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Abstract. Numerical simulations have become an important
tool for the estimation and mitigation of gravitational mass
flows, such as avalanches, landslides, pyroclastic flows, and
turbidity currents. Depth integration stands as a pivotal con-
cept in rendering numerical models applicable to real-world
scenarios, as it provides the required efficiency and a stream-
lined workflow for geographic information systems. In re-
cent years, a large number of flow models were developed
following the idea of depth integration, thereby enlarging the
applicability and reliability of this family of process mod-
els substantially. It has been previously shown that the finite
area method of OpenFOAM® can be utilized to express and
solve the basic depth-integrated models representing incom-
pressible dense flows. In this article, previous work (Rauter
et al., 2018) is extended beyond the dense-flow regime to
account for suspended particle flows, such as turbidity cur-
rents and powder snow avalanches. A novel coupling mech-
anism is introduced to enhance the simulation capabilities
for mixed-snow avalanches. Further, we will give an updated
description of the revised computational framework, its in-
tegration into OpenFOAM, and interfaces to geographic in-
formation systems. This work aims to provide practitioners
and scientists with an open-source tool that facilitates trans-
parency and reproducibility and that can be easily applied to
real-world scenarios. The tool can be used as a baseline for
further developments and in particular allows for modular in-
tegration of customized process models.

1 Introduction

Runout and impact simulations of gravitational mass flows
typically rely on depth-integrated models (e.g. Pitman et al.,
2003; Sampl and Zwinger, 2004; Christen et al., 2010; Iver-
son and George, 2014; Mergili et al., 2017; Eglit et al., 2020).
In comparison with fully resolved three-dimensional models,
this framework provides a range of upsides: the computa-
tional expense is substantially reduced, interface and phase
tracking are simpler and more reliable, and integration in
geographic information systems is straightforward. Depth-
averaged models are easier to solve numerically, to set up, to
calibrate, and to evaluate. However, depth integration comes
at a price: the vertical flow structure (including the profiles
of density, velocity, and shear rate) is lost, and all related ef-
fects, if needed for closures, have to be reintroduced with ad-
ditional models. This includes friction, erosion of basal ma-
terial, and its deposition (e.g. Rauter and Köhler, 2020), as
well as layering of varying regimes (e.g. Bartelt et al., 2016).
A possibility of overcoming this entails the shallow moment
approach (Kowalski and Torrilhon, 2019); however, it has not
been applied successfully to real-world granular mass flows
yet. Nevertheless, depth-integrated models have proven to
be a good compromise between simplicity and complexity,
especially for flows of geographic extent from avalanches
(Christen et al., 2010) to tsunamis (Løvholt et al., 2015).

Granular flows show a large variety of behaviours. A very
strong distinction of properties can be linked to the Stokes
number St, expressing the ratio between inertia and drag
forces on particles (Boyer et al., 2011; Rauter, 2021). For
a flow with shear rate γ̇ of granules with density ρg and di-
ameter d , in a medium of viscosity νc, and density ρc, the
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Stokes number can be written as

St= d2 γ̇ ρg

νc ρc
. (1)

At high Stokes numbers, drag forces are small and parti-
cles move freely through the surrounding fluid or gas. Thus,
the bulk motion is dominated by particle–particle interac-
tions, and particles will arrange in a relatively high packing
density that only depends on the local shear rate and pressure
(e.g. Forterre and Pouliquen, 2008). Furthermore, for many
realistic problems, the bulk density can be assumed constant
with acceptable accuracy. Dense-flow models often take ad-
vantage of this fact and are formulated as incompressible
non-Newtonian fluids (e.g. Savage and Hutter, 1989; Rauter,
2021).

At low Stokes numbers, drag on particles is substantial and
particles are not able to rearrange freely within the carrier
medium. Particles and surrounding fluid form a suspension
and move like a single fluid, only to be slowly separated by
the settling velocity. The packing density or volume fraction
depends on various aspects and most importantly on the his-
tory of the flow. This is a strong hint that the volume frac-
tion requires an evolution equation to be properly described
(as done by, for example, Parker et al., 1986; Kowalski and
McElwaine, 2013; Issler et al., 2018; Rauter, 2021).

It can be seen from Eq. (1) that the Stokes number depends
on the particle size. In polydisperse granular flows, i.e. flows
with particles of various sizes (e.g. Barker et al., 2021), this
can lead to vertical segregation of small and large particles
and thus a coexistence of both regimes. This can be well
observed in snow avalanches (Sovilla et al., 2015), where a
dense flow is formed by relatively coarse snow blocks of size
10−1 m (Bartelt and McArdell, 2009; Rauter et al., 2018),
and a powder cloud is formed by small ice particles of size
10−4 m (Rastello et al., 2011; Bartelt et al., 2016); see Fig. 1.

