Articles | Volume 18, issue 13
https://doi.org/10.5194/gmd-18-4023-2025
https://doi.org/10.5194/gmd-18-4023-2025
Development and technical paper
 | 
02 Jul 2025
Development and technical paper |  | 02 Jul 2025

Anisotropic metric-based mesh adaptation for ice flow modelling in Firedrake

Davor Dundovic, Joseph G. Wallwork, Stephan C. Kramer, Fabien Gillet-Chaulet, Regine Hock, and Matthew D. Piggott

Related authors

Extending the range and reach of physically-based Greenland ice sheet sea-level projections
Heiko Goelzer, Constantijn J. Berends, Fredrik Boberg, Gael Durand, Tamsin Edwards, Xavier Fettweis, Fabien Gillet-Chaulet, Quentin Glaude, Philippe Huybrechts, Sébastien Le clec'h, Ruth Mottram, Brice Noël, Martin Olesen, Charlotte Rahlves, Jeremy Rohmer, Michiel van den Broeke, and Roderik S. W. van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2025-3098,https://doi.org/10.5194/egusphere-2025-3098, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Development of a Semi-Lagrangian advection scheme in the Finite Element Model Elmer (v9.0): Application to Ice dynamics
Cyrille Mosbeux, Peter Råback, Adrien Gilbert, Julien Brondex, Fabien Gillet-Chaulet, Nicolas C. Jourdain, Mondher Chekki, Olivier Gagliardini, and Gaël Durand
EGUsphere, https://doi.org/10.5194/egusphere-2025-3039,https://doi.org/10.5194/egusphere-2025-3039, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Uncertainty in the projected Antarctic contribution to sea level due to internal climate variability
Justine Caillet, Nicolas C. Jourdain, Pierre Mathiot, Fabien Gillet-Chaulet, Benoit Urruty, Clara Burgard, Charles Amory, Mondher Chekki, and Christoph Kittel
Earth Syst. Dynam., 16, 293–315, https://doi.org/10.5194/esd-16-293-2025,https://doi.org/10.5194/esd-16-293-2025, 2025
Short summary
The future of Upernavik Isstrøm through the ISMIP6 framework: sensitivity analysis and Bayesian calibration of ensemble prediction
Eliot Jager, Fabien Gillet-Chaulet, Nicolas Champollion, Romain Millan, Heiko Goelzer, and Jérémie Mouginot
The Cryosphere, 18, 5519–5550, https://doi.org/10.5194/tc-18-5519-2024,https://doi.org/10.5194/tc-18-5519-2024, 2024
Short summary
Automatic adjoint-based inversion schemes for geodynamics: reconstructing the evolution of Earth's mantle in space and time
Sia Ghelichkhan, Angus Gibson, D. Rhodri Davies, Stephan C. Kramer, and David A. Ham
Geosci. Model Dev., 17, 5057–5086, https://doi.org/10.5194/gmd-17-5057-2024,https://doi.org/10.5194/gmd-17-5057-2024, 2024
Short summary

Cited articles

Alauzet, F. and Loseille, A.: A decade of progress on anisotropic mesh adaptation for computational fluid dynamics, Comput.-Aid. Design, 72, 13–39, 2016. a
Alauzet, F. and Olivier, G.: An LpL space-time anisotropic mesh adaptation strategy for time dependent problems, in: Proceedings of ECCOMAS CFD, Lisbon, Portugal, 14–17 June 2010, ISBN 978-989-96778-1-4, 1–19, 2010. a, b
Alauzet, F. and Olivier, G.: Extension of metric-based anisotropic mesh adaptation to time-dependent problems involving moving geometries, in: 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, 4–7 January 2011, p. 896, https://doi.org/10.2514/6.2011-896, 2011. a
Alauzet, F., Frey, P. J., George, P.-L., and Mohammadi, B.: 3D transient fixed point mesh adaptation for time-dependent problems: Application to CFD simulations, J. Comput. Phys., 222, 592–623, 2007. a, b, c, d
Alnæs, M. S., Logg, A., Ølgaard, K. B., Rognes, M. E., and Wells, G. N.: Unified form language: A domain-specific language for weak formulations of partial differential equations, ACM Trans. Math. Softw., 40, 1–37, https://doi.org/10.1145/2566630, 2014. a
Download
Short summary
Accurate numerical studies of glaciers often require high-resolution simulations, which often prove too demanding even for modern computers. In this paper we develop a method that identifies whether different parts of a glacier require high or low resolution based on its physical features, such as its thickness and velocity. We show that by doing so we can achieve a more optimal simulation accuracy for the available computing resources compared to uniform-resolution simulations.
Share