (each simulation spanning 1970–
2009)

256

Spatially transferable No Yes No

Temporally
transferable

N/A (multi-year average) Yes No

Physics or conservation
law constraint

None None None

Subglacial drainage model configuration

Subglacial drainage
model

Custom GlaDS implementation with
updated boundary conditions, cavity
opening rate, and numerical discretiza-
tion

GlaDS (ISSM) GlaDS (ISSM) with laminar–turbulent
sheet flow parameterization (Hill et al.,
2024b)

Model domain(s) Russell Glacier, western Greenland 8 Greenland outlet glaciers including
Russell Glacier

Synthetic outlet glacier

Surface melt rate
forcing

1992–2015 monthly modelled mean
runoff

30 d moving average dEBM modelled
melt rate

Daily mean air temperature and
temperature index melt model

Surface meltwater input
locations

Spatially distributed source 30 random positions per
100 km × 100 km image

68 (synthetic) and 171 (Greenland) ran-
dom positions with elevation-dependent
density

Coupling and calibration data

Ice flow model
coupling

Two-way: first-order ice flow model
with power-law sliding

One-way: provide simulated and emu-
latedN fields to determine basal sliding

None

Calibration data Multi-year annual average
InSAR-derived surface velocity

None None

Emulator performance

Evaluation variables
and metrics

Annual average surface velocity: per-
cent error

Hydraulic potential: R2 and RMSE Flotation fraction: RMSE, MAPE, and
prediction uncertainty

Computation time Not listed GlaDS simulation: 859.9 h. Prediction:
1.0 h.

GlaDS simulation: 0.5 h. Prediction:
2.1 s.

basal effective pressure as an input for ice-sheet model sim-
ulations)? Or is it sufficient to predict scalar quantities or a
measure of model–observation mismatch (e.g. Downs et al.,
2023)? Predicting scalar fields is an easier problem, espe-
cially for GP emulators, and may require less time to train
the emulator and fewer training simulations for the same pre-
diction performance.

The contribution of the GP emulator model constructed
here is primarily methodological, since it has been applied
to a synthetic ice-sheet outlet glacier. These particular meth-
ods are ideally suited for Bayesian calibration of model pa-
rameters given the probabilistic formulation (e.g. Hill et al.,
2024a). Since we do not include an ice flow component (cf.
Brinkerhoff et al., 2021), calibration data would need to con-
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sist of quantities that can be derived from GlaDS outputs di-
rectly, such as basal water pressure measured in boreholes
(e.g. Hubbard et al., 1995; Irarrazaval et al., 2021; Rada Gia-
caman and Schoof, 2023), moulin water level (e.g. Andrews
et al., 2014; Hoffman et al., 2016), tracer transit times (e.g.
Irarrazaval et al., 2021), or channel characteristics inferred
from passive seismic measurements (e.g. Nanni et al., 2021).

Emulated GlaDS effective pressure fields could be used as
inputs to a sliding law (e.g. Verjans and Robel, 2024), reduc-
ing the computational cost of ice-sheet model runs forced
by varying subglacial effective pressure. We see this type
of coupling as integral for assessing the uncertainty in ice
flow and solid ice discharge that is sourced from uncer-
tainty in subglacial drainage characteristics and model pa-
rameters. For instance, the sensitivity analysis from Sect. 5
could be extended to assess the contribution of subglacial
drainage model parameters to variations in modelled solid-
ice discharge for marine-terminating outlet glaciers. Addi-
tional uncertainties introduced by modelling ice flow, such
as the choice of a sliding law (Gagliardini et al., 2007; Zoet
and Iverson, 2020; Gilbert et al., 2023) and the relevant rhe-
ology of ice (e.g. Millstein et al., 2022; Schohn et al., 2025),
urge caution in such a coupled approach. The same steps that
we outlined in Sect. 2 and Fig. 1 to construct the flotation
fraction emulator can be used to emulate any vector-valued
model output as a function of scalar model parameters. The
uncertainty-aware GP emulator methods used here provide
one path forward for acknowledging and quantifying uncer-
tainties in a range of glaciological processes.

7 Conclusions

We have described a Gaussian process emulator for spatially
resolved subglacial hydrology at daily resolution. The emula-
tor uses eight parameters of the physics-based model GlaDS
as inputs and, using a principal component decomposition
for the multivariate model outputs, predicts water pressure
normalized by ice overburden (flotation fraction). For simu-
lations with the GlaDS model that run in ∼ 0.5 h, each GP
prediction can be as fast as < 2 s, with one-time overhead
costs of ∼ 5 CPU days to run the 256-member training en-
semble and ∼ 6.5 min to compute the principal component
decomposition and sample the GP hyperparameters. Emula-
tor predictions have 2.5 % average error, with locally higher
errors in the early melt season and near moulins.