In terms of depth-integrated models, this calls for a two-
layer model, capturing the dense flow with an incompressible
model and the powder cloud with a suspension model (Issler,
1998; Sampl and Zwinger, 2004; Bartelt et al., 2016).

In this work, we will extend the dense-flow model of
Rauter et al. (2018) to low Stokes number suspension flows
following the model of Parker et al. (1986). We will make
and evaluate some adjustments to account for high-density
differences between the carrier medium and the particles. In
a further step, we will combine the models for dense flow
and suspension into a two-layer model, capable of simulat-
ing mixed-snow avalanches, similar to Turnbull and Bartelt
(2003) and Bartelt et al. (2016). For this purpose, we have to
define a coupling mechanism, i.e. a mass flux term that feeds
the powder cloud from the dense core. We develop a novel
idealized relation that encapsulates the essential features of
this process and deliberately avoids more complex mecha-
nisms (e.g. Sampl and Zwinger, 2004; Bartelt et al., 2016).
We focus on clarity, simplicity, and modularity and therefore
describe all processes with simple, local relations that can be

formulated independently of one another. This is motivated
not only by the goal of creating a simple baseline model but
also by the observation that complexity does not necessarily
lead to better results (Zhao and Kowalski, 2022). The natu-
ral terrain is handled as described previously by Rauter et al.
(2018). While the main focus of the presented work is snow
avalanches, the implementation might very well be useful for
the simulation of turbidity currents, as several researchers
suspect a dense core in these flows as well (e.g. Heerema
et al., 2020).

The naming convention of layers and fluxes follows
Bartelt et al. (2016): the dense core is denoted by 8, the sus-
pension flow by 5, the static bottom layer by 6, and the
stationary ambient fluid by 3. Flow fields are marked by the
respective subscripts and fluxes between layers with two sub-
scripts and an arrow indicating the direction of the flux (see
Fig. 1).

The numerical solution and implementation are based on
the finite area method (Tuković and Jasak, 2012; Rauter and
Tuković, 2018) as implemented in OpenFOAM. Its modular
structure and building blocks have proven to be flexible and
highly valuable for physical depth-integrated models. Vari-
ous code parts are reused between all models and various
communities, in particular the numerical solver, geometry,
and data handling, as well as various code parts related to
the physics of the flow, such as friction models. Besides the
introduction of the new model and its capabilities, this work
highlights the extendability of the basic OpenFOAM solver
to complex models.

The toolchain to process the basic terrain data, all the way
to the final simulation visualization, has been improved sub-
stantially since the work of Rauter et al. (2018), and many ex-
ternal dependencies have been removed in order to facilitate a
tight integration into OpenFOAM. Consequently, this paper
also provides an updated overview of the toolchain and its
practical applications. In this context we will also give a re-
vised introduction into the finite area method and the specific
derivations of depth integration. The model caters to practi-
tioners who need a simple mixed-snow avalanche model but
mostly to scientists who wish for an open model and frame-
work that can be easily modified and extended to evaluate
new concepts and ideas.

The novel model is evaluated with various synthetic test
cases and finally applied to two real events: the 1988 Wolfs-
gruben avalanche and the 2019 Eiskar avalanche.

2 Foundation and framework

2.1 Conservation equations and depth integration

The presented method fundamentally relies on balance equa-
tions, in particular, the conservation of mass and mo-
mentum for fluids. The combination of these two equa-
tions is widely known as the Navier–Stokes equations (e.g.

Geosci. Model Dev., 17, 6545–6569, 2024 https://doi.org/10.5194/gmd-17-6545-2024



M. Rauter and J. Kowalski: OpenFOAM-avalanche module 6547

Figure 1. Conceptual sketch of a mixed-powder snow avalanche, combining an incompressible dense flow of high Stokes number with a
variable density suspension cloud characterized by a small Stokes number. The avalanche growth is controlled by the erosion of the intact
snow cover and the entrainment of ambient air. The layers interact through mass (yellow) and momentum fluxes (red). Characteristic scales
of packing density φs, bulk density ρ, velocity u, and height h vary substantially between layers and thus require individual models.

Ferziger and Peric, 2002) and can be written as

∂ ρ

∂t
+∇ · (ρ u)= 0, (2)

∂ ρ u

∂t
+∇ · (ρ uu)=∇ ·T+f , (3)

with the bulk density ρ and the bulk velocity u. (Note that it
can also be defined for an individual phase with some mod-
ifications, see, for example, Rauter, 2021.) These flow fields
are functions of time t and space x = (x,y,z)T . The model
Eqs. (2) and (3) describe their evolution from a known initial
state u(0,x)= u0 (x) and similar ρ0 (x), under the influence
of boundary conditions. The divergence of the stress tensor T
has the effect of diffusing momentum, and the volume force
f represents additional forces, such as gravity.

