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Abstract. Glaciological modelling is a computationally chal-
lenging task due to its high cost and complexity associ-
ated with large spatial-scale and long timescale simula-
tions. In this paper we propose feature-based anisotropic
mesh adaptation methods and demonstrate their effective-
ness for time-dependent glaciological modelling on a Ma-
rine Ice Sheet Model Intercomparison Project (MISMIP+)
experiment. Our methods use the Python-based Firedrake fi-
nite element library and the mmg2d remeshing software. We
show that we are able to achieve solution accuracy compa-
rable to uniform 0.5 km resolution mesh simulations using
a sequence of adapted meshes with, on average, 30 times
fewer vertices when adapting meshes based on the basal
stress and 8–12 times fewer when adapting based on ice
thickness and velocity. We further introduce a novel hybrid
time-dependent fixed-point mesh adaptation algorithm that
reaches mesh convergence approximately twice as fast com-
pared with the existing global fixed-point algorithm. Since
the fixed-point algorithms require that the problem is solved
multiple times, the reported reduction in the number of ver-
tices ultimately translates into a 3–6 times lower overall com-
putational cost compared to uniform mesh simulations.

1 Introduction

Despite significant improvements in ice sheet models, the ac-
curate prediction of the contribution of ice sheets to sea-level
rise in the 21st century remains uncertain (Aschwanden et al.,
2021). A major uncertainty pertains to correctly modelling
the dynamics of the grounding line, which is where the ice
transitions from being grounded to floating in the ocean (Du-
rand and Pattyn, 2015). Early studies demonstrated that hav-
ing appropriate refinement of the computational mesh near
the grounding line is vital for obtaining reliable numerical
results (Schoof, 2007; Vieli and Payne, 2005). This has been
further confirmed by the Marine Ice Sheet Model Intercom-
parison Project (MISMIP+) experiments, highlighting the
mesh resolution’s importance regardless of the level of ap-
proximation in the force balance equations (Pattyn et al.,
2012, 2013). While some studies have proposed methods
to mitigate mesh dependency by introducing a smooth tran-
sition in the basal stress at the grounding line at the cost
of model accuracy (Leguy et al., 2014), the majority have
focused on reducing computational costs by numerical and
meshing techniques while maintaining the model physics.
Different strategies have been developed to achieve the latter,
including models with explicit mesh movement to solve for
the grounding line position (Vieli and Payne, 2005; Moreno-
Parada et al., 2023) or fixed-grid models incorporating sub-
grid parameterisation of the grounding line (Pattyn et al.,
2006; Gladstone et al., 2012; Seroussi et al., 2014). How-
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ever, these approaches rely on the hydrostatic criterion to de-
fine the grounding line position and thus cannot be readily
applied to flow models that solve the complete force balance
equations and treat the grounding line position as a contact
problem (Gagliardini et al., 2016; de Diego et al., 2022).

On the other hand, mesh adaptation methods select finer
mesh resolution in regions of interest (e.g. in the vicinity of
the grounding line) and coarser elsewhere to preserve nu-
merical resources. These methods have grown particularly
popular in finite element and finite volume modelling due
to their ability to utilise different types of meshes (struc-
tured, unstructured, or hybrid) and, through sophisticated er-
ror estimation and adaptation algorithms, to enhance com-
putational efficiency and improve solution accuracy (Alauzet
and Loseille, 2016). In the context of mesh adaptation, “solu-
tion accuracy” refers specifically to minimising discretisation
error, i.e. the error that arises from approximating continu-
ous mathematical equations by discrete numerical methods.
Other sources of error are not addressed.

Different criteria have been used in the literature to de-
fine the regions of interest with desired mesh resolution. The
distance to the grounding line, or alternatively distance from
flotation, has been the most popular criterion to define areas
warranting smaller mesh sizes (Durand et al., 2009; Goldberg
et al., 2009; Gladstone et al., 2010; Cornford et al., 2013;
Gudmundsson et al., 2012; Jouvet and Gräser, 2013; dos San-
tos et al., 2019). However, such criteria do not explicitly con-
trol the solution error and neglect the error contribution of
domain regions away from the grounding line while refining
other regions where this may not be necessary, hence making
the simulation less efficient. Distance-from-flotation-based
criteria have been shown to be inferior to refinement criteria
based on an error estimator (dos Santos et al., 2019). Gold-
berg et al. (2009) use the jumps in strain rate at cell bound-
aries as a generic estimator of the numerical error to define
areas that require finer mesh resolution. In their method, the
total number of mesh nodes is constant and this generic es-
timator is not adapted to handle all flow regimes as it tends
to increase the resolution at the shear margins, sometimes at
the expense of the resolution at the grounding line. dos San-
tos et al. (2019) implement a true a posteriori error approxi-
mation (i.e. the actual numerical error is approximated after
the solution has been obtained), the Zienkiewicz–Zhu error
estimator, for the deviatoric stress tensor and ice thickness.
They find that using the distance to grounding line and the
error estimator criteria separately and in combination pro-
duces similar results on a benchmark steady-state problem
but predict that the combined criterion would yield superior
performance in simulations involving real ice sheets.

Existing ice sheet models utilising mesh adaptation also
differ in the way they cope with grounding line movement in
time-dependent problems. Some models use fixed meshes,
which requires the a priori refinement of areas where the
grounding line is susceptible to move through, while other
models use mesh adaptation techniques that can involve

moving meshes (Durand et al., 2009; Goldberg et al., 2009),
mesh refinement and/or coarsening (Goldberg et al., 2009;
Jouvet and Gräser, 2013; Cornford et al., 2013), or the en-
tire remeshing of the domain (e.g. the Úa finite-element ice-
flow model described in Gudmundsson et al., 2012). How-
ever, none of these studies consider the temporal distribution
of spatial error associated with time-dependent mesh adapta-
tions.

Mesh adaptation strategies have become popular in com-
putational fluid dynamics to capture complex multiscale phe-
nomena such as shock wave propagation (e.g. Frey and
Alauzet, 2005; Alauzet et al., 2007). The general aim is to
control the accuracy of the solution by adapting the size and
shape (or anisotropy) of individual mesh elements. A core
challenge is in finding efficient and reliable “estimators” of
the numerical error which are used as the basis with which
to define refinement criteria. Frey and Alauzet (2005) pro-
pose an estimator based on the interpolation error; the mesh
size is then defined by an anisotropic metric map which
equidistributes the error in the computational mesh. Such ap-
proaches are also known as feature-based approaches, since
the constructed metric aims to capture the features of solu-
tion fields, or derived solution-dependent fields, from which
meshes are to be adapted. While not based on a true a poste-
riori approximation error, it has been found effective in prac-
tice to control the numerical error and offers flexibility in
combining metrics obtained for different variables. The gen-
eration of anisotropic meshes allows us to capture strongly
directional processes and geometries even more efficiently.
This is desirable in glacier shear margins, for example, where
much finer resolution is required across the shear margin than
along it. Such methods have been applied in finite element
ice flow models to capture the dynamics of fast-flowing out-
let glaciers using a metric defined from the observed sur-
face speed while keeping overall computational costs low
by coarsening other regions (Morlighem et al., 2010; Seddik
et al., 2012; Gillet-Chaulet et al., 2012). These methods gen-
erate only a single mesh that is used throughout the simula-
tion. However, they do not consider the non-linear and time-
dependent coupling between the solution and the underlying
mesh. This coupling suggests an iterative mesh adaptation
procedure, which we will implement.

The purpose of this paper is twofold. Firstly, we aim to
provide a self-contained description of anisotropic metric-
based mesh adaptation methods suitable for ice sheet and
glacier modelling. Secondly, we demonstrate and evaluate
their ability to control solution accuracy while maintaining
low computational cost in the context of grounding line dy-
namics modelling. We build on earlier applications of the
method in glaciological modelling, and we implement a
novel adaptation procedure appropriate for transient simula-
tions which consists of a spatio-temporal error analysis and
a generation of multiple meshes that control the error.
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2 MISMIP+ experiment set-up

The numerical experiment from the third Marine Ice Sheet
Model Intercomparison Project (MISMIP+; Asay-Davis
et al., 2016; Cornford et al., 2020) features an idealised
ice stream, which is an elongated region of fast-flowing ice
within an ice sheet. While the ice sheet exhibits negligible
basal sliding, the rapid ice stream motion is dominated by
processes at the ice–bed interface. Viscous stresses can also
be significant in some parts of the ice stream, such as near the
grounding line, in shear margins, and where basal traction is
low (Greve and Blatter, 2009; Stokes, 2018). The ice experi-
ences a sudden change in flow regime at the grounding line,
where the ice stream flows into the floating ice shelf, which
is no longer in contact with the bed topography.

