Articles | Volume 17, issue 17
https://doi.org/10.5194/gmd-17-6545-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-6545-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
OpenFOAM-avalanche 2312: depth-integrated models beyond dense-flow avalanches
Matthias Rauter
Unit of Geotechnical Engineering, University of Innsbruck, Innsbruck, Austria
Department of Civil Engineering and Natural Hazards, University of Natural Resources and Life Sciences, Vienna, Austria
Julia Kowalski
CORRESPONDING AUTHOR
Methods for Model-based Development in Computational Engineering, RWTH Aachen University, Aachen, Germany
Related authors
No articles found.
V Mithlesh Kumar, Anil Yildiz, and Julia Kowalski
EGUsphere, https://doi.org/10.5194/egusphere-2025-4531, https://doi.org/10.5194/egusphere-2025-4531, 2025
This preprint is open for discussion and under review for Nonlinear Processes in Geophysics (NPG).
Short summary
Short summary
The reliability of Bayesian calibration depends on the quality and availability of observational data. But are we choosing the right data? We address this question by measuring the information gained during calibration to quantify how data selection influences the Bayesian calibration of physics-based landslide runout models. We find that more data does not always yield better results – observations that capture the dynamics governed by a parameter are more effective for its calibration.
Alexander Hermanns, Anne Caroline Lange, Julia Kowalski, Hendrik Fuchs, and Philipp Franke
EGUsphere, https://doi.org/10.5194/egusphere-2025-450, https://doi.org/10.5194/egusphere-2025-450, 2025
Short summary
Short summary
For air quality analyses, data assimilation models split available data into assimilation and validation data sets. The former is used to generate the analysis, the latter to verify the simulations. A preprocessor classifying the observations by the data characteristics is developed based on clustering algorithms. The assimilation and validation data sets are compiled by equally allocating data of each cluster. The resulting improvement of the analysis is evaluated with EURAD-IM.
Clara Betancourt, Timo T. Stomberg, Ann-Kathrin Edrich, Ankit Patnala, Martin G. Schultz, Ribana Roscher, Julia Kowalski, and Scarlet Stadtler
Geosci. Model Dev., 15, 4331–4354, https://doi.org/10.5194/gmd-15-4331-2022, https://doi.org/10.5194/gmd-15-4331-2022, 2022
Short summary
Short summary
Ozone is a toxic greenhouse gas with high spatial variability. We present a machine-learning-based ozone-mapping workflow generating a transparent and reliable product. Going beyond standard mapping methods, this work combines explainable machine learning with uncertainty assessment to increase the integrity of the produced map.
Konstantin Schürholt, Julia Kowalski, and Henning Löwe
The Cryosphere, 16, 903–923, https://doi.org/10.5194/tc-16-903-2022, https://doi.org/10.5194/tc-16-903-2022, 2022
Short summary
Short summary
This companion paper deals with numerical particularities of partial differential equations underlying 1D snow models. In this first part we neglect mechanical settling and demonstrate that the nonlinear coupling between diffusive transport (heat and vapor), phase changes and ice mass conservation contains a wave instability that may be relevant for weak layer formation. Numerical requirements are discussed in view of the underlying homogenization scheme.
Anna Simson, Henning Löwe, and Julia Kowalski
The Cryosphere, 15, 5423–5445, https://doi.org/10.5194/tc-15-5423-2021, https://doi.org/10.5194/tc-15-5423-2021, 2021
Short summary
Short summary
This companion paper deals with numerical particularities of partial differential equations underlying one-dimensional snow models. In this second part we include mechanical settling and develop a new hybrid (Eulerian–Lagrangian) method for solving the advection-dominated ice mass conservation on a moving mesh alongside Eulerian diffusion (heat and vapor) and phase changes. The scheme facilitates a modular and extendable solver strategy while retaining controls on numerical accuracy.