Appropriate closure relations that express the stress ten-
sor T as a function of the unknown flow fields yield a well-
posed problem that can, in principle, be solved with nu-
merical methods (Barker and Gray, 2017). However, even
a well-posed problem is often not practically solvable from
a computational perspective. Therefore, multiple simplifica-
tions have to be made to make problems of practical rel-
evance accessible. Simplifications often come in the form
of averaging over a certain time or over space to get rid

of turbulent structures (Reynolds averaging; see, for exam-
ple, Ferziger and Peric, 2002), to describe the average be-
haviour of multiple interpenetrating phases (phase averaging;
e.g. Rauter, 2021), or to get rid of the vertical dimension (e.g.
Savage and Hutter, 1989; Rauter and Tuković, 2018). The
latter is referred to as depth averaging or depth integration
and avoids the calculation of three-dimensional flow details.
It yields mean values of, for example, density ρ and velocity
u along the depth.

In the simplest case, where the depth integration is aligned
with a spatial axis (e.g. the z axis), the problem can be re-
duced from three (x,y,z) to two dimensions (x,y). In this
case, the depth-averaged value for an arbitrary field ψ is de-
fined as

ψ(x,y, t)=
1
h

h∫
0

ψ(x,y,z, t)dz. (4)

The newly introduced field h(x,y, t) describes the flow
depth, here in terms of the z coordinate of the top bound-
ary of the integration, for a bottom boundary assumed to be
aligned with z= 0. The bottom and top boundaries are usu-
ally defined such that the mass flux through them is zero,
meaning that they move with the vertical velocity of the flow
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at the respective position. The simplest example of such a
model is the shallow-water equations (Barré de Saint-Venant,
1871). Defining the boundary in any other way will lead
to additional source or sink terms, depending on the mass
flux through the boundary (e.g. Pudasaini and Hutter, 2007).
Examples would be any kind of entrainment and deposition
fluxes.

Depth-integrated models are often considered syn-
onymous with two-dimensional models. However, real
avalanches and landslides travel along paths and surfaces
in three-dimensional space. The three-dimensional nature of
the terrain has to be reintroduced by modifying the two-
dimensional model equations. Most often this is accom-
plished by abandoning Cartesian coordinate systems and Eu-
clidean geometry, which was described in detail first by Sav-
age and Hutter (1989, 1991) and extended by many others
since then (e.g. Bouchut and Westdickenberg, 2004; Den-
linger and Iverson, 2004; Pudasaini et al., 2005; Hergarten
and Robl, 2015). This introduces various correction terms
based on Christoffel formalism that are difficult to handle in
complex models. In practice, simpler approximations are fre-
quently employed (e.g. in RAMMS, see Fischer et al., 2012),
leading to a disparity between theory and practical imple-
mentation. Notably, many of these developments happened
in parallel and independently in the Russian avalanche dy-
namics community (Eglit et al., 2020).

An alternative to two-dimensional models with excessive
curvature terms is the direct solution of the governing equa-
tions in three-dimensional space (Craster and Matar, 2009;
Hagemeier et al., 2011; Rauter and Tuković, 2018). Depth
integration is still compatible with this approach, and it can
in principle be conducted in any direction pointing out of the
surface. Yet in this work, depth integration is always con-
ducted in the direction of the normal vector n0 to the flow
surface 0, as shown in Fig. 2. This has formally to be con-
ducted in a surface-aligned coordinate system x′–y′–z′:

ψ(xb)=
1
h

h∫
0

det(J)ψ
(
x′, t

)
dz′ ≈

1
h

h∫
0

ψ
(
x′, t

)
dz′. (5)

The Jacobian matrix J, representing the transformation
∂x′/∂x, and its determinant det(J) take into account the cur-
vature of the surface and its influence on the volume in a dif-
ferential volume element of the flow (Bouchut et al., 2003).
This effect is of the order of h/R (Bouchut et al., 2003) with
the mean curvature radius R and thus is small for mildly
curved surfaces (R is large in comparison to the flow height
h). As in most other models, the influence of the curvature
on depth integration is ignored in this work.

Figure 2. Depth integration reduces the full three-dimensional flow
field ψ (dashed area) to an average flow field ψ (blue-filled area),
which is assigned to a point xb ∈ 0.

2.2 Surface partial differential equations

Depth integration in terms of Eq. (5) projects all three-
dimensional flow fields on the surface 0 they are constrained
by. The conservation equations can then be expressed as sur-
face partial differential equations (SPDEs) that are defined on
the surface 0 and include derivatives of various fields along it
(Rauter and Tuković, 2018). These derivatives emerge from
depth-integrating the nabla operator ∇ present in the Navier–
Stokes equations formulated in a three-dimensional Carte-
sian reference frame. The presented framework differs from
the classic approach of handling derivatives in two respects.
Both are described in the following.