We follow the experiment design and prescribed parameter
values as described in Asay-Davis et al. (2016), which places
the ice stream in an elongated rectangular domain measuring
640 km in the x direction and 80 km in the y direction. The
ice is flowing approximately parallel to the x axis over an
idealised bedrock topography. The topography is described
by a sixth-order polynomial in the x direction and an expo-
nential in the y direction: prescribing an elongated central
trough surrounded by steep walls. The bed topography slopes
downwards throughout most of the domain but involves a ret-
rograde slope at around x = 450 km where the steady-state
ice stream would ground. Beyond the grounding line is the
ice shelf that is fed by the upstream flow of ice. The experi-
ment prescribes a no-slip boundary condition at x = 0, free-
slip conditions at y =−40 and y = 40 km, and a fixed calv-
ing ice front at x = 640 km where ice is removed from the
domain. The prescribed topography and boundary conditions
lead to solutions that are symmetrical about the middle of the
domain, at y = 0 km. Therefore, we choose to run the exper-
iment in only half of the domain to preserve computational
resources, as several participants in the intercomparison have
also done (Cornford et al., 2020).

We focus on the Ice1 group of experiments from the
MISMIP+ exercise as it produces more drastic glacier evo-
lution and grounding line migration compared to other ex-
periments in the exercise (Cornford et al., 2020). The Ice1
experiment runs for 200 years, where the first 100 years see
a retreat of the glacier induced by ice shelf melting. The ice
shelf melting is then removed in the last 100 years, when the
glacier grows and re-advances. The drastic change in flow
regime accompanied by the rapid migration of the grounding
line in the Ice1 experiment presents an ideal test case for the
application of mesh adaptation methods.

2.1 Solving equations of glacier flow

The description of the ice stream dynamics requires a mo-
mentum conservation equation, which describes how the ve-
locity field u(x, t) evolves under the influence of forces. In
this work we apply the shallow stream approximation, which

yields the following depth-averaged momentum conserva-
tion equation:

∇ · (HS)+ τ b = ρIgH∇s, (1)

where H =H(x, t) is the ice thickness, S= S(x, t) is the
membrane stress tensor, τ b = τ b(x, t) is basal friction, ρI is
ice density, g is gravitational acceleration, and s = s(x, t) is
surface elevation. The membrane stress and strain rates are
related by Glen’s flow power law. Furthermore, we require
a description of how ice thickness H evolves in time, which
is described by the following depth-averaged mass conserva-
tion equation:

∂H

∂t
+∇ · (Hu)= ḃ, (2)

where ḃ = ḃ(x, t) is the climatic-basal mass balance rate. For
a detailed discussion and derivation of the equations, we refer
the reader to Greve and Blatter (2009).

To solve equations of glacier flow we use icepack, a
Python library built on Firedrake, which includes relevant
highly customisable glacier flow models (Shapero et al.,
2021). Like most current ice sheet models, icepack imple-
ments the first-order explicit Euler approximation to the cou-
pled model to solve equations of glacier flow. That is to say,
at each time step the scheme uses ice geometry at the pre-
vious time step to solve the stress balance equations for ice
velocity at the current time step, which is then used to solve
the mass transport equation to evolve ice geometry in time
(for details, see Shapero et al., 2021).

Icepack formulates the shallow stream model from a prin-
ciple of least action, where the action functional consists of
terms for viscosity, friction, gravity, and terminus. This is
a generalisation of the shallow shelf approximation of the
Stokes equations as it involves a bed friction term τ b which
is non-zero for grounded ice and zero for floating ice. There-
fore, in order to produce a smooth transition and prevent
shocks across the grounding line, we gradually reduce fric-
tion in its vicinity (Leguy et al., 2014). To do that, we use a
modified form of the Schoof sliding law derived by Shapero
et al. (2021). Basal shear stress, τ b, is then given by

τ b =

 −
α2N |u|1/3[

(α2β−2N)
4
+|u|4/3

]1/4
u
|u|

if N > 0,

0 if N ≤ 0,
(3)

where N is the effective pressure at the ice base, u is the hor-
izontal ice velocity, α2

= 0.5, and β2
= 100 MPa m−1/3 a1/3

is the friction coefficient. The effective pressure N is defined
as the difference in ice and water overburden pressure; thus
τ b is zero for floating ice (N ≤ 0). Finally, icepack imple-
ments a Lax–Wendroff scheme for the mass transport model
(Shapero et al., 2021). The computational cost for solving the
stress balance equations is significantly higher than the mass
transport equation.
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The weak forms of the shallow stream and mass conser-
vation equations are then discretised by Firedrake using fi-
nite element methods. To construct an efficient solver for
the stress balance equation, we leverage their formulation
as the derivative of a convex action functional, meaning
that the Hessian is symmetric and positive-definite (Shapero
et al., 2021). We therefore solve linear systems using a di-
rect solver based on Cholesky factorisation (Amestoy et al.,
2001, 2006). Backtracking line search is used to solve non-
linear systems.

2.2 Uniform mesh refinement

In order to study the sensitivity of the solution to mesh res-
olution and validate the mesh adaptation results, we first run
the MISMIP+ Ice1 experiment on a series of uniform struc-
tured meshes, with mesh resolutions of 4, 2, 1, 0.5, 0.25, and
0.125 km.

The Ice1 experiment starts from an initial state computed
by running the model forward in time for a long time with
constant climatic-basal mass balance rate ḃ = 0.3 m a−1 until
the sought quasi-steady state is reached. Following Shapero
et al. (2021), we efficiently spin up the model by adopting
a hierarchical uniform mesh refinement strategy. We begin
with a structured uniform coarse mesh of 4 km resolution on
which we compute a reasonable approximation of the solu-
tion. The mesh is then uniformly refined, and the simulation
continues. This process is repeated five times, resulting in
uniform meshes of 4, 2, 1, 0.5, 0.25, and ultimately 0.125 km
step sizes in both x and y directions. The total spin-up time
is 15 000 years. With each mesh refinement, the difference
in ice volume and grounding line position at steady state di-
minishes. We conclude that the simulation has converged at a
uniform mesh resolution of 0.25 km due to very small differ-
ences between the 0.5, 0.25, and 0.125 km resolution results
at steady state. This matches convergence studies performed
by MISMIP+ participants, who concluded that the 0.5 km
mesh resolution is adequate for the experiments (Cornford
et al., 2020, supplementary data). The initial quasi-steady-
state ice thicknessH , ice velocity u, and basal shear stress τ b
are shown in Fig. 1, alongside bed topography contours.

Once the steady-state solution had been computed, we ini-
tialise the Ice1 experiment by interpolating the steady-state
ice thickness and velocity fields onto uniform-resolution
meshes. In order to better isolate the differences in results
due to different spatial discretisations, for each simulation
we use the same time step size 1t = 1/24 a which satisfies
the Courant–Friedrichs–Lewy (CFL) condition on the finest
mesh. Results of the Ice1 experiment on each of the uni-
form meshes are shown in Fig. 2. Finer-resolution simula-
tions exhibit faster ice volume loss and retreat of the ground-
ing line, while the coarsest resolution (4 km) finds a new
quasi-steady state. There is again a small difference between
the 0.125, 0.25, and 0.5 km results in most of the temporal
evolution. The largest differences appear in the position of

Figure 1. Initial steady-state (a) ice thickness h, (b) ice velocity u,
and (c) basal shear stress τb of the MISMIP+ experiment with the
sliding law of Eq. (3).

Table 1. Number of vertices (Nv) and CPU time associated with
Ice1 experiment simulations shown in Fig. 2 run on a single CPU
on uniform meshes of varying resolution.

Resolution (km) Nv CPU time

4 1771 2.7 min
2 6741 9.3 min
1 26 281 36.8 min
0.5 103 761 3.34 h
0.25 412 321 15.85 h
0.125 1 643 841 83.2 h

the grounding line along the shear margin (the lateral bound-
ary of the ice stream), where the grounding line position on
a 0.5 km mesh fluctuates, and towards the end of the simu-
lation in the grounding line position at the ice ridge near the
domain boundary (Fig. 2d). Numbers of degrees of freedom
and computation times associated with each simulation are
given in Table 1, which ranges from 2.7 min for the coarsest-
resolution simulation to 83.2 h for the finest-resolution sim-
ulation. All simulations were run in serial for the purpose of
CPU time measurements, but they can be run in parallel.

2.3 Mesh adaptation considerations

The convergence study of Fig. 2 confirmed that the
MISMIP+ experiment is indeed highly sensitive to mesh
resolution. The study, however, does not inform us of what
parts of the domain are most sensitive to resolution, since we
uniformly refined the mesh over the entire domain. If a cer-
tain problem is equally sensitive to resolution throughout the
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Figure 2. Results of the uniform mesh convergence study for the Ice1 experiment for different mesh resolutions: (a) volume above flota-
tion (Vf) over time, (b) grounding line position along the midchannel line (xgl(y = 0)) over time, and (c) grounding line position in the
domain at t = 100 a and (d) t = 200 a.

domain, then using a uniform mesh may be the most suit-
able choice. However, as discussed in detail in the Introduc-
tion, earlier studies do show that ice sheet simulations bene-
fit from selective refinement, particularly near the grounding
line (Schoof, 2007; Vieli and Payne, 2005). As general rules
of thumb, we would expect that finer resolution is required
in regions where the solution changes rapidly, near moving
interfaces or free boundaries, around complex geometric fea-
tures, and so on.