In addition to spatiotemporally resolved flotation frac-
tion fields, we have explored emulating scalar variables that
describe subglacial drainage morphology, such as the total
length of the channel network, and efficiency, including the
fraction of channelized drainage and the transit time through
the distributed drainage system. Based on computing global
sensitivity indices, made tractable by the fast emulators, the
flotation fraction field and these scalar drainage variables are
influenced by distinct sets of model parameters. The flotation

fraction field is most sensitive to the ice flow coefficient (A),
the bed bump aspect ratio (rb), and the sheet conductivity
(ks). In contrast, flotation fraction is insensitive to the sheet
width below channels (lc) and the laminar–turbulent transi-
tion parameter (ω), suggesting these parameters are unlikely
to be constrained by data.

There is no universally optimal emulator. The emulator de-
scribed here is well suited to uncertainty quantification and
model calibration objectives given its built-in estimate of pre-
diction uncertainty, but it does not generalize to different melt
forcings or glacier geometries (cf. Verjans and Robel, 2024).
It also relies on a truncated principal component represen-
tation of the multivariate GlaDS outputs that introduces ad-
ditional error and uncertainty. The GP emulator nonetheless
unlocks a wealth of future research possibilities, including
Bayesian calibration of subglacial drainage models and prob-
abilistic approaches to ice flow modelling driven by emulated
subglacial drainage.

Appendix A: Subglacial drainage model governing
equations

The GlaDS model solves for hydraulic potential φ, water
sheet geometry described by sheet thickness hs, and sub-
glacial channel geometry described by the cross-sectional
area S based on conservation of mass combined with sheet
and channel discharge parameterizations (Schoof et al.,
2012; Hewitt et al., 2012; Werder et al., 2013). The model is
posed on an unstructured triangular mesh where the contin-
uum description of the distributed water sheet is applied over
the two-dimensional domain and subglacial channels are de-
fined along the network of one-dimensional channel edges.

Using the sheet flow parameterization described by Hill
et al. (2024b), which allows flow to transition between lam-
inar and turbulent regimes depending on the local Reynolds
number, the distributed water sheet evolves according to

− ksh
3
s∇φ = qs+ωReqs, (A1)

∂hs

∂t
= fb

hb−hs

rbhb
ub− Ãhs|N |

n−1N, (A2)

ev

ρwg

∂φ

∂t
+∇ · qs+ fb

hb−hs

rbhb
ub− Ãhs|N |

n−1N

=ms, (A3)

where qs is the discharge per unit width in the water sheet,
Re= |qs|

ν
is the Reynolds number for kinematic viscosity ν,

fb is a switch that turns off the sliding–opening term when
hb > hs, ms is the basal melt rate, Ã= 2

nn
A is a geometric

scaling of the ice flow law coefficient, and remaining param-
eter names and values are listed in Table 2. We have writ-
ten the sliding–opening parameterization (Eq. A2) in terms
of the bed bump aspect ratio rb, rather than the bed bump
length lb used in the original GlaDS formulation (Werder
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et al., 2013), where the aspect ratio rb = lb
hb

is the ratio of
the bump length to the bump height.

The subglacial channel network is governed by the set of
equations

Q=−kcS
αc |ψc|

βc−2ψc, (A4)

∂Q

∂s
+
4−5

L

(
1
ρi
−

1
ρw

)
− ÃS|N |n−1N −mc = 0, (A5)

∂S

∂t
=
4−5

ρiL
− ÃS|N |n−1N, (A6)

4=

∣∣∣∣Q∂φ∂s
∣∣∣∣+ ∣∣∣∣lcqc

∂φ

∂s

∣∣∣∣ , (A7)

5=−ctcwρw(Q+ f lcqc)
∂

∂s
(φ−φm), (A8)

where Q is the channel discharge, ψc =
∂φ
∂s

is the along-
channel potential gradient, ∂Q

∂S
is the along-channel discharge

gradient, 4 and 5 represent potential energy dissipation and
sensible heat changes,mc is a channel source term represent-
ing inflow from the adjacent water sheet, f is a switch that
disables refreezing when it would produce negative channel
areas, and remaining parameter names and values are listed
in Table 2. Equations (A4)–(A8) are applied to individual
channel segments, with the channel network assembled by
connecting individual channel segments at nodes and enforc-
ing mass conservation, with no storage permitted at nodes
and including possible mass inputs from moulins.