Depth integration has different effects on derivatives taken
along the surface compared to those taken normal to the sur-
face. While derivatives normal to the surface either vanish or
appear as local source terms, derivatives along the surface re-
main in the system. A very common approach is to write the
surface-aligned derivative as a two-dimensional derivative in
local coordinates (e.g. in terms of ∂x′, ∂y′; Savage and Hut-
ter, 1989). In the present framework, however, we express
all entities in global Cartesian coordinates. For diffusive pro-
cesses, this procedure gives rise to the Laplace–Beltrami op-
erator (Dziuk and Elliott, 2013). However, this technique can
also be adopted to other differential operators present in the
system. The respective surface gradient and divergence op-
erators ∇0 can be readily calculated in the numerical frame-
work; see Sect. 2.3.

The depth integration of derivatives is then conducted in
analogy to ordinary fields (see Eq. 5), in the surface aligned
coordinate system x′–y′–z′:
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∇ψ (xb)=
1
h

h∫
0

det(J)∇′ψ
(
x′
)

dz′ ≈
1
h

h∫
0

∇
′ψ
(
x′
)

dz′

=
1
h

h∫
0

(
∇
0ψ

(
x′
)
+

∂

∂z′
ψ
(
x′
)
e′z

)
dz′

=
1
h

h∫
0

∇
0ψ

(
x′
)

dz′+
1
h

h∫
0

∂

∂z′
ψ
(
x′
)

dz′ e′z

=

h∫
0

∇0ψ
(
x′
)

h
dz′+

ψ(xt)−ψ(xb)

h
n0

=∇
0ψ (xb)+

ψ(xt)−ψ(xb)

h
n0, (6)

where xb is a point on the bottom of the flow (and thus the
flow surface 0) and xt the corresponding point on the free
surface of the flow. The second term on the right-hand side
of Eq. (6) represents an additional sink or source term, which
arises if ψ is not zero at the bottom, xb, or the top of the flow,
xt, such as due to entrainment or basal friction.

Further, our approach does not follow, for example, Sav-
age and Hutter (1989) in separating the z component (deter-
mining, for example the pressure) from the x and y com-
ponent (determining, for example, the velocity) in vectorial
type balance laws such as the momentum equation. This
would not be possible as our coordinate system is not aligned
with the surface. We rather project the full three-dimensional
equation onto the surface and the normal vector. The sur-
face tangential projection of the surface gradient of a scalar
is hence given by

∇
0
s ψ =∇

0ψ ·
(
I−n0 n0

)
(7)

and the surface normal projection as

∇
0
n ψ =∇

0ψ ·
(
n0 n0

)
(8)

and similar for vectors and divergence operators. The ben-
efit of this approach is that the framework operates entirely
in global Cartesian coordinates; thus, similar to an inertial
frame, no fictitious centrifugal forces have to be considered.
It follows that leading-order curvature effects are considered
in the model by design, without explicitly expressing the cur-
vature (Rauter and Tuković, 2018). For higher-order curva-
ture effects, det(J) needs to be preserved during depth inte-
gration (Bouchut and Westdickenberg, 2004).

With these building blocks and some knowledge on how to
transform one-dimensional shallow-flow models (e.g. Savage
and Hutter, 1989; Parker et al., 1986), it is possible to extend
nearly arbitrary depth-integrated flow models to complex
terrain. In particular, ordinary depth-integrated flow mod-
els represent the surface–tangential momentum conservation

equation and the flow depth equation. The two-dimensional
∇ operators have to be replaced with the surface–tangential
∇0

s operators. The surface–normal momentum conservation
equation can be applied to replace the usually simplified ex-
pression for the basal pressure.

2.3 Finite area method

Partial differential equations, as well as their SPDE coun-
terparts, are rarely solvable in an analytical sense, espe-
cially practical problems that represent real-world situations.
Therefore, we rely on numerical approximations of SPDEs
and the finite area method. This method is a variation of the
finite volume method (see Ferziger and Peric, 2002; Jasak,
1996; Moukalled et al., 2016, for details) in N + 1 dimen-
sions, whereN is the dimension of the control volumes. This
means that for two-dimensional control volumes (i.e. sur-
faces), vectorial entities, such as normal vectors, velocities,
and fluxes, will be three-dimensional. Similar to the conven-
tional finite volume method, the Gaussian surface theorem
(Tuković and Jasak, 2012) is applied and discretized by sim-
plifying a control surface S as a flat, convex polygon Si , as
shown in Fig. 3. The expressions for the differential operators
follow as

∇
0ψ =

1
S

∮
∂S

m0ψ dL≈
1
Si

∑
ψemeLe (9)

and

∇
0
·ψ =

1
S

∮
∂S

m0 ·ψ dL≈
1
Si

∑
ψe ·meLe. (10)

Index e refers to a discrete number of straight edges that
form the polygon with surface Si . ψe is the average value
of the field ψ on the edge e, Le its length, and me is the
0–tangential and edge-normal outward-pointing vector. Si ,
Le, andme are purely geometrical properties that are defined
during mesh generation. Values of fields on edges ψe, on
the other hand, are interpolated from values of edge-adjacent
cells, ψP and ψN . This introduces flux transport across cells
and represents the flow of mass or information from one cell
to neighbouring ones. The fluxes can then be associated in
a linear system of equations that is solved with a suitable
method.