As the name suggests, feature-based mesh adaptation re-
lies on identifying instructive problem-specific features, or
sensors, to guide mesh adaptation. The choice of a sen-
sor field is non-trivial, as any spatially varying scalar field
qualifies. This includes the solutions themselves, i.e. the
scalar-valued ice thickness and individual components of the
vector-valued ice velocity, as well as any solution-dependent
field, such as the components of the vector-valued basal shear
stress. Multiple sensor fields may also be combined, both in
space and in time.

In the next section we show how a metric is defined from
a sensor field and how different choices of sensor fields lead
to different adapted meshes. For a simpler example, we refer
the reader to Appendix A, where we apply mesh adaptation
methods to a familiar problem of a Poisson equation.

3 Anisotropic metric-based mesh adaptation

Consider a partial differential equation (PDE) problem writ-
ten in the generic operator form F(u)= 0 on a bounded

polygonal domain � with an exact solution u ∈ V . Since the
domain is bounded, we can prescribe a spatial discretisation
in terms of a mesh, H, which consists of a finite number
of non-overlapping elements and a corresponding number of
vertices Nv. The numerical solution uh ∈ Vh, where Vh ⊂ V
is a discrete subspace of V , is obtained here via finite element
methods, with an associated approximation error u−uh. The
cost of computing the solution uh on H increases as Nv in-
creases. However, while increasing Nv through the uniform
refinement of a mesh would generally be expected to result
in reduced errors, uniform refinement is expected to give a
sub-optimal reduction in error as Nv increases. Mesh adap-
tivity seeks to address this: to more optimally and robustly
link a decreasing error with an increasing Nv.

The general mesh adaptation problem considered in this
paper can be formulated in an a priori way as follows:

Find Hopt with Nv vertices solving min
H

E(H), (4)

where Hopt is the optimal mesh that minimises some measure
of the approximation error E(H). The goal of mesh adapta-
tion is therefore to achieve a minimal approximation error
for a given computational cost, which can be directly related
to the number of vertices, Nv, of H. In the anisotropic mesh
adaptation approaches presented here, the optimal mesh is
found approximately and iteratively by changing the size,
shape, and orientation of its elements.
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3.1 Continuous metric framework: 2D overview

In order to formulate the mesh adaptation problem (Eq. 4)
such that it is well-posed and that it can be analysed us-
ing familiar methods from variational calculus, Loseille and
Alauzet (2011a) propose the continuous metric framework.
The framework establishes a strong duality between discrete
mesh elements and continuous mathematical objects stem-
ming from Riemannian geometry. The key idea in Rieman-
nian geometry is to define a local way of measuring distances
in a space, which, unlike in Euclidean geometry, may vary
between points x ∈�. The notion of measuring distances
arises from the definition of a Riemannian metric M(x),
which is identified with a positive-definite matrix in Rd×d at
each point x of the d-dimensional domain. A spatially vary-
ing metric leads to local notions of geometric quantities such
as length, volume, and angle. This is particularly useful in
the context of anisotropic mesh adaptation, as it allows us to
prescribe different sizes, orientations, and directional stretch-
ings of individual mesh elements in the domain. We refer the
reader to Loseille and Alauzet (2011a, b) for a detailed de-
scription and analysis of the framework. However, in order
to be self-contained, we illustrate how Riemannian metrics
can be used to drive mesh adaptation on a two-dimensional
domain �⊂ R2.

It follows from the spectral theorem that M admits a diago-
nalisation M= R diag(λ1,λ2)RT , where R= R(x) is a ma-
trix of orthogonal and normalised eigenvectors of M, and λ1
and λ2 are the corresponding eigenvalues such that λ1 ≥ λ2.
By defining metric density ρ and anisotropy quotients r1 and
r2 as

ρ =
√

det M=
√
λ1λ2, r1 =

√
λ2

λ1
= r−1

2 , (5)

where anisotropy quotients measure the “stretching” strength
in the directions of the eigenvectors in R, the diagonal de-
composition can be written in a form that is more instructive
in the context of mesh adaptation:

M= ρR
(
r−1

1 0
0 r−1

2

)
RT . (6)

In the continuous metric framework, the metric M prescribes
the optimal size of the mesh element (through density ρ), its
optimal shape (through quotients r1, r2), and its orientation
(through eigenvectors in R). Thus, the metric-based approach
introduces anisotropy in the resulting mesh.

Analogously to how the metric tensor M models a single
mesh element, the metric tensor field M : x ∈� 7−→M(x)

models the entire mesh H. To that end, the metric complexity

C(M)=

∫
�

ρ(x)dx (7)

represents the integrated amount of resolution of M; i.e. it
provides an estimate for the number of vertices, Nv, in the
mesh corresponding to that metric.

As introduced in George et al. (1991), the key idea
of anisotropic metric-based mesh adaptation is to gener-
ate a mesh which has approximately unit-size element edge
lengths when viewed in the prescribed Riemannian space.
When viewed in the Euclidean space, the mesh is then appro-
priately adapted and anisotropic. Note that the unity criterion
is generally impossible to satisfy exactly (consider discretis-
ing a rectangular domain with non-overlapping equilateral
triangles in Euclidean space), so the criterion must be relaxed
(for details, see Loseille and Alauzet, 2011a).

Following from the diagonalisation of M, the metric is
commonly interpreted geometrically by the deformation of
a unit circle with a metric map into an ellipse (see Fig. 1.1
in Loseille and Alauzet, 2011a). However, such geomet-
ric interpretation is unwieldy for visualising entire metric
fields M, and metric density and anisotropy quotient fields
may be more appropriate, as shown in Fig. 3. The fig-
ure demonstrates how a high metric density ρ prescribes a
small adapted mesh element size, and vice versa, while the
anisotropy quotients r1 and r2 control the stretching of mesh
elements in the directions of the eigenvectors in R. For ex-
ample, the mesh adapted from the basal shear stress met-
ric prescribes the finest resolution along the grounding line,
where elements’ shape and orientation follow the geometry
of the grounding line. Furthermore, mesh elements along the
shear margin are most strongly stretched along the x direc-
tion when adapted from the ice thickness metric.

In cases when the exact solution u is not known, the main
challenge lies in finding a reliable estimate of the approxi-
mation error u− uh, which is then used in constructing the
metric field M. The metric then drives mesh adaptation in
a way that reduces the estimated error. In what follows, we
consider computing an error estimate based on interpolation
error theory.

3.2 Error estimate based on the interpolation error

Let us consider the mesh adaptation problem stated in an a
priori way in Eq. (4). It can be shown that the approximation
error ‖u− uh‖ for elliptic problems is bounded by the inter-
polation error in approximating a continuous field u in Vh:

‖u− uh‖ ≤ c‖u−5hu‖, (8)

where 5hu is the linear interpolant of u onto Vh and c is
a mesh-independent constant (Céa’s lemma, e.g. Ciarlet,
1991, 2002). In practice, the approach has been found to hold
for hyperbolic problems as well (Frey and Alauzet, 2005).
Since the solution u and its linear interpolant5hu are gener-
ally not known, the ideas presented in this work are instead
applied a posteriori to the numerical solution uh. In the con-
text of general adaptation methods, we are interested in how
the error scales with polynomial degree (p adaptation, e.g.
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Figure 3. Visualising components of metric fields constructed from the Hessian of the initial (left column panels) ice thickness, (middle
column panels) ice velocity, and (right column panels) basal stress fields of MISMIP+ experiments (see Fig. 1): (top row panels) metric
density ρ and (middle row panels) anisotropy quotient r1. The corresponding adapted meshes are shown in the bottom row, including a
zoom-in on different regions of the domain. Adjacent adapted edge lengths were not allowed to differ by more than 30 %. The zoomed-in
subpanels maintain equal scaling of the x and y axes, while the domain is laterally shortened for legibility in other subpanels.

Cuzzone et al., 2018; Kirby and Shapero, 2024) and mesh
size (h adaptation), which we may readily change. In the for-
mer, the polynomial degree can be locally adjusted while
maintaining a fixed mesh topology, which eliminates the
need for mesh-to-mesh interpolation (see Sect. 3.6). How-
ever, higher-order approximations typically lead to increased
computational cost and memory consumption. In contrast,
modifying the local mesh element size provides greater con-
trol over computational efficiency by dynamically adjusting
the number of degrees of freedom. In this paper we only con-
sider h-adaptation approaches, but both are active and im-
pactful fields of research.

