Articles | Volume 17, issue 17
https://doi.org/10.5194/gmd-17-6545-2024
https://doi.org/10.5194/gmd-17-6545-2024
Model description paper
 | 
02 Sep 2024
Model description paper |  | 02 Sep 2024

OpenFOAM-avalanche 2312: depth-integrated models beyond dense-flow avalanches

Matthias Rauter and Julia Kowalski

Related authors

faSavageHutterFOAM 1.0: depth-integrated simulation of dense snow avalanches on natural terrain with OpenFOAM
Matthias Rauter, Andreas Kofler, Andreas Huber, and Wolfgang Fellin
Geosci. Model Dev., 11, 2923–2939, https://doi.org/10.5194/gmd-11-2923-2018,https://doi.org/10.5194/gmd-11-2923-2018, 2018
Short summary
Snow avalanche friction relation based on extended kinetic theory
Matthias Rauter, Jan-Thomas Fischer, Wolfgang Fellin, and Andreas Kofler
Nat. Hazards Earth Syst. Sci., 16, 2325–2345, https://doi.org/10.5194/nhess-16-2325-2016,https://doi.org/10.5194/nhess-16-2325-2016, 2016
Short summary

Related subject area

Cryosphere
Computationally efficient subglacial drainage modelling using Gaussian process emulators: GlaDS-GP v1.0
Tim Hill, Derek Bingham, Gwenn E. Flowers, and Matthew J. Hoffman
Geosci. Model Dev., 18, 4045–4074, https://doi.org/10.5194/gmd-18-4045-2025,https://doi.org/10.5194/gmd-18-4045-2025, 2025
Short summary
Anisotropic metric-based mesh adaptation for ice flow modelling in Firedrake
Davor Dundovic, Joseph G. Wallwork, Stephan C. Kramer, Fabien Gillet-Chaulet, Regine Hock, and Matthew D. Piggott
Geosci. Model Dev., 18, 4023–4044, https://doi.org/10.5194/gmd-18-4023-2025,https://doi.org/10.5194/gmd-18-4023-2025, 2025
Short summary
Description and validation of the ice-sheet model Nix v1.0
Daniel Moreno-Parada, Alexander Robinson, Marisa Montoya, and Jorge Alvarez-Solas
Geosci. Model Dev., 18, 3895–3919, https://doi.org/10.5194/gmd-18-3895-2025,https://doi.org/10.5194/gmd-18-3895-2025, 2025
Short summary
The Utrecht Finite Volume Ice-Sheet Model (UFEMISM) version 2.0 – Part 1: Description and idealised experiments
Constantijn J. Berends, Victor Azizi, Jorge A. Bernales, and Roderik S. W. van de Wal
Geosci. Model Dev., 18, 3635–3659, https://doi.org/10.5194/gmd-18-3635-2025,https://doi.org/10.5194/gmd-18-3635-2025, 2025
Short summary
A Flexible Snow Model (FSM 2.1.1) including a forest canopy
Richard Essery, Giulia Mazzotti, Sarah Barr, Tobias Jonas, Tristan Quaife, and Nick Rutter
Geosci. Model Dev., 18, 3583–3605, https://doi.org/10.5194/gmd-18-3583-2025,https://doi.org/10.5194/gmd-18-3583-2025, 2025
Short summary

Cited articles

Ancey, C.: Powder snow avalanches: Approximation as non-Boussinesq clouds with a Richardson number–dependent entrainment function, J. Geophys. Res.-Earth, 109, F01005, https://doi.org/10.1029/2003JF000052, 2004. a, b, c, d, e
Bagnold, R. A.: Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear, Proc. Roy. Soc. Lond. A, 225, 49–63, https://doi.org/10.1098/rspa.1954.0186, 1954. a, b, c
Barker, T. and Gray, J. M. N. T.: Partial regularisation of the incompressible μ(I)-rheology for granular flow, J. Fluid Mech., 828, 5–32, https://doi.org/10.1017/jfm.2017.428, 2017. a
Barker, T., Rauter, M., Maguire, E., Johnson, C., and Gray, J.: Coupling rheology and segregation in granular flows, J. Fluid Mech., 909, A22, https://doi.org/10.1017/jfm.2020.973, 2021. a
Barré de Saint-Venant, A. J. C.: Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et à l'introduction des marées dans leurs lits, CR Acad. Sci., 73, 237–240, 1871. a
Download
Short summary
Snow avalanches can form large powder clouds that substantially exceed the velocity and reach of the dense core. Only a few complex models exist to simulate this phenomenon, and the respective hazard is hard to predict. This work provides a novel flow model that focuses on simple relations while still encapsulating the significant behaviour. The model is applied to reconstruct two catastrophic powder snow avalanche events in Austria.
Share