Discretization of non-gradient terms (e.g. the temporal
derivative or any source term) is done in complete analogy to
the finite volume method and obtained from integration over
the control surface Si . For details we refer to the large amount
of excellent literature on the finite volume method (Ferziger
and Peric, 2002; Jasak, 1996; Moukalled et al., 2016; LeV-
eque, 2002).
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Figure 3. A finite area cell P and its neighbourN , used to calculate
the approximation of surface derivatives in terms of the Gaussian
surface theorem, integrating fluxes through cell edges e with length
Le and outward-pointing vector me.

3 Dense-flow model

The dense-flow model describes the flow of incompressible
material with density ρ8 (see Fig. 1). In the case of a granular
mass flow, the density follows from the grain density ρg and
the volumetric packing density φ8 as

ρ8 = φ8 ρg. (11)

However, fluids can be simulated with this model as well, in
which case ρ8 is the intrinsic density of the fluid. The depth-
integrated mass and momentum conservation equations fol-
low as

∂h8

∂t
+∇

0
· (h8u8)=

S
φ
8

φ8
, (12)

∂h8u8

∂t
+ ξ8∇

0
s · (h8u8u8)=−

τ8

ρ8
+h8gs

−
1

2ρ8
∇
0
s (h8p8)+

Su8

ρ8
, (13)

ξ8∇
0
n · (h8u8u8)= h8gn−

1
2ρ8

∇
0
n (h8p8)

−
1
ρ8

n0 p8. (14)

The unknown flow fields are the flow depth h8, the depth-
integrated velocity u8, and the basal pressure p8. The grav-
itational acceleration is represented by its surface–tangential
projection gs =

(
I−n0 n0

)
g and its surface-normal projec-

tion gn =
(
n0 n0

)
g. Equation (14) represents the surface-

normal component of the momentum conservation equation
and yields the basal pressure p8.

The shape factor ξ8 partially compensates for errors intro-
duced by switching integration and multiplication, namely
ξ8u8u8 = u8u8. It depends on the velocity profile and as
such on the constitutive model and the state of the flow. It is
usually neglected or set to a theoretical and constant value,
derived, for example, from the Bagnold (1954) velocity pro-
file (ξ8 = 5/4).

3.1 Friction in the dense-flow model

The term τ8 represents the depth-integrated divergence of
the shear stress tensor and thus the constitutive model of the
flowing mass. Assuming that the top boundary is stress-free
and that surface–tangential derivatives of the deviatoric stress
tensor are small, the only remaining entity is the basal fric-
tion. In this work, we will use the friction model presented
by Rauter et al. (2016), which is closely related to the widely
used Voellmy (1955) friction model. It is given as

τ8 =

(
µp8+

ρ8 |g|

χ h2
8

|u8|
2

)
u8

|u8|
, (15)

with dry friction coefficient µ and turbulent friction coef-
ficient χ . A wide range of alternative friction models can
be found in the literature, and a number of them are imple-
mented in the presented software.

3.2 Entrainment and deposition in the dense-flow
model

S
φ
8 represents the sum of all volumetric source and sink terms

of grains (e.g. erosion and entrainment of additional mass or
its deposition), and Su8 represents its associated momentum.
Dividing by the packing density in Eq. (12) simplifies han-
dling of density changes in the different flow regimes. In the
simplest case (e.g. laboratory experiments on a non-erodible
bed), the source and sink terms are zero.

For snow avalanches and many other realistic gravita-
tional mass flows, entrainment of erodible material along the
avalanche path plays an important role. A popular entrain-
ment model can be derived by comparing the dissipated en-
ergy in the mass flow with the energy required to mobilize
the static material (Fischer et al., 2015):

S
φ
6→8 =

τ8 ·u8

ρ8 eb
φ8, (16)

with the specific erosion energy eb as the single parameter.
Here it is assumed that the packing density of the static layer
is the same as in the dense flow φ8.

Rauter and Köhler (2020) presented an extension to ac-
count for the deposition of flowing material, Sφ8→6 . This as-
pect is neglected in this work, and the flow height of the last
time step is assumed to be the final deposition of the model.