In particular, it can be shown that the local interpolation
error ‖u−5hu‖ in a single element can be related to the
Hessian field of u (see e.g. Ciarlet, 1991). The result has
been readily adopted within metric-based mesh adaptation
research due to the (normally) low computational cost in-
volved in computing the Hessian, the directional informa-
tion contained within it, and the problem-independent nature
of Hessian-based interpolation errors (Pain et al., 2001; Frey
and Alauzet, 2005; Piggott et al., 2009b; Davies et al., 2011).
It has also become a fundamental part of the continuous met-
ric framework, with Loseille and Alauzet (2009) presenting
the continuous interpolation error estimation involving a con-
tinuous linear interpolant πMu. The result was then extended
in Alauzet and Olivier (2010), who presented a well-posed

continuous formulation of a problem (Eq. 4) that minimises
the interpolation error in the Lp norm:

Find MLpwhich minimises ELp (M)

=

∫
�

(u−πMu)
pdx

 1
p

, (9)

under the constraint that C(M)=Nv.
For two-dimensional steady-state problems, Loseille and

Alauzet (2011b) show that the optimisation problem in
Eq. (9) has a unique solution which optimally controls the in-
terpolation error in the Lp norm. The resulting optimal met-
ric is given by

MLp = Cs

∫
�

(det ‖H‖)
p

2p+2 dx

−1

(det ‖H‖)
−1

2p+2 ‖H‖, (10)

where Cs is the target metric complexity and ‖H‖ is the ab-
solute value of the Hessian matrix H=H(x) of u, obtained
by taking the absolute value of its eigenvalues in the spectral
decomposition. In the numerical demonstrations that follow,
we construct the approximation of H using the robust mixed-
L2 projection recovery technique that was heavily influenced
by the work of McRae et al. (2018). The approach ensures a
continuous representation of second-order derivatives.
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The analogous analysis for time-dependent problems was
presented in Alauzet and Olivier (2010), which now involves
not one but Na ∈ N meshes {Hi}

Na
i=1, where each mesh is as-

signed to a different part of the simulation time interval. They
show that the optimal local metric for a subinterval i is given
by

Mi
Lp =Gst

(
n(det ‖Hi‖)

2
)− 1

2p+2
‖Hi‖, (11)

where n is the number of time steps in each subinterval (here
constant) andGst is the global space–time normalisation con-
stant

Gst = Cst

n p
p+1

Na∑
j=1

∫
�

(
det‖Hj‖

) p
2p+2 dx

−1

, (12)

where Cst is the specified space–time metric complexity. The
space–time complexity provides an estimate for the aver-
age number of mesh vertices in the entire mesh sequence
{Hi}

Na
i=1. The number of vertices, however, may vary between

meshes, as they are distributed in both space and time among
individual meshes in the sequence according to Eq. (11) such
that the optimal spatio-temporal error in the Lp norm is ob-
tained.

3.3 Metric intersection

For many applications, adequately capturing the mesh reso-
lution requirements needs information from multiple sources
in the domain. For example, it may be desirable to consider
all solutions of a multi-variable PDE of interest or a vector-
valued field whose components may each instruct a different
mesh resolution. Furthermore, a time-dependent field may
require significantly different mesh resolution in time in or-
der to adequately resolve its evolution. To this end, individ-
ual metrics may be constructed from each such sensor field at
multiple time steps before they are combined to form a sin-
gle metric that is representative of all those individual time
steps. The combination of metrics is a non-trivial task, and
the resulting metric field may vary significantly for different
combination approaches and imply different computational
cost. Throughout the paper we consider the most common
method of combining metrics: metric intersection. An exam-
ple of an intersected metric is shown in Fig. 4, where ice
thickness and ice velocity metrics of Fig. 3 have been inter-
sected. An inspection of the metric components reveals that
the intersected metric indeed contains information from both
of the individual metrics.

Metric intersection produces a new metric tensor that cap-
tures the most restrictive (i.e. finest) resolution requirements
from both original metrics. As described in Alauzet et al.
(2007), the process involves transforming the two metrics to
a common eigenbasis, taking the maximum eigenvalues from
each pair of corresponding eigenvalues and transforming the

Figure 4. (a) Metric density ρ and (b) anisotropy quotient r1 of
a metric constructed by intersecting ice thickness and ice velocity
metrics shown in Fig. 3, as well as (c) the corresponding adapted
mesh.

metric into the original eigenbasis; i.e. given two metrics M1
and M2 in two-dimensional space, the intersection M1∩2 is
defined as

M1∩2 =
(

P−1
)T (max

(
λ1

1,λ
2
1
)

max
(
λ1

2,λ
2
2
) )P−1, (13)

where P is the matrix of normalised eigenvectors {ei}i=1,2

of N=M−1
1 M2 and λji = e

T
i Mjei . Related to the geometric

interpretation of metrics with an ellipsoid (see Sect. 3), the
metric intersection is visualised as producing a metric whose
associated ellipsoid is the largest one that can fit within the
ellipsoids of the original metrics (see Fig. 2 in Alauzet et al.,
2007).

3.4 Metric post-processing

After the metric had been computed, it may be desired,
or even required, to post-process the metric field before
the adapted mesh is generated. This includes prescribing
the minimum and maximum element edge lengths, as well
as maximum tolerated element anisotropy, by appropriately
truncating eigenvalues λ1 and λ2 (see Appendix A). Such
constraints are particularly useful in order to incorporate ex-
isting physical knowledge into the mesh adaptation process,
which may not be contained in the chosen sensor adapta-
tion fields. Preventing large differences in element sizes and
anisotropy between original and adapted meshes may also
improve robustness.

Certain choices of sensor fields may lead to metric fields
that exhibit a very sharp gradient, as is the case for the met-
ric defined from the basal shear stress, shown in Fig. 3.
Borouchaki et al. (1998) show that such large rates of varia-
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tion may lead to poor quality of the adapted meshes. To that
end, they introduce a metric gradation routine in order to
control its variation and therefore smooth out the metric field.

We refer the reader to Dapogny et al. (2014b) for details
on the metric gradation routine and edge length truncation
implemented in the remeshing library mmg2d, which is used
for all mesh adaptation results in this paper (see Sect. 3.7).

3.5 Time-dependent mesh adaptation algorithms

Mesh adaptation has been successfully integrated with finite
element methods since the 1980s, when the literature almost
exclusively focused on applying mesh adaptation to steady
simulations (e.g. Peraire et al., 1987). The mesh adaptation
procedure involved an iterative process which would typi-
cally begin with a coarse uniform mesh. The mesh is then
iteratively adapted until the convergence of the steady-state
solution is reached, according to a mesh convergence study.
In this context, “mesh convergence” refers to the process
where successive refinements of the mesh result in progres-
sively smaller changes in the solution, indicating that the so-
lution is approaching a stable state that is independent of fur-
ther mesh refinement. For details on mesh convergence, see
e.g. Loseille and Alauzet (2011a).

Early attempts at mesh adaptation for time-dependent
simulations simply employed the above-described algorithm
multiple times throughout the simulation. This approach is
referred to as the classical mesh adaptation algorithm in
Alauzet et al. (2007), and we refer to it as such throughout the
paper. Namely, the mesh is adaptedNa ∈ N times throughout
the simulation, at times ti , i = 0, . . ., Na − 1, based on the
current solution state at that time. In this way, the simulation
involves Na different meshes rather than a single fixed mesh,
which allows us to prescribe fine resolution in particular re-
gions of the domain only at times when that is needed. After
the mesh had been adapted, the solution and any other spa-
tially varying fields in the PDE are then transferred onto it
and the simulation resumes until the end simulation time T .

While suitable for steady simulations, the classical mesh
adaptation algorithm exhibits several shortcomings specific
to time-dependent simulations. Firstly, the approach does not
control the temporal distribution of error since the metric is
only normalised in space according to Eq. (10), as only the
current solution is used to guide the mesh adaptation. Addi-
tionally, by not considering the future evolution of the solu-
tion, the adapted mesh may not adequately resolve the solu-
tion at subsequent simulation times. In such a case, the mesh
is said to lag with respect to the solution. In the context of
glaciological modelling, a common consequence of a lag-
ging mesh is the migration of the grounding line out of the
fine-resolution region of the mesh and into the coarse region,
where the grounding line dynamics are no longer accurately
captured (e.g. IGE-Elmer/Ice in Sun et al., 2020). While in-
creasing the mesh adaptation frequency would alleviate the

lag, doing so may introduce large errors due to frequent so-
lution transfers between meshes (see Sect. 3.6).

To efficiently avoid the mesh lagging behind the solution,
the adaptation algorithm requires a prediction of where fine
resolution is likely to be required before the next mesh adap-
tation. An accurate prediction will ensure that the simulated
phenomena remain well-resolved when reducing the total
number of mesh adaptations Na . Several prediction strate-
gies have been proposed over the years, such as metric ad-
vection for advection-dominated problems (Wilson, 2010;
Smith et al., 2016), and more generally applicable methods,
such as the introduction of safety regions around the fine-
resolution region of the mesh (Löhner and Baum, 1992). The
latter has become the most common mesh adaptation crite-
rion in marine ice sheet modelling, where a fine-resolution
region was introduced within a set distance from the ground-
ing line. However, such criteria do not explicitly control the
solution error and neglect the error contribution of more dis-
tant regions while potentially refining regions where that is
not necessary.