Cited articles
Bagnold, R. A.: Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear, Proc. Roy. Soc. Lond. A, 225, 49–63, https://doi.org/10.1098/rspa.1954.0186, 1954. a, b, c
Barker, T. and Gray, J. M. N. T.: Partial regularisation of the incompressible μ(I)-rheology for granular flow, J. Fluid Mech., 828, 5–32, https://doi.org/10.1017/jfm.2017.428, 2017. a
Barker, T., Rauter, M., Maguire, E., Johnson, C., and Gray, J.: Coupling rheology and segregation in granular flows, J. Fluid Mech., 909, A22, https://doi.org/10.1017/jfm.2020.973, 2021. a
Barré de Saint-Venant, A. J. C.: Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et à l'introduction des marées dans leurs lits, CR Acad. Sci., 73, 237–240, 1871. a
Bartelt, P. and McArdell, B. W.: Granulometric investigations of snow avalanches, J. Glaciol., 55, 829–833, https://doi.org/10.3189/002214309790152384, 2009. a
Bouchut, F., Mangeney-Castelnau, A., Perthame, B., and Vilotte, J.-P.: A new model of Saint Venant and Savage–Hutter type for gravity driven shallow water flows, C. R. Math., 336, 531–536, https://doi.org/10.1016/S1631-073X(03)00117-1, 2003. a, b
Boyer, F., Guazzelli, É., and Pouliquen, O.: Unifying suspension and granular rheology, Phys. Rev. Lett., 107, 188301, https://doi.org/10.1103/PhysRevLett.107.188301, 2011. a, b, c, d
Christen, M., Kowalski, J., and Bartelt, P.: RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain, Cold Reg. Sci. Technol., 63, 1–14, https://doi.org/10.1016/j.coldregions.2010.04.005, 2010. a, b
Craster, R. V. and Matar, O. K.: Dynamics and stability of thin liquid films, Rev. Modern Phys., 81, 1131–1198, https://doi.org/10.1103/RevModPhys.81.1131, 2009. a
Denlinger, R. P. and Iverson, R. M.: Granular avalanches across irregular three-dimensional terrain: 1. Theory and computation, J. Geophys. Res.-Earth, 109, F01014, https://doi.org/10.1029/2003JF000085, 2004. a
Dziuk, G. and Elliott, C. M.: Finite element methods for surface PDEs, Acta Numer., 22, 289–396, https://doi.org/10.1017/S0962492913000056, 2013. a
Eglit, M.: Mathematical and physical modelling of powder-snow avalanches in Russia, Ann. Glaciol., 26, 281–284, https://doi.org/10.3189/1998AoG26-1-281-284, 1998. a, b
Eglit, M., Yakubenko, A., and Zayko, J.: A review of Russian snow avalanche models–from analytical solutions to novel 3D models, Geosciences, 10, 77, https://doi.org/10.3390/geosciences10020077, 2020. a, b
ESI-OpenCFD team: ESI OpenCFD Release OpenFOAM® v2312, https://www.openfoam.com/news/main-news/openfoam-v2312, last access: 18 August 2024. a
Fischer, J.-T., Kowalski, J., and Pudasaini, S. P.: Topographic curvature effects in applied avalanche modeling, Cold Reg. Sci. Technol., 74, 21–30, https://doi.org/10.1016/j.coldregions.2012.01.005, 2012. a
Forterre, Y. and Pouliquen, O.: Flows of Dense Granular Media, Annual Rev. Fluid Mech., 40, 1–24, https://doi.org/10.1146/annurev.fluid.40.111406.102142, 2008. a, b, c
Garcés, A., González, Á., Tamburrino, A., and Montserrat, S.: faDebrisFOAM validation using field data surveyed in Crucecita (Chile) alluvial fan for the event of 13th May 2017, in: E3S Web of Conferences, 415, p. 02007, https://doi.org/10.1051/e3sconf/202341502007, 2023. a
George, D. L., Iverson, R. M., and Cannon, C. M.: New methodology for computing tsunami generation by subaerial landslides: Application to the 2015 Tyndall Glacier landslide, Alaska, Geophys. Res. Lett., 44, 7276–7284, https://doi.org/10.1002/2017GL074341, 2017. a
Hagemeier, T., Hartmann, M., and Thévenin, D.: Practice of vehicle soiling investigations: A review, Int. J. Multiphas. Flow, 37, 860–875, https://doi.org/10.1016/j.ijmultiphaseflow.2011.05.002, 2011. a
Heerema, C. J., Talling, P. J., Cartigny, M. J., Paull, C. K., Bailey, L., Simmons, S. M., Parsons, D. R., Clare, M. A., Gwiazda, R., Lundsten, E., Anderson, K., Maier, K. L., Xu, J. P., Sumner, E. J., Rosenberger, K., Gales, J., McGann, M., Carter, L., and Pope, E.: What determines the downstream evolution of turbidity currents?, Earth Planet. Sc. Lett., 532, 116023, https://doi.org/10.1016/j.epsl.2019.116023, 2020. a