The total flux term between the static layer and the flowing
avalanche is determined as the difference between entrain-
ment and deposition:

S
φ
8 = S

φ
6→8− S

φ
8→6 . (17)

The related momentum source and sink terms are zero in the
case of single layer flows, as both erodible material and de-
posited material are static.

The height (in surface-normal direction) of the static ma-
terial on the topography can be tracked with an additional
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evolution equation:

∂h6

∂t
=
S
φ
6

φ8
, (18)

with

S
φ
6 = S

φ
8→6 − S

φ
6→8, (19)

again under the assumption that the static layer has the same
packing density as the flowing avalanche φ8. Tracking the
thickness of the static layer allows the limitation of the avail-
able entrainable material; hence we are able to turn off en-
trainment if the erodible layer is depleted.

4 Suspension flow model

The suspension flow model describes the flow of a dynamic
mixture of a granular material of density ρg and the sur-
rounding fluid of density ρc. It corresponds, to some degree,
to a depth integration of the compressible model of Rauter
(2021). The mixture density follows as

ρ5 = φ5 ρg+ (1−φ5) ρc, (20)

with the variable packing density or phase fraction φ5. In-
troducing the buoyant density ratio,

r =
ρg− ρc

ρc
. (21)

The mixture density can be expressed as

ρ5 = ρc (1+φ5 r) . (22)

The Boussinesq approximation, an often applied simplifica-
tion (e.g. Parker et al., 1986), implies that φ5 / 10−2 and
r ≈ 1 and thus ρ5 ≈ ρc. This is reasonable if ρg and ρc are at
least similar in order of magnitude (e.g. sand in water). How-
ever, this does not hold for snow avalanches, i.e. mixtures of
grains or ice (ρg ≈ 1000 kg m−3) with air (ρc ≈ 1 kg m−3).
Thus, we will omit this assumption and consider the dynamic
density as given by Eq. (22) in all terms.

Due to the variable mixture, there will be two phases that
have to be described by balance laws. In depth-averaged
frameworks, this is usually handled by describing the total
volume occupied by the flowing masses (grains and flowing
ambient fluid) in terms of the flow depth h5 and the volume
of grains, expressed by the depth-integrated volume fraction
h5 φ5 (e.g. Parker et al., 1986). The phases are assumed
to move with the same velocity u5. Differences in veloc-
ity (e.g. settling of particles) are considered with empirical
corrections.

The depth-integrated mass and momentum conservation
equations follow as

∂ h5

∂t
+∇

0
· (h5u5)= S

h
5, (23)

∂ φ5 h5

∂t
+∇

0
·
(
φ5 h5u5

)
= S

φ
5, (24)

∂
(
1+ r φ5

)
h5u5

∂t
+ ξ5∇

0
s ·
((

1+ r φ5
)
h5u5u5

)
=−

τ5

ρc
+ r φ5 h5gs−

1
2

∇
0
s

((
1+ r φ5

)
geff h

2
5

)
+
Su5

ρc
. (25)

All equations and terms are well known from the dense-flow
model, except for the additional tracking of the grain fraction
with Eq. (24). The unknown flow fields are the flow depth
h5, the depth-averaged velocity u5, and the depth-averaged
phase fraction or packing density φ5. Assuming r φ5 ≈ 0
in all terms but the gravitational acceleration (buoyancy as-
sumption) leads to the popular model of Parker et al. (1986).
Removing the surface–tangential gravitational acceleration
leads to the momentum conservation equation of Bartelt et al.
(2016). The effective gravitational acceleration geff is the
surface-normal gravitational acceleration, corrected for cen-
tripetal acceleration due to curved terrain. In terms of sur-
face partial differential equations, it can be easily expressed
as (see Appendix A)

geff ≈ n
0
·
(
g−∇

0
· (u5u5)

)
. (26)

This expression replaces the rather complex calculation of
the basal pressure in the dense-flow model. It is justified here,
as the basal pressure has only a weak influence on the flow
dynamics of the suspended flow. Further, this notation turns
out to be convenient later, as various internal processes in the
suspension flow depend on effective gravity. A particle on a
streamline of the flow will approximately experience a vol-
ume force corresponding to this acceleration, and processes
like the terminal settling velocity will depend on this adjusted
value.

Considerable attention has to be drawn to the volumetric
source and sink terms (Sh5 and Sφ5) and the associated mo-
mentum flux (Su5). These terms are responsible for the vary-
ing flow height and the depth-averaged particle volume frac-
tion and influence the flow dynamics substantially.