Here we adopt the global fixed-point mesh adaptation al-
gorithm described in Alauzet and Olivier (2011) in order
to remedy the stated challenges specific to time-dependent
problems. The algorithm is presented as pseudo-code in Al-
gorithm 1. First, the simulation time interval (0, T ] is parti-
tioned into Na equally long subintervals:(
tj−1, tj

]
=
(
(j − 1)T /Na,j T /Na

]
, (14)

where j = 1, . . . ,Na and T/Na is the fixed subinterval
length. To each subinterval we assign a mesh H(k)

j , where
k is the fixed-point iteration number. At each iteration k, the
PDE problem is solved over the entire interval (0, T ] on the
sequence of meshes {H(k)

j }
Na
j=1. From the obtained solutions

we compute Hessian metrics for given discrete time steps and
combine them in time according to Eq. (13). The computed
metric fields are then space–time normalised according to
Eq. (11). In such a way we obtain the metric field M(k)

j asso-
ciated with each subinterval (tj−1, tj ]. Finally, the meshes are
adapted to yield the next iteration’s adapted mesh sequence
{H(k+1)

j }
Na
j=1, and the simulation is restarted. The algorithm

terminates when a set maximum number of iterations or pre-
scribed convergence criteria have been reached.

The global fixed-point adaptation algorithm offers sev-
eral advantages over the classical mesh adaptation algorithm.
Firstly, the algorithm remedies the lagging mesh problem,
since the problem is first solved over the entire time inter-
val. The constructed metric fields therefore contain a predic-
tion of the solution evolution over the entire subinterval. Sec-
ondly, metric fields are normalised according to space–time
normalisation in Eq. (11), which allows for the error to be
controlled in both space and time. On the other hand, since
meshes are adapted at the end of each iteration, each subinter-
val may start with a worse approximation of the initial state
compared to the classical mesh adaptation algorithm, which
adapts the subinterval mesh before the PDE is solved over the
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Algorithm 1 Global fixed-point mesh adaptation algorithm.

for iteration k = 1, . . . , kmax do
for time subinterval j = 1, . . . ,Na do

Interpolate the initial condition/PDE solution onto H(k)
j

Solve PDE on subinterval (tj−1, tj ]

Construct subinterval metric M(k)
j

end for
Normalise subinterval metrics {M(k)

j
}
Na
j=1 in space and time

Generate adapted meshes {H(k+1)
j
}
Na
j=1

if converged then
Terminate

end if
end for

corresponding subinterval. This may imply significant addi-
tional computational cost if the initial mesh sequence does
not accurately capture the modelled phenomena, which is of-
ten the case for coarse uniform meshes. As a result, mesh
convergence may be slow and many fixed-point iterations
may be required.

Here we propose a combination of the classical and global
fixed-point mesh adaptation algorithms, which yields a bet-
ter initial approximation of the optimal mesh sequence at a
minimal additional cost. We achieve this by incorporating
the classical algorithm within the first iteration of the global
fixed-point algorithm. The latter iterations then proceed as
in the global fixed-point iteration, without incorporating the
classical mesh adaptation algorithm since the mesh sequence
is already approximated well. The proposed hybrid algorithm
is presented in Algorithm 2. Since the classical adaptation al-
gorithm generates the adapted mesh sequence {H(1)

j }
Na
j=1 be-

fore the PDE is solved on each subinterval, the only added
computational cost compared to the global fixed-point algo-
rithm is that of adapting the meshes. This added cost is nor-
mally small compared to the cost of solving the PDE. Solu-
tion fields obtained from the first iteration of the hybrid algo-
rithm are therefore more accurate than those from the global
fixed-point algorithm.

3.6 Interpolation between meshes

The final step of any mesh adaptation procedure is that of
interpolating all spatially varying fields to the newly gener-
ated mesh. This is a crucial step in the mesh adaptation pro-
cess, as the choice of transfer method may significantly affect
the accuracy of the solution. Since the optimal choice of the
transfer method largely depends on the specific problem at
hand, we discuss it here with respect to glaciological appli-
cations. The process also depends on the type of mesh and
mesh adaptivity used. For example, Cornford et al. (2013)
use the more restrictive block-structured meshes in order to
alleviate issues related to numerical diffusion and mass con-
servation that we discuss below for unstructured meshes.

Algorithm 2 Hybrid fixed-point mesh adaptation algorithm.

for iteration k = 1, . . . , kmax do
for time subinterval j = 1, . . . ,Na do

if k = 1 then
Construct M from u(x, tj−1)
Normalise M in space
Generate adapted mesh H(k)

j
from M

end if
Interpolate the initial condition/PDE solution onto H(k)

j

Solve PDE on subinterval (tj−1, tj ]

Construct subinterval metric M(k)
j

end for
Normalise subinterval metrics {M(k)

j
}
Na
j=1 in space and time

Generate adapted meshes {H(k+1)
j
}
Na
j=1

if converged then
Terminate

end if
end for

The mesh adaptation toolkit Animate, described in
Sect. 3.7, currently offers three methods for interpolat-
ing fields between different meshes: linear interpolation,
Galerkin projection, and the bounded variant of the Galerkin
projection (see Farrell, 2010, for an overview of these meth-
ods). The most popularly used interpolation method in the
majority of applications is that of linear interpolation. How-
ever, linear interpolation does not preserve the integral of
interpolated fields, and its application to ice flow problems
would yield unphysical results due to conservation laws be-
ing violated. The use of Galerkin projection is therefore more
appropriate since it is a conservative operator despite im-
plying a larger computational cost. In particular, Galerkin
projection may introduce new function extrema, which may
be problematic in times of extreme glacier retreat when ice
thickness is close to zero. In such cases, the interpolated ice
thickness might become negative-valued. In order to prevent
that, we use the bounded variant of the Galerkin projection
for degree-1 basis (P1) fields, which prevents the addition of
new function extrema (Farrell et al., 2009; Farrell and Mad-
dison, 2011). However, by bounding the interpolated solu-
tion, the operation introduces additional numerical diffusion
which may diminish the accuracy of the overall simulation.

3.7 Software

Firedrake (Ham et al., 2023) is a Python-based finite element
library for the numerical solution of PDEs utilised through-
out this paper. It provides a high-level interface for the def-
inition of finite element variational forms using the Unified
Form Language (UFL; Alnæs et al., 2014) which are then
compiled into efficient low-level code for the solution of the
PDEs. Firedrake utilises PETSc for solving linear and non-
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linear systems, as well as for its underlying mesh concept
(Balay et al., 1997, 2023; Lange et al., 2016).

Mesh generation in Firedrake can be performed using
built-in classes; reading in meshes generated by external gen-
erators (such as gmsh; Geuzaine and Remacle, 2009); or
using Netgen (Schöberl, 1997), an external generator that
has been integrated into Firedrake. Recent developments in-
volve the Animate library for metric-based anisotropic mesh
adaptation (Wallwork et al., 2024a). Animate implements
the presented Riemannian metric framework, Hessian re-
covery methods, and metric operations and interfacing with
PETSc’s Riemannian metric functionality (Wallwork et al.,
2022). A separate library, Goalie, has been developed for
time-dependent mesh adaptation and supports both feature-
and goal-oriented adaptation approaches (Wallwork et al.,
2024b). Both libraries have undergone development syn-
chronously with the development of the work presented in
this paper.

The process of locally adapting meshes with respect to
metric fields is performed by the external library Mmg2d,
which is part of the Mmg platform (Balarac et al., 2022;
Dobrzynski and Frey, 2008) that has been integrated into
PETSc. Mmg2d requires mesh topology and a metric field
defined at each mesh node as input, and it returns the
mesh where elements’ size, shape, and orientation have been
adapted to the given metric field. While the work presented
in this paper focuses on 2D mesh adaptation, Animate and
Goalie also support 3D mesh adaptation through the im-
plementation of the Mmg3d and ParMmg mesh generation
toolkits (Dapogny et al., 2014a).

4 Results

In this section we demonstrate the ability of a Hessian-based
anisotropic mesh adaptation method to control the solution
accuracy in the MISMIP+ Ice1 experiment. We consider
constructing metric fields from the Hessian of ice thick-
ness H and ice velocity u, their intersection, and the Hes-
sian of basal stress τ b. The basal stress field is computed
from Eq. (3) and the hydrostatic approximation for the nor-
mal basal stress, and as such it depends on both H and u.

In the absence of a closed-form solution, we rely on
the 0.25 km resolution results to define reference solutions
uref(x, t) and Href(x, t). We validate the results of each sim-
ulation by computing the relative solution error in L2 norm
based on the reference solutions:

ẽH =
‖Hint−Href‖L2

‖Href‖L2
, (15)

ẽu =
‖‖uint‖−‖uref‖‖L2

‖‖uref‖‖L2
, (16)

where Hint and uint are solution fields interpolated onto the
reference 0.25 km mesh and ‖u‖ is the velocity magnitude.

We further consider the maximum deviation of the volume
above flotation,

‖1Vf‖∞ =max
i
‖Vf (ti)−Vf,ref (ti)‖, (17)

and midchannel grounding line position,

‖1xgl‖∞ =max
i
‖xgl (y = 0, ti)− xgl,ref (y = 0, ti)‖, (18)

over all simulation years ti , where Vf,ref and xgl,ref(y = 0) are
the ice volume above flotation and grounding line position
along the midchannel line, respectively, for the reference
0.25 km uniform mesh simulation (see Fig. 2).