The governing Eqs. (A1)–(A8) are solved using finite ele-
ments. By integrating over the nodes, edges, and elements of
the mesh, the sheet–channel exchange term (mc) is computed
implicitly by assuming the hydraulic potential φ is continu-
ous between the sheet and channel systems (Werder et al.,
2013). The model allows an arbitrary combination of Dirich-
let boundary nodes with fixed hydraulic potential and Neu-
mann boundary nodes with specified boundary fluxes.
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Appendix B: Gaussian process emulator training and
prediction

Table B1. Parameter values corresponding to test simulations with 5th percentile, median, and 95th percentile RMSE (GlaDS parameters
defined in Table 2).

Parameter 95th percentile (66) Median (63) 5th percentile (71) Units

ks 0.37 0.12 0.031 Pas−1

kc 0.31 0.059 0.16 m3/2 s−1

hb 0.064 0.063 0.36 m
rb 75 39 25 –
lc 1.3 28 41 m
A 2.1× 10−24 2.9× 10−24 1.2× 10−24 s−1Pa−3

ω 1.2× 10−3 1.3× 10−4 1.4× 10−3 –
ev 1.2× 10−4 1.3× 10−4 2.7× 10−4 –

Figure B1. Pairwise two-dimensional projections of the parameter design matrix. Markers are coloured by each 2k subset for k = 3,4, . . .,9.
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Figure B2. MCMC trace plot of 5000 samples of the GP hyperparameters for the reference emulator (m= 256 training simulations with
p = 8 principal components), where λ is the GP precision for each of the p independent GPs, the βi are the GP rate parameters for each of
the GlaDS parameters, and λsim is the simulator precision associated with the principal component truncation error. The first 2500 samples
are discarded as a warm-up. Note that parameters λ and β1, . . .,β8 have traces associated with each of the p = 8 principal components.
Convergence of the MCMC simulations is evaluated by the potential scale factor reduction R̂ diagnostic, which measures the within- and
between-chain correlation, and the effective sample size, which reduces the sample size based on the autocorrelation, using four chains with
random starting points (Gelman et al., 2013). The median R̂ across GP hyperparameters and PCs is 1.008 (min. 1.001, max. 1.04), where
R̂ < 1.1 is often used to indicate convergence. The median effective sample size is 576 using four chains (min. 75, max. 1562), indicating
that most chains are converged based on the empirical threshold of 10 independent samples per chain (Gelman et al., 2013). The acceptance
rates are between 31 %–52 %.
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Figure B3. Principal component truncation error and GP prediction error. (a) GlaDS-simulated flotation fraction for the test simulation
with median RMSE on 29 July, (b) corresponding principal component representation of the GlaDS flotation fraction using 8 PCs, and (c)
Gaussian process (GP) emulator prediction. Difference maps show the principal component representation (d) and the Gaussian process
emulator prediction (e) minus the GlaDS output.

Figure B4. Proportion of GP-emulator-predicted flotation fraction values that overlap the simulated values within the 95 % prediction interval
across the test set. (a) For emulators constructed using different numbers of principal components. (b) For emulators using subsets of the
training ensemble. Horizontal lines indicate the median, and black dots indicate the mean across the test set. The right axis in panel (b)
indicates the number of CPU hours associated with running each subset of the GlaDS training ensemble. Note the logarithmic x axis in panel
(b).
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Figure B5. Select pairwise mean channel discharge fraction (fQ), log transit time (logTs), and channel length (Lc) response surfaces (GlaDS
parameters defined in Table 2). Note the different vertical and colour scales between each model output.

Code and data availability. Simulation outputs, trained emulators,
example notebooks, and code with scripts to reproduce all re-
sults and figures are available at https://doi.org/10.5281/zenodo.
15053542 under the MIT software licence (Hill et al., 2025).
GP emulators were constructed using the SEPIA package v1.1
(Gattiker et al., 2020), available at https://github.com/lanl/SEPIA/
(last access: 19 March 2025; DOI: https://doi.org/10.5281/zenodo.
4048801) via the BSD-3 licence. The Ice-sheet and Sea-level Sys-
tem Model (ISSM) v4.24 used for GlaDS simulations is available
at https://issm.jpl.nasa.gov/ (Larour et al., 2012) under the BSD 3-
Clause licence. Air temperature data are available from PROMICE
at https://doi.org/10.22008/FK2/IW73UU (How et al., 2022).
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