4.1 Friction in the suspension flow model

Similarly as in the dense-flow model, the term τ5 represents
the depth-integrated divergence of the shear stress tensor. If
the particle fraction in the suspension is low, it can be treated
as a simple fluid. The simplest wall friction model can be rep-
resented with constant friction coefficient cD (Parker et al.,
1986):

τ5 = ρc cD |u5|u5. (27)
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However, suspension flows are inherently turbulent, and
there is strong evidence that turbulence models with more
complex friction relations might be required (e.g. Parker
et al., 1986). Nevertheless, we will use the simple model in
this work, and we should keep in mind that the wall friction
coefficient cD is an empirical parameter that might require
adaption to flow conditions. Further, it is assumed that all dis-
sipative processes, such as inter-granular friction (e.g. Boyer
et al., 2011), are included in this term. Considering the accu-
racy and uncertainties of the problems at hand, this seems to
be a reasonable compromise. Alternative approaches are the
turbulence model of Parker et al. (1986), a depth integration
of the Einstein viscosity model (e.g. Boyer et al., 2011), and
a more complex granular rheology (Boyer et al., 2011).

4.2 Ambient fluid entrainment in the suspension flow
model

The volume of the suspension flow will grow due to entrain-
ment of ambient fluid. It is assumed (Parker et al., 1986;
Turner, 1986; Ancey, 2004) that ambient fluid entrainment
depends solely on the bulk Richardson number, which is
given as

Ri5 =
r geff φ5 h5

u2
5

. (28)

In contrast to, for example, Parker et al. (1986), we use the
effective surface-normal acceleration geff instead of the con-
stant gravitational acceleration |g| to account for the influ-
ence of centripetal forces on particles in the flow. Adjust-
ing the Richardson number with the centripetal acceleration
leads to an increased amount of ambient fluid entrainment if
the flow runs over convex terrain and to a decreased amount
if the flow runs over concave terrain.

There are various models for the relation between the
Richardson number and the entrainment. Parker et al. (1986)
use a simple, inverse proportional approach:

Sh3→5 = |u5|
α

Ri0+Ri5
, (29)

with the parameters α = 0.00153 and Ri0 = 0.204.
Turner (1986) provides an alternative formulation:

Sh3→5 = |u5|


Ri0− Ri5

α1+α2 Ri5
for Ri5 <Ri0,

0 for Ri5 ≥ Ri0,
(30)

with the parameters Ri0 = 0.8, α1 = 10, and α2 = 50. Var-
ious different parameters were suggested for this empirical
relation (see, for example, Ancey, 2004).

Finally, Ancey (2004) suggests yet another relation in the
form of an exponential function, here given in the form of
Issler et al. (2018):

Sh3→5 = |u5|α2

{
exp

(
−α1Ri

2) for Ri5 < 1,

exp(−α1)/Ri for Ri5 ≥ 1.
(31)

Figure 4. Comparison of the air entrainment functions, all depend-
ing solely on the Richardson number Ri.

The parameter α1 is supposed to be the only free parameter,
with a value of 1.6 following Issler et al. (2018); however,
due to different definitions of the entrainment rate, an ad-
ditional parameter α2 is required. In order to be of similar
magnitude as the other air entrainment relations, α2 has to be
roughly 0.05. All relations are shown in Fig. 4.

4.3 Grain entrainment and settlement in the
suspension flow model

Suspension flows are, similar to dense flows, able to erode
granular material from the bed. It is, in principle, possible
to use the same entrainment relations as in the dense-flow
model, but specialized entrainment relations have been pro-
posed in the literature. An example of subaquatic turbidity
currents, is given by Parker et al. (1986) as

S
φ
6→5 = vs

0.3 for Z > Zm,

3 × 10−12Z10
(

1− Zc
Z

)
for Zc < Z < Zm,

0 for Z < Ze,

(32)

with

Z = Reg

√
τ5

vs
; (33)

the settling velocity,

vs =
r geff d

2
5

18νc
; (34)

the particle Reynolds number,

Reg =

√
r geff d5 d5

νc
; (35)

the viscosity of the ambient fluid νc; and two empirical pa-
rameters Zm = 13.2 and Zc. The parameter Zc was reported
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to be approximately 5. We found that a value of exactly 0.5
is required to reproduce the examples of Parker et al. (1986)
in the examples shown in Sect. 7.2.

The settling of grains is given by Parker et al. (1986) as

S
φ
5→6 = vs r0 φ5, (36)

with the settling velocity as given in Eq. (34) and the factor
r0 for the bottom value of the grain concentration,

r0 = 1+ 31.5
(√

τ5

ρc

1
vs

)−1.46

. (37)

As before, the total flux term follows as the difference be-
tween entrainment and deposition:

S
φ
5 = S

φ
6→5− S

φ
5→6 . (38)

The momentum flux into the suspension due to ambient fluid
and grain entrainment is zero. The volume occupied by en-
trained and deposited grains and the respective flux term in
the evolution equation of the flow height h5 are neglected at
this point.