Hergarten, S. and Robl, J.: Modelling rapid mass movements using the shallow water equations in Cartesian coordinates, Nat. Hazards Earth Syst. Sci., 15, 671–685, https://doi.org/10.5194/nhess-15-671-2015, 2015. a
Huber, A., Kofler, A., Rauter, M., Fischer, J.-T., and Adams, M. S.: Simulation of dense snow avalanches with open source software, in: Proceedings of the International Snow Science Workshop, Innsbruck, Austria, https://arc.lib.montana.edu/snow-science/item/2643 (last access: 18 August 2024), 2018. a
Issler, D.: Modelling of snow entrainment and deposition in powder-snow avalanches, Ann. Glaciol., 26, 253–258, https://doi.org/10.3189/1998AoG26-1-253-258, 1998. a, b, c
Issler, D., Jenkins, J. T., and McElwaine, J. N.: Comments on avalanche flow models based on the concept of random kinetic energy, J. Glaciol., 64, 148–164, https://doi.org/10.1017/jog.2017.62, 2018. a, b, c
Iverson, R. M. and George, D. L.: A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis, Proc. Roy. Soc. Lond. A, 470, 2170, https://doi.org/10.1098/rspa.2013.0819, 2014. a, b
Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows, Ph.D. thesis, Imperial College, University of London, https://www.researchgate.net/publication/230605842_Error_Analysis_and_Estimation_for_the_Finite_Volume_Method_With_Applications_to_Fluid_Flows (last access: 18 August 2024), 1996. a, b
Juretić, F.: cfMesh User Guide, Creative Fields, Zagreb, https://cfmesh.com/wp-content/uploads/2015/09/User_Guide-cfMesh_v1.1.pdf (last access: 18 August 2024), 2015. a
Köhler, A., McElwaine, J., and Sovilla, B.: GEODAR data and the flow regimes of snow avalanches, J. Geophys. Res.-Earth, 123, 1272–1294, https://doi.org/10.1002/2017JF004375, 2018. a
Kowalski, J. and McElwaine, J. N.: Shallow two-component gravity-driven flows with vertical variation, J. Fluid Mech., 714, 434–462, https://doi.org/10.1017/jfm.2012.489, 2013. a, b
Kowalski, J. and Torrilhon, M.: Moment Approximations and Model Cascades for Shallow Flow, Commun. Comput. Phys., 25, 669–702, https://doi.org/10.4208/cicp.OA-2017-0263, 2019. a
LeVeque, R. J.: Finite volume methods for hyperbolic problems, vol. 31, Cambridge University Press, 2002. a
Løvholt, F., Pedersen, G., Harbitz, C. B., Glimsdal, S., and Kim, J.: On the characteristics of landslide tsunamis, Philos. T. Roy. Soc. A, 373, 20140376, https://doi.org/10.1098/rsta.2014.0376, 2015. a
Lucas, A., Mangeney, A., and Ampuero, J. P.: Frictional velocity-weakening in landslides on Earth and on other planetary bodies, Nat. Commun., 5, 1–9, https://doi.org/10.1038/ncomms4417, 2014. a
Mergili, M., Fischer, J.-T., Krenn, J., and Pudasaini, S. P.: r.avaflow v1, an advanced open-source computational framework for the propagation and interaction of two-phase mass flows, Geosci. Model Dev., 10, 553–569, https://doi.org/10.5194/gmd-10-553-2017, 2017. a
Moukalled, F., Mangani, L., and Darwish, M.: The finite volume method in computational fluid dynamics, Springer, https://doi.org/10.1007/978-3-319-16874-6, 2016. a, b
Pitman, E. B., Nichita, C. C., Patra, A., Bauer, A., Sheridan, M., and Bursik, M.: Computing granular avalanches and landslides, Phys. Fluids, 15, 3638–3646, https://doi.org/10.1063/1.1614253, 2003. a
Pudasaini, S. P.: A general two-phase debris flow model, J. Geophys. Res.-Earth, 117, F03010, https://doi.org/10.1029/2011JF002186, 2012. a
Pudasaini, S. P. and Hutter, K.: Avalanche Dynamics: Dynamics of Rapid Flows of Dense Granular Avalanches, Springer, https://doi.org/10.1007/978-3-540-32687-8, 2007. a
Pudasaini, S. P., Wang, Y., and Hutter, K.: Rapid motions of free-surface avalanches down curved and twisted channels and their numerical simulation, Philos. T. Roy. Soc. Lond. A, 363, 1551–1571, https://doi.org/10.1098/rsta.2005.1595, 2005. a
Rastello, M., Rastello, F., Bellot, H., Ousset, F., Dufour, F., and Meier, L.: Size of snow particles in a powder-snow avalanche, J. Glaciol., 57, 151–156, https://doi.org/10.3189/002214311795306637, 2011. a
Rauter, M.: OpenFOAM Avalanche Module Repository, https://develop.openfoam.com/Community/avalanche, last access: 18 August 2024. a
Rauter, M. and Köhler, A.: Constraints on entrainment and deposition models in avalanche simulations from high-resolution radar data, Geosciences, 10, 9, https://doi.org/10.3390/geosciences10010009, 2020. a, b, c
