Articles | Volume 17, issue 17
https://doi.org/10.5194/gmd-17-6545-2024
https://doi.org/10.5194/gmd-17-6545-2024
Model description paper
 | 
02 Sep 2024
Model description paper |  | 02 Sep 2024

OpenFOAM-avalanche 2312: depth-integrated models beyond dense-flow avalanches

Matthias Rauter and Julia Kowalski

Related authors

faSavageHutterFOAM 1.0: depth-integrated simulation of dense snow avalanches on natural terrain with OpenFOAM
Matthias Rauter, Andreas Kofler, Andreas Huber, and Wolfgang Fellin
Geosci. Model Dev., 11, 2923–2939, https://doi.org/10.5194/gmd-11-2923-2018,https://doi.org/10.5194/gmd-11-2923-2018, 2018
Short summary
Snow avalanche friction relation based on extended kinetic theory
Matthias Rauter, Jan-Thomas Fischer, Wolfgang Fellin, and Andreas Kofler
Nat. Hazards Earth Syst. Sci., 16, 2325–2345, https://doi.org/10.5194/nhess-16-2325-2016,https://doi.org/10.5194/nhess-16-2325-2016, 2016
Short summary

Related subject area

Cryosphere
A Flexible Snow Model (FSM 2.1.1) including a forest canopy
Richard Essery, Giulia Mazzotti, Sarah Barr, Tobias Jonas, Tristan Quaife, and Nick Rutter
Geosci. Model Dev., 18, 3583–3605, https://doi.org/10.5194/gmd-18-3583-2025,https://doi.org/10.5194/gmd-18-3583-2025, 2025
Short summary
CMIP6 models overestimate sea ice melt, growth and conduction relative to ice mass balance buoy estimates
Alex E. West and Edward W. Blockley
Geosci. Model Dev., 18, 3041–3064, https://doi.org/10.5194/gmd-18-3041-2025,https://doi.org/10.5194/gmd-18-3041-2025, 2025
Short summary
Coupling framework (1.0) for the Úa (2023b) ice sheet model and the FESOM-1.4 z-coordinate ocean model in an Antarctic domain
Ole Richter, Ralph Timmermann, G. Hilmar Gudmundsson, and Jan De Rydt
Geosci. Model Dev., 18, 2945–2960, https://doi.org/10.5194/gmd-18-2945-2025,https://doi.org/10.5194/gmd-18-2945-2025, 2025
Short summary
A gradient-boosted tree framework to model the ice thickness of the world's glaciers (IceBoost v1.1)
Niccolò Maffezzoli, Eric Rignot, Carlo Barbante, Troels Petersen, and Sebastiano Vascon
Geosci. Model Dev., 18, 2545–2568, https://doi.org/10.5194/gmd-18-2545-2025,https://doi.org/10.5194/gmd-18-2545-2025, 2025
Short summary
A Python library for solving ice sheet modeling problems using Physics Informed Neural Networks, PINNICLE v1.0
Gong Cheng, Mansa Krishna, and Mathieu Morlighem
EGUsphere, https://doi.org/10.5194/egusphere-2025-1188,https://doi.org/10.5194/egusphere-2025-1188, 2025
Short summary

Cited articles

Ancey, C.: Powder snow avalanches: Approximation as non-Boussinesq clouds with a Richardson number–dependent entrainment function, J. Geophys. Res.-Earth, 109, F01005, https://doi.org/10.1029/2003JF000052, 2004. a, b, c, d, e
Bagnold, R. A.: Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear, Proc. Roy. Soc. Lond. A, 225, 49–63, https://doi.org/10.1098/rspa.1954.0186, 1954. a, b, c
Barker, T. and Gray, J. M. N. T.: Partial regularisation of the incompressible μ(I)-rheology for granular flow, J. Fluid Mech., 828, 5–32, https://doi.org/10.1017/jfm.2017.428, 2017. a
Barker, T., Rauter, M., Maguire, E., Johnson, C., and Gray, J.: Coupling rheology and segregation in granular flows, J. Fluid Mech., 909, A22, https://doi.org/10.1017/jfm.2020.973, 2021. a
Barré de Saint-Venant, A. J. C.: Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et à l'introduction des marées dans leurs lits, CR Acad. Sci., 73, 237–240, 1871. a
Download
Short summary
Snow avalanches can form large powder clouds that substantially exceed the velocity and reach of the dense core. Only a few complex models exist to simulate this phenomenon, and the respective hazard is hard to predict. This work provides a novel flow model that focuses on simple relations while still encapsulating the significant behaviour. The model is applied to reconstruct two catastrophic powder snow avalanche events in Austria.
Share