5 Two-layer granular flow model

Granular mass flows can show different regimes, especially
in terms of the Stokes number. Sampl and Zwinger (2004)
and others (Jóhannesson et al., 2009) describe three regimes:
the dense flow, transition or re-suspension, and powder snow
layer. Sovilla et al. (2015) recognize five regions in mixed-
snow avalanches, and Köhler et al. (2018) identified seven
regimes. Here we aim to represent the two limit cases of
dense flow and suspension in a single model, similar to
Bartelt et al. (2016). It is assumed that these regimes are
described in appropriate accuracy either by the Savage and
Hutter (1989, 1991) model (Eqs. 12 to 14) or the Parker et al.
(1986) model (Eqs. 23 to 25). The layers will communicate
with mass fluxes Sφ and Sh and momentum fluxes Su. In par-
ticular, the fluxes of grains are (see also Fig. 1) for the static
layer,

S
φ
6 = S

φ
8→6 − S

φ
6→8, (39)

for the dense-flow layer,

S
φ
8 = S

φ
6→8− S

φ
8→6 + S

φ
5→8− S

φ
8→5, (40)

and for the suspension layer

S
φ
5 = S

φ
8→5− S

φ
5→8. (41)

Entrainment by the suspension layer is assumed to be negli-
gibly small in comparison to the overall mass fluxes and thus
is not explicitly accounted for in the simulations. The term
S
φ
8→5 describes the upward mass flux from the dense flow

to the suspension flow. It is the remaining term to be speci-
fied in the following (see Sect. 5.1). The flux in the opposite
direction Sφ5→8 is assumed to be equal to the settling flux
of the suspension layer Sφ5→6 ; i.e. the deposition from the
suspension is redirected to the dense core and further to the
static layer from there, if the deposition model of the dense-
flow model is active. The corresponding momentum fluxes
for the dense-flow layer and the suspension layer are

Su8 =−Su5 = u5 S
φ
5→8− ξt8u8 S

φ
8→5, (42)

accounting for the momentum that is transferred together
with grains between moving layers. The shape factor ξt takes
into account that the velocity at the top boundary of the
avalanche, where particles are tossed into the suspension
layer, is higher than the depth-integrated velocity. It is related
to the previously shown shape factor and can similarly be
calculated on the basis of, for example, the Bagnold (1954)
velocity profile as 5/3. The particles that fall from the sus-
pension layer onto the dense-flow layer, Sφ5→8, are assumed
to carry the velocity of the suspension layer. While the ex-
act form of this flux is not important, it is vital to remove
momentum together with mass, so as to not increase the ve-
locity of the remaining mass to potentially very high values.
The momentum fluxes to and from the static layer are zero
due to the respective velocity at the interface.

Further we have to account for the volume of fluid that
is pushed into the suspension layer with particles. Assuming
that particles enter at a packing density of φ05, we have to
add a source term of the form

Sh8→5 =
S
φ
8→5

φ05
. (43)

The value φ05 is set to the phase fraction of the dense core
in this work. This avoids unreasonably high grain fractions if
a suspension flow is initiated by a dense-flow avalanche.

In addition to the particle-borne momentum fluxes, we
need to consider the shear stress at the interface. This rela-
tion is chosen to be identical to the basal shear stress of the
suspension layer, τ5; however, it is no longer proportional to
the velocity of the suspension layer but to the relative veloc-
ity between the dense-flow and the suspension layer:

τ5 = ρc cD |u5−u8| (u5−u8) . (44)

In areas where the suspension layer detaches from the dense
flow, the dense-flow velocity is assumed to be zero, and the
model collapses to the friction model of the ordinary suspen-
sion model. An equal but opposite stress term to τ5 should
be applied to the dense core to account for the friction of the
top surface of the dense core. However, it is assumed that this
stress is already included in the empirical formulation and
parameterization of τ8, because the top surface friction is
also present in pure dense-snow avalanches with a stationary
or moving air layer above it. The ambient fluid entrainment
of the suspension layer stays unchanged.
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The mass flux Sφ8→5 feeds the suspension layer from the
dense core; the associated momentum flux, in combination
with the shape factor, propels the suspension flow forwards.
This is assumed to be the mayor genesis mechanism for the
suspension cloud, as in most other avalanche models.

5.1 Cross-layer coupling

All fluxes of the two-layer model are described relatively
well in the literature (see sections above), except for the
mass flux from the dense-flow layer to the suspension layer,
S
φ
8→5, for which only few suggestions can be found (Eglit,

1998; Issler, 1998; Sampl and Zwinger, 2004; Bartelt et al.,
2016). Existing relations do not conceptually fit into the pre-
sented framework, either due to missing granular mechanics
(Eglit, 1998; Issler, 1998; Sampl and Zwinger, 2004) or due
to their dependence on a specific dense-flow model (Bartelt
et al., 