4.1 Mesh adaptation strategy

In our mesh adaptation experiments we do not incorporate
the gained insight into resolution sensitivity from Sect. 2.2.
As such, we do not prescribe bounds on element edge lengths
and element anisotropy. We use Mmg2d’s default maximum
metric gradation factor of 1.3, which prevents adjacent ele-
ment edge lengths from differing by more than 30 %.

Crucially, when solving time-dependent mesh adaptation
problems, we must decide how to split the time domain into
Na distinct subintervals. As discussed in Sect. 3.5, the choice
should consider the balance between accurately resolving the
ice stream in time and the added interpolation error and com-
putational cost associated with each mesh adaptation. To that
end, we choose to split the simulation time interval (0, 200 a]
into 20 equally long subintervals, meaning that meshes are
adapted every 10 years of simulation time. A constant time
step 1t = 1/24 a is again used to ensure that the CFL condi-
tion is satisfied.

Similarly, we choose to consider solutions at every 1 year
of simulation time in the construction of the metric fields.
This provides us with 10 metric fields per subinterval, which
is, again, a compromise between accurately representing the
evolution of the ice stream and avoiding further computa-
tional cost associated with metric computations. The 10 met-
ric fields are combined in time using the metric intersec-
tion of Eq. (13) to yield a single subinterval metric. This
is repeated for each of the 20 subintervals. Afterwards, the
20 subinterval metrics are normalised in space and time ac-
cording to Eq. (11).

It must be noted that there are certainly other viable
choices of partitioning the time interval which we do not
explore here. For example, considering that the thinning of
the ice shelf and grounding line retreat is more extreme in
the first half of the experiment (Fig. 2), a reasonable choice
might involve more frequent adaptations in the first half of
the time interval than in the second half. However, we do
not incorporate such prior knowledge in the set-up of the ex-
periments, and rely on space–time metric normalisation to
distribute available degrees of freedom accordingly. Simi-
larly, we always prescribe an equal target complexity to each
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subinterval metric in the first iteration of the hybrid fixed-
point algorithm, which cannot utilise space–time normalisa-
tion. This will result in the numbers of vertices, Nv, of each
mesh of the mesh sequence {H(1)

j }
Na
j=1 to be approximately

equal.
For interpolating fields between meshes, we use the

bounded variant of the Galerkin projection. As discussed in
Sect. 3.6, its use is most appropriate in the experiment con-
sidered here as it is a conservative operation that does not
introduce new extrema in the solution. Since the bounded
variant of the Galerkin projection is only implemented for
P1 fields, we use P1 functions to represent both ice veloc-
ity and ice thickness over elements. The leading-order error
for this discretisation typically scales quadratically with the
decreasing mesh size in the L2 norm. However, the reduced
regularity due to a discontinuity in the derivative of τ b in
practice results in a degradation of the convergence rate.

4.2 Comparing time-dependent mesh adaptation
algorithms

We first wish to compare the mesh convergence rate of
the global and hybrid fixed-point adaptation algorithms de-
scribed in Sect. 3.5. To that end, we run experiments for
the two approaches. The first iteration of the global fixed-
point algorithm uses an initial mesh sequence {H(1)

j }
Na
j=1 of

Na = 20 uniform 4 km resolution meshes, while the hybrid
algorithm begins with meshes generated using the classical
mesh adaptation algorithm. Meshes are adapted based on the
Hessian of the basal stress τ b, but the same conclusions fol-
low from other choices of the adaptation sensor field, as dis-
cussed below. We repeat the procedure for two choices of tar-
get complexities C: 1600, which is comparable to the number
of vertices of the uniform 4 km resolution mesh (see Table 1),
and 3200.

As shown in Fig. 5, the global and hybrid mesh adaptation
algorithms converge to qualitatively similar adapted meshes.
However, the hybrid algorithm converges to a reasonable ap-
proximation of the optimal mesh twice as fast, in only three
iterations, while the global algorithm converges in seven it-
erations, as shown in Fig. 6.

In the first iteration of the global fixed-point algorithm, the
initial mesh sequence of uniform 4 km resolution is not able
to adequately resolve the ice stream dynamics, as shown pre-
viously in Sect. 2.2. The poor solution accuracy in the first
iteration in turn leads to sub-optimal metric fields and the
adapted mesh sequence used in the next iteration. This result
is independent of the choice of sensor field or target com-
plexity used in constructing the metric, since it is the initial
uniform mesh sequence that is far from optimal. In compari-
son, deviations in the initial iteration of the hybrid fixed-point
algorithm are up to an order of magnitude smaller since the
ice stream is not modelled on the inadequate coarse uniform
mesh sequence.

Furthermore, the two algorithms converge to adapted
meshes with consistent vertex counts, as shown in Figs. 5
and 7. However, the meshes adapted in the first iteration
of the hybrid algorithm are only normalised in space (see
Algorithm 2), meaning that the number of vertices of each
mesh in the mesh sequence {H(1)

j }
Na
j=1 is therefore approxi-

mately equal. As in the global fixed-point algorithm, the met-
ric fields used to generate the next mesh sequence {H(2)

j }
Na
j=1

are constructed from solutions sampled from the entire time
domain, so the metric fields are able to be normalised in time
as well as in space. The adapted mesh sequences {H(k)

j }
Na
j=1,

k ≥ 2 now contain a higher number of vertices in the first
half of the simulation and lower number in the second half.
This is expected since the grounding line migration is more
pronounced in the first half of the simulation and requires a
more widely refined mesh in order for the grounding line to
remain within the finely refined mesh region as it migrates in
time.

Overall, we have found that a reasonable mesh conver-
gence may be expected in only a few iterations of the hy-
brid fixed-point algorithm. Namely, most of the effort is done
in the first two iterations of the algorithm. Given a reason-
able time interval partition and sufficient target complexity,
the classical mesh adaptation algorithm embedded within the
first iteration generates an adequate adapted mesh sequence
{H(1)

j }
Na
j=1. The mesh sequence {H(2)

j }
Na
j=1 is then generated

at the end of the first iteration from metric fields normalised
in both space and time, which allocates additional resolution
to subintervals where that is necessary. Solutions obtained in
the second iteration are therefore even more accurate, as the
error is optimally controlled in space and distributed in time.
The mesh sequence generated at the end of the second itera-
tion, {H(3)

j }
Na
j=1, can therefore be assumed to be a reasonable

approximation of the optimal mesh sequence.

4.3 Comparing adaptation sensor fields

Finally, we study the mesh convergence and solution accu-
racy in simulations utilising the hybrid fixed-point adaptation
algorithm for different adaptation sensor fields. We repeat the
mesh adaptation process for three global fixed-point itera-
tions, which implies a total of four adaptations of each mesh.
As we demonstrated in Sect. 4.2, this is enough to achieve
reasonable mesh convergence. For each choice of sensor
field, we prescribe the target metric complexity C of 800
and repeat the simulation four more times such that the tar-
get complexity is doubled each time. The final simulation
therefore specified the target complexity of 16C = 12800.
Adapted meshes H9 are shown in Fig. 8 for simulations spec-
ifying target complexity of 8C, with their elements’ aspect ra-
tios shown in Fig. 9. The spatial error distribution at t = 100 a
on H9 for 8C is shown in Fig. 10, while the time-averaged er-
rors are shown in Fig. 11.
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Figure 5. Comparing final adapted meshes obtained from the global fixed-point and hybrid mesh adaptation algorithms for target complexity
C = 1600. Final adapted meshes H9 corresponding to the (90, 100 a] subinterval are shown in (a) and (b), and final subinterval meshes H19
corresponding to the (190, 200 a] subinterval are shown in (c) and (d), with a zoom-in around the grounding line on the right. Meshes adapted
using the global algorithm are shown in (a) and (c), while meshes from the hybrid algorithm are shown in (b) and (d).

Figure 6. Comparing solution convergence of global and hybrid
mesh adaptation algorithms, with basal stress as the adaptation sen-
sor field and target complexities C of 1600 and 3200. The resulting
maximum deviations from the reference solutions of the (a) volume
above flotation, ‖1Vf‖∞, and (b) midchannel grounding line posi-
tion, ‖1xgl(y = 0)‖∞, over all simulation years are shown.

Figure 7. Temporal distribution of number of vertices, Nv, for sev-
eral iterations of the hybrid algorithm and the final iteration of the
global fixed-point algorithm for C = 1600.

