Articles | Volume 17, issue 17
https://doi.org/10.5194/gmd-17-6545-2024
https://doi.org/10.5194/gmd-17-6545-2024
Model description paper
 | 
02 Sep 2024
Model description paper |  | 02 Sep 2024

OpenFOAM-avalanche 2312: depth-integrated models beyond dense-flow avalanches

Matthias Rauter and Julia Kowalski

Related authors

Data clustering to optimise the representativity of observational data in air quality data assimilation: a case study with EURAD-IM (version 5.9.1 DA)
Alexander Hermanns, Anne Caroline Lange, Julia Kowalski, Hendrik Fuchs, and Philipp Franke
Geosci. Model Dev., 18, 9417–9432, https://doi.org/10.5194/gmd-18-9417-2025,https://doi.org/10.5194/gmd-18-9417-2025, 2025
Short summary
Bayesian data selection to quantify the value of data for landslide runout calibration
V Mithlesh Kumar, Anil Yildiz, and Julia Kowalski
EGUsphere, https://doi.org/10.5194/egusphere-2025-4531,https://doi.org/10.5194/egusphere-2025-4531, 2025
This preprint is open for discussion and under review for Nonlinear Processes in Geophysics (NPG).
Short summary
Global, high-resolution mapping of tropospheric ozone – explainable machine learning and impact of uncertainties
Clara Betancourt, Timo T. Stomberg, Ann-Kathrin Edrich, Ankit Patnala, Martin G. Schultz, Ribana Roscher, Julia Kowalski, and Scarlet Stadtler
Geosci. Model Dev., 15, 4331–4354, https://doi.org/10.5194/gmd-15-4331-2022,https://doi.org/10.5194/gmd-15-4331-2022, 2022
Short summary
Elements of future snowpack modeling – Part 1: A physical instability arising from the nonlinear coupling of transport and phase changes
Konstantin Schürholt, Julia Kowalski, and Henning Löwe
The Cryosphere, 16, 903–923, https://doi.org/10.5194/tc-16-903-2022,https://doi.org/10.5194/tc-16-903-2022, 2022
Short summary
Elements of future snowpack modeling – Part 2: A modular and extendable Eulerian–Lagrangian numerical scheme for coupled transport, phase changes and settling processes
Anna Simson, Henning Löwe, and Julia Kowalski
The Cryosphere, 15, 5423–5445, https://doi.org/10.5194/tc-15-5423-2021,https://doi.org/10.5194/tc-15-5423-2021, 2021
Short summary

Cited articles

Ancey, C.: Powder snow avalanches: Approximation as non-Boussinesq clouds with a Richardson number–dependent entrainment function, J. Geophys. Res.-Earth, 109, F01005, https://doi.org/10.1029/2003JF000052, 2004. a, b, c, d, e
Bagnold, R. A.: Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear, Proc. Roy. Soc. Lond. A, 225, 49–63, https://doi.org/10.1098/rspa.1954.0186, 1954. a, b, c
Barker, T. and Gray, J. M. N. T.: Partial regularisation of the incompressible μ(I)-rheology for granular flow, J. Fluid Mech., 828, 5–32, https://doi.org/10.1017/jfm.2017.428, 2017. a
Barker, T., Rauter, M., Maguire, E., Johnson, C., and Gray, J.: Coupling rheology and segregation in granular flows, J. Fluid Mech., 909, A22, https://doi.org/10.1017/jfm.2020.973, 2021. a
Barré de Saint-Venant, A. J. C.: Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et à l'introduction des marées dans leurs lits, CR Acad. Sci., 73, 237–240, 1871. a
Download
Short summary
Snow avalanches can form large powder clouds that substantially exceed the velocity and reach of the dense core. Only a few complex models exist to simulate this phenomenon, and the respective hazard is hard to predict. This work provides a novel flow model that focuses on simple relations while still encapsulating the significant behaviour. The model is applied to reconstruct two catastrophic powder snow avalanche events in Austria.
Share