Articles | Volume 17, issue 18
https://doi.org/10.5194/gmd-17-6949-2024
https://doi.org/10.5194/gmd-17-6949-2024
Model description paper
 | 
18 Sep 2024
Model description paper |  | 18 Sep 2024

Prediction of hysteretic matric potential dynamics using artificial intelligence: application of autoencoder neural networks

Nedal Aqel, Lea Reusser, Stephan Margreth, Andrea Carminati, and Peter Lehmann

Related authors

Detecting the resilience of soil moisture dynamics to drought periods as function of soil type and climatic region
Nedal Aqel, Jannis Groh, Lutz Weihermüller, Ralf Gründling, Andrea Carminati, and Peter Lehmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-5141,https://doi.org/10.5194/egusphere-2025-5141, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary

Cited articles

Achieng, K. O.: Modelling of soil moisture retention curve using machine learning techniques: Artificial and deep neural networks vs support vector regression models, Comput. Geosci., 133, 104320, https://doi.org/10.1016/j.cageo.2019.104320, 2019. 
Aqel, N.: Prediction of Hysteretic Matric Potential Dynamics Using Artificial Intelligence: Application of Autoencoder Neural Networks-Dataset, Zenodo [data set], https://doi.org/10.5281/zenodo.10600669, 2024a. 
Aqel, N.: Prediction of Hysteretic Matric Potential Dynamics Using Artificial Intelligence: Application of Autoencoder Neural Networks – python codes. Zenodo [code], https://doi.org/10.5281/zenodo.10602397, 2024b. 
Aqel, N.: Prediction of Hysteretic Matric Potential Dynamics Using Artificial Intelligence: Application of Autoencoder Neural Networks – Autoencoder part, Zenodo [code], https://doi.org/10.5281/zenodo.10605108, 2024c. 
Basile, A., Bonfante, A., Coppola, A., De Mascellis, R., Falanga Bolognesi, S., Terribile, F., and Manna, P.: How does PTF Interpret Soil Heterogeneity? A Stochastic Approach Applied to a Case Study on Maize in Northern Italy, Water (Basel), 11, 275, https://doi.org/10.3390/w11020275, 2019. 
Download
Short summary
The soil water potential (SWP) determines various soil water processes. Since remote sensing techniques cannot measure it directly, it is often deduced from volumetric water content (VWC) information. However, under dynamic field conditions, the relationship between SWP and VWC is highly ambiguous due to different factors that cannot be modeled with the classical approach. Applying a deep neural network with an autoencoder enables the prediction of the dynamic SWP.
Share