Figure 8 reveals instructive areas of refinement and coars-
ening for each constructed metric field. When adapting based
on ice thickness, the fine resolution is concentrated in two
regions: along the shear margin and on the ice shelf near the
grounding line. This means that the grounding line will eas-
ily migrate out of the fine-resolution region during glacier
retreat, as shown by the grounding line contours of the refer-
ence solution in Fig. 8a. On the other hand, the grounding
line will remain in the fine region during glacier advance
as it migrates further downstream. In comparison, meshes
adapted based on ice velocity are mostly refined in the vicin-
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Figure 8. Adapted meshes H9 associated with the (90, 100 a] subinterval, with a zoom-in around the grounding line on the right. Metrics
were constructed from (a) H , (b) u, (c) intersected metric of H and u, and (d) τb. Shown grounding line contours are computed at the
beginning and end of the subinterval from the reference 0.25 km uniform-resolution mesh simulation solutions.

ity of the grounding line and in the inner part of the ice shelf,
where ice quickly speeds up as it is no longer influenced by
friction at the bed. However, the region around the ground-
ing line is not as finely resolved as in Fig. 8a; instead, the
available resolution is more or less equally distributed over
a much larger region. As expected, meshes adapted from the
intersected metric of the two fields exhibit features of both.
However, this also includes a less refined region upstream of
the grounding line compared to that in Fig. 8b, which again
leads to the migration of the grounding line into the coarser
region of the mesh. Meanwhile, because the basal stress
rapidly diminishes across the grounding line, the metric field
computed from its Hessian will prescribe the finest mesh res-
olution in its vicinity, as shown in Fig. 8d. This ensures that
the grounding line remains in the finely resolved region of the
mesh throughout the subinterval. However, since basal stress
is null in the ice shelf, the region of the mesh corresponding
to it is coarsened. Variation in mesh cell sizes in the ice shelf
is only due to the metric gradation routine.

A measure of cell aspect ratios is shown in Fig. 9, where
a unit aspect ratio corresponds to a perfectly isotropic cell
(i.e. an equilateral triangle). We observe that meshes whose
metrics involve ice thickness contain two bands of highly
anisotropic cells in the shear margin with a predominantly
x-directional orientation separated by a band of isotropic
cells. Since the variation in ice thickness is much sharper
across the shear margin than along it, anisotropic elements
help to efficiently capture such directional processes along
the shear margin by avoiding unnecessary over-refinement in

the x direction. Similarly, in order to capture the rapid vari-
ation in the basal stress across the grounding line, meshes
adapted based on the basal stress have elements stretched in
the direction of the grounding line along its entirety. On the
other hand, meshes adapted from ice velocity contain mesh
elements with lower anisotropy along the ice stream shear
margin but strongly anisotropic elements in the x direction
along the grounding line flank as the ice drastically speeds
up across it.

The above observations are directly reflected in the spa-
tial distribution of the solution errors, shown at t = 100 a in
Fig. 10. While the error in H along the shear margin is low-
est on the mesh adapted fromH , the same meshes lead to the
highest errors in the vicinity of the grounding line and in the
ice shelf due to the grounding line migrating out of the fine-
resolution region (see Fig. 8a). A more widely refined mesh
generated from u is able to most accurately model the sharp
velocity changes in the ice shelf but does not leave enough
resolution in the direct vicinity of the grounding line. Over-
all, the lowest error in both H and u is obtained on the mesh
generated from τ b, which contains enough resolution in the
direct vicinity of the grounding line to be able to accurately
represent it throughout the 10-year subinterval (see Fig. 8d).
However, the poorest solution accuracy is obtained along the
grounding line flank along the shear margin and in the ice
ridge for all choices of adaptation sensor fields. This was
also observed in Fig. 2, where the 0.5 km uniform-resolution
results most deviate from the reference 0.25 km resolution
solutions in these areas.
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Figure 9. Aspect ratio of elements of adapted meshes H9 shown
in Fig. 8, corresponding to the time subinterval (90, 100 a]. The
meshes are adapted from the Hessian of (a)H , (b) u, (c) intersected
metric of H and u, and (d) τb.

Figure 10. Spatial distribution of errors in H and u relative
to 0.25 km uniform-resolution solutions shown at t = 100 a for
meshes H9 generated from the Hessian-based metrics of (c) H ,
(d) u, and (e) τb and C = 6400.

Similar conclusions follow by investigating adapted
meshes at other subintervals and error distribution at other
times, which are then reflected in the time-averaged ẽH
and ẽu shown in Fig. 11. We observe that ẽH decays at
approximately a linear rate for all experiments, while the
convergence of ẽu tends towards a quadratic rate for adap-
tive mesh experiments. At low target complexities, mesh se-
quences generated from the basal stress τ b yield the most
accurate solutions since they most accurately represent the
evolving grounding line. However, the increase in accuracy
gained by further refining such meshes is effectively capped,
since the metric computed from τ b does not prescribe re-
finement in the ice shelf. Nonetheless, we obtain a solution
accuracy comparable to that of a uniform 0.5 km resolution
mesh sequence which has on average nearly 30 times fewer
vertices. On the other hand, errors computed on mesh se-
quences adapted from H , u, and their intersection are all
similarly high for target complexities of 800 and 1600. Dif-
ferences begin to be more pronounced for a target complex-
ity of 3200, when the metric from u prescribes finer reso-
lution in the vicinity of the grounding line compared to the
metric from H . The errors begin to be comparable to that
of the uniform 0.5 km uniform mesh simulation at the tar-
get complexity of 6400, with 8 to 12 fewer vertices. Unlike
the meshes adapted from τ b, the solution error for mesh se-
quences adapted from H and u keep decreasing for higher
target complexities, as shown for the final target complexity
of 12 800.

4.4 CPU time efficiency

Even though we have been successful in outperforming
uniform-resolution meshes at a fraction of the total number
of vertices, this does not necessarily translate into a success-
ful reduction in total computational time. Time-dependent
mesh adaptation routines presented in this paper imply ad-
ditional costs related to metric computation, mesh genera-
tion, and function interpolations between meshes. None of
these are present in single, fixed-mesh simulations. More-
over, the procedure is iterative, which involves repeatedly
solving the PDE problem and adapting the mesh sequence
until the mesh sequence has converged. Over all iterations
of the hybrid mesh adaptation algorithm, the PDE problem
was solved 4 times, the mesh sequence was adapted 4 times,
and ice velocity and thickness fields were each transferred
80 times between subsequent meshes. The final decision be-
hind which adaptation method (if any) to employ should
therefore consider the total computation time necessary to
achieve a desired solution accuracy. In Fig. 12 we therefore
plot the average ẽH and ẽu versus total CPU time for different
choices of adaptation sensor field and for target complexities
of 800, 3200, and 12 800. Thanks to PETSc’s and Firedrake’s
logging infrastructure, we are able to easily extract the time
involved in each of the above-mentioned components, which
we show in Fig. 13. As in the uniform-resolution simulations,
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Figure 11. Accuracy of solutions computed on adapted meshes rela-
tive to 0.25 km uniform-resolution solutions averaged over the sim-
ulation time interval of modelled (a) ice thickness H and (b) ice
velocity u for different sensor fields used in constructing the met-
ric and for increasing specified target complexity: C, 2C, 4C, 8C,
and 16C, where C = 800. Solution accuracy of simulations involv-
ing uniformly refined meshes are shown for comparison.

all simulations were run in serial for the purposes of CPU
time measurements.

As shown in Fig. 13, solving the PDE problem accounted
for approximately only 50 % of the computational time for
C = 800 and 75 % for C = 12800. This indicates that the ef-
ficiency of mesh adaptation methods is decreased for meshes
with a small number of vertices due to the relatively high
costs of mesh adaptation and solution interpolation. How-
ever, as the solver or mesh complexity increases, the benefits
of mesh adaptation become more pronounced. The cost of
mesh adaptation is particularly high for vector-valued sen-
sor fields since the Hessian metric of each component must
be computed separately and then intersected to form a sin-
gle metric. The intersected metric of H and u therefore im-
plies the highest computational cost, since it involves three
Hessian field computations (one for the scalar field H and
one for each component of the vector field u) and two in-
tersections for each metric (one for intersecting components
of u and one for intersecting H and combined components
of u). As a result, the superior performance of the intersected
metric field (H , u) observed in Fig. 11 is not reflected in
the overall computational efficiency shown in Fig. 13. Mean-
while, adapting the meshes based on τ b again clearly out-
performs other sensor fields at low target complexities. Such
adapted meshes achieve a solution accuracy comparable to

Figure 12. Performance and efficiency comparison of the hybrid
mesh adaptation algorithm for different sensor fields and target
complexities of 800, 3200, and 12 800. Experiments were run on
a single CPU, and the algorithm terminated after three iterations.
Average (a) ẽH and (b) ẽu versus CPU time for different adaptation
sensor fields: H , u, intersection of H and u, and τb, compared to
uniform mesh refinement.

Figure 13. Distribution of CPU time across different computational
tasks: PDE solve, mesh adaptation (including metric construction),
and interpolation.

the 0.5 km uniform-resolution mesh with a 6-fold reduction
in total computational time. All other sensor fields consid-
ered in this section achieve the same accuracy with approxi-
mately a 3-fold reduction in total computational time.