Rauter, M., Fischer, J.-T., Fellin, W., and Kofler, A.: Snow avalanche friction relation based on extended kinetic theory, Nat. Hazards Earth Syst. Sci., 16, 2325–2345, https://doi.org/10.5194/nhess-16-2325-2016, 2016. a, b, c, d
Rauter, M., Viroulet, S., Gylfadóttir, S. S., Fellin, W., and Løvholt, F.: Granular porous landslide tsunami modelling–the 2014 Lake Askja flank collapse, Nat. Commun., 13, 678, https://doi.org/10.1038/s41467-022-28296-7, 2022. a, b
Roache, P. J.: Quantification of uncertainty in computational fluid dynamics, Annu. Rev. Fluid Mech., 29, 123–160, https://doi.org/10.1146/annurev.fluid.29.1.123, 1997. a, b
Salm, B., Burkard, A., and Gubler, H. U.: Berechnung von Fliesslawinen: eine Anleitung für Praktiker mit Beispielen, Tech. rep., WSL Institut für Schnee-und Lawinenforschung SLF, Davos, https://www.dora.lib4ri.ch/wsl/islandora/object/wsl%3A26106 (last access: 18 August 2024), 1990. a
Savage, S. B. and Hutter, K.: The dynamics of avalanches of granular materials from initiation to runout. Part I: Analysis, Acta Mech., 86, 201–223, https://doi.org/10.1007/BF01175958, 1991. a, b, c
Scheidegger, A. E.: On the prediction of the reach and velocity of catastrophic landslides, Rock Mech. Rock Eng., 5, 231–236, https://doi.org/10.1007/BF01301796, 1973. a
Shimizu, H. A.: Numerical Simulations of Dome-Collapse Pyroclastic Density Currents Using faSavageHutterFOAM: Application to the 3 June 1991 Eruption of Unzen Volcano, Japan, J. Disaster Res., 17, 768–778, https://doi.org/10.20965/jdr.2022.p0768, 2022. a
Sovilla, B., McElwaine, J. N., and Louge, M. Y.: The structure of powder snow avalanches, C. R. Phys., 16, 97–104, https://doi.org/10.1016/j.crhy.2014.11.005, 2015. a, b, c
Steinkogler, W., Gaume, J., Löwe, H., Sovilla, B., and Lehning, M.: Granulation of snow: From tumbler experiments to discrete element simulations, J. Geophys. Res.-Earth, 120, 1107–1126, https://doi.org/10.1002/2014JF003294, 2015a. a
Steinkogler, W., Sovilla, B., and Lehning, M.: Thermal energy in dry snow avalanches, The Cryosphere, 9, 1819–1830, https://doi.org/10.5194/tc-9-1819-2015, 2015b. a
Tuković, Ž. and Jasak, H.: A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow, Comput. Fluids, 55, 70–84, https://doi.org/10.1016/j.compfluid.2011.11.003, 2012. a, b
Turnbull, B. and Bartelt, P.: Mass and momentum balance model of a mixed flowing/powder snow avalanche, Surv. Geophys., 24, 465–477, https://doi.org/10.1023/B:GEOP.0000006077.82404.84, 2003. a
Turner, J.: Turbulent entrainment: the development of the entrainment assumption, and its application to geophysical flows, J. Fluid Mech., 173, 431–471, https://doi.org/10.1017/S0022112086001222, 1986. a, b, c, d
Vescovi, D., di Prisco, C., and Berzi, D.: From solid to granular gases: the steady state for granular materials, Int. J. Numer. Anal. Met., 37, 2937–2951, https://doi.org/10.1002/nag.2169, 2013. a
Viroulet, S., Baker, J., Edwards, A., Johnson, C. G., Gjaltema, C., Clavel, P., and Gray, J.: Multiple solutions for granular flow over a smooth two-dimensional bump, J. Fluid Mech., 815, 77–116, https://doi.org/10.1017/jfm.2017.41, 2017. a
Voellmy, A.: Über die Zerstörungskraft von Lawinen (On the destructive forces of avalanches), Schweizerische Bauzeitung, 73, 212–217, https://doi.org/10.5169/seals-61891, 1955. a
Zhao, H. and Kowalski, J.: Bayesian active learning for parameter calibration of landslide run-out models, Landslides, 19, 2033–2045, https://doi.org/10.1007/s10346-022-01857-z, 2022. a
Short summary
Snow avalanches can form large powder clouds that substantially exceed the velocity and reach of the dense core. Only a few complex models exist to simulate this phenomenon, and the respective hazard is hard to predict. This work provides a novel flow model that focuses on simple relations while still encapsulating the significant behaviour. The model is applied to reconstruct two catastrophic powder snow avalanche events in Austria.
Snow avalanches can form large powder clouds that substantially exceed the velocity and reach of...