5 Conclusions

In this study we have demonstrated the effectiveness of
anisotropic metric-based mesh adaptation for ice flow mod-
elling. All libraries used here are Python-based and built on
top of Firedrake, which, in combination, provide an intuitive
and accessible approach to finite element ice flow modelling
and mesh adaptation.
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Using the set-up of the Ice1 experiment of the Marine Ice
Sheet Model Intercomparison Project (MISMIP+), we have
shown that feature-based anisotropic mesh adaptation based
on the Hessian of the solution-dependent field allows us to
efficiently optimise the number of vertices in space and time.
Our results confirm the importance of adequately modelling
grounding line dynamics and the necessity of fine mesh res-
olution in its vicinity. Adapting the mesh sequence based on
the basal stress is therefore the most efficient option, since
the finest mesh resolution is prescribed along the grounding
line at a particular expense of a coarsened ice shelf, where
the basal stress is zero. Meshes adapted from ice velocity
fields are the most efficient at capturing the ice shelf dynam-
ics, while ice thickness prescribed the most resolution along
the shear margin and in the region of the ice shelf near the
grounding line. All choices of the adaptation sensor fields
were able to achieve accuracy in ice thickness within a few
per mille and the ice velocity magnitude within a few per-
cent of the reference 0.25 km uniform-resolution simulation
results. Specifically, we show that adapted mesh sequences
are able to reach the same solution accuracy as the uniform
0.5 km resolution mesh but with 8–30 times fewer degrees
of freedom. However, this translates into a 3–6 times lower
computational cost, reflecting the cost of our iterative mesh
adaptation procedure.

We emphasise the importance of the interpolation stage as-
sociated with each mesh adaptation. The bounded variant of
the projection operator used in this paper introduces a poten-
tially significant amount of numerical diffusion, which im-
pairs the overall simulation accuracy. Future Animate devel-
opment will focus on developing a post-processing routine
in order to achieve a minimally diffusive projection, as de-
scribed in Farrell et al. (2009).

While results here have been obtained at a significantly
lower computational cost using mesh adaptivity, this study
reveals promising possibilities for further time reduction. As
shown in Sect. 4.4, the main contributor to the computa-
tional cost of the mesh adaptation methods employed here
is their inherent iterative procedure. To that end, we have
demonstrated one possible way of reducing the total num-
ber of iterations: by combining the classical mesh adaptation
algorithm with the global fixed-point algorithm in order to
obtain a more optimal initial mesh sequence. The presented
hybrid algorithm required approximately 50 % fewer itera-
tions in order to reach mesh convergence than the global
fixed-point algorithm alone while still controlling spatial er-
ror and its temporal distribution. As noted in Sect. 4.1, fur-
ther computational gain may be obtained from a strategic
time interval partition, which may reduce the total number
of mesh adaptations and solution transfers. Based on these
findings, our future work is focused on developing new mesh
adaptation schemes inspired by the “on-the-fly” nature of
the classical mesh adaptation algorithm that will further re-
duce total simulation time. We expect that this will allow
for even higher-fidelity large- and global-scale glaciologi-

Figure A1. Contour plot of the manufactured solution u(x,y)=
(1− e−x/ε)(x− 1)sin(πy) to the Poisson problem (Eq. A1).

cal modelling, where each iteration of the fixed-point mesh
adaptation algorithm implies significant computational cost.
However, more research is needed to investigate the effec-
tiveness of these methods in larger-scale and less idealised
models.

Appendix A: Poisson equation

Following a similar example as in Piggott et al. (2009a),
we demonstrate the anisotropic metric-based mesh adapta-
tion presented in this paper on a relatively simple example of
a Poisson equation. We consider a unit square domain �=
[0,1]2 and homogeneous Dirichlet boundary conditions. Us-
ing the method of manufactured solutions (Roache, 2001),
we select the solution u(x,y)= (1− e−x/ε)(x− 1)sin(πy),
where ε = 0.01, which is the solution to the following steady
Poisson problem:

∇
2u=

((
2/ε− 1/ε2

)
e−x/ε −π2(x− 1)

(
1− e−x/ε

))
sin(πy). (A1)

As shown in Fig. A1, the solution exhibits a sharp gradient
in the x direction near the x = 0 boundary since the term
1− e−x/ε decays rapidly for ε = 0.01.

The optimal adaptive mesh is found approximately and by
iteration. The process begins with a (coarse) uniform mesh
on which we compute an approximation of the solution uh.
The mesh is then adapted, and the solution uh is again com-
puted on this new, adapted mesh. The process repeats until a
set maximum number of iterations, or some other criterion, is
reached. We expect a reasonable metric definition to lead to
a more optimal mesh, which in turn leads to increased accu-
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Figure A2. (a, b) Metric density and (c, d) anisotropy quotient r1 of
metrics defined from the Hessian of the solution of Eq. (A1), shown
in Fig. A1, with maximum tolerated element anisotropy, amax, of
(a, c) 1 and (b, d) 16.

racy, particularly in the first few iterations when we transition
from a uniform mesh to adaptive meshes.

The first step of a feature-based mesh adaptation process
is the construction of a metric field from the Hessian of
a chosen feature, i.e. sensor field, as described in Sect. 3–
3.4. In the relatively simple example of a Poisson problem
(Eq. A1), the only choice of a sensor field is the solution
itself. We can approximately control several parameters dur-
ing metric construction, such as the maximum tolerated met-
ric anisotropy, amax. By choosing the value of amax of 1
and 16 we obtain a pair of isotropic and anisotropic met-
ric fields, respectively, whose components – metric density
ρ and anisotropy quotients r1 and r2 = r−1

1 – are shown in
Fig. A2. Metric density is highest along the x = 0 bound-
ary and the y = 0.5 midline in both metrics, but it is over
an order of magnitude larger in the isotropic metric. As ex-
pected, anisotropy quotients of the isotropic metric are uni-
formly one, while the anisotropy quotients of the anisotropic
metric vary spatially: r1 (r2) is 1/16 (16) along the x = 0
boundary and 16 (1/16) along the y = 0.5 midline.

As described in Sect. 3.1, metric density ρ controls the
size of the mesh elements during mesh adaptation, while
anisotropy quotients r1 and r2 = r−1

1 control their shape. The
influence of metric components is directly seen on meshes
adapted from these metrics, shown in Fig. A3. In both cases
the region near the x = 0 boundary is finely resolved, but
the isotropic mesh requires nearly 4 times as many vertices
as the anisotropic mesh to do so. This is directly reflected

Figure A3. (a) Isotropic and (b) anisotropic meshes adapted based
on the Hessian of the computed solution uh of Eq. (A1). A close-
up of the domain region [0,0.15]× [0.3,0.7] shows fine resolution
along the x = 0 boundary in both meshes. The isotropic mesh con-
tains a much larger number of vertices Nv = 1625 compared to the
anisotropic mesh with onlyNv = 462, mainly due to the large num-
ber of isotropic elements along the x = 0 boundary.

in the respective metric densities, where the density of the
isotropic metric was over a magnitude larger than that of
the anisotropic metric. Since the variation along the y di-
rection is not as rapid as along the x direction, elements
of the anisotropic mesh are stretched along the y direction,
thus avoiding unnecessary over-refinement along the x = 0
boundary. We further observe refinement along the y = 0.5
midline, with the metric density and resulting number of el-
ements again being higher in the isotropic case.

Since the analytical solution is available, we can easily
compute the accuracy of the computed solution uh by com-
paring it to the analytical solution u in L2 norm. The error
in the solutions computed on the isotropic and anisotropic
meshes in Fig. A3 is roughly the same (4.37× 10−5 and
7.07×10−5, respectively), even though the anisotropic mesh
has roughly 4 times fewer vertices. We can conclude that
there was indeed no significant benefit from finely resolving
the region near the x = 0 boundary along the y direction.

We repeat the process again by considering intermediate
values of amax and by varying the total number of vertices of
generated meshes. For comparison, we also solve the prob-
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Figure A4. Error in the numerical solution uh to the Poisson prob-
lem given in Eq. (A1) against the number of verticesNv of the mesh
on which it was computed. Maximum tolerated metric anisotropy
values amax ∈ {1,2,4,8,16} were prescribed during metric con-
struction.

lem on uniform meshes. For each solution we compute the er-
ror and plot it in Fig. A4 against the number of vertices of the
mesh on which it was computed. We observe that adaptive
simulations achieved the same error as uniform simulations
with over an order-of-magnitude fewer mesh vertices. In par-
ticular, there is a clear reduction in error for the same num-
ber of vertices when considering increasingly anisotropic
meshes. However, we do not observe a clear improvement
of increasing amax from 8 to 16. Had the solution u had an
even steeper gradient, we would expect to see benefit from
further anisotropy.

Uniform refinement achieves the expected theoretical
second-order convergence rate (O(N−2

v )), while adaptive
refinement achieves slower convergence rates, between
O(N−1.35

v ) and O(N−1.48
v ), although it should be noted that

there is no longer a simple relationship betweenNv and (min-
imum or average) element size for the adapted meshes. The
errors in uniform and adaptive (isotropic and anisotropic)
meshes would converge for Nv that is high enough, when
even the uniform mesh is fine enough near the x = 0 bound-
ary but also other regions where such fine resolution is un-
necessary. Anisotropic mesh adaptation prevents such unnec-
essary over-refinement by distributing the available resolu-
tion where it is necessary, according to the prescribed metric.
Such an approach ensures that available computing resources
are efficiently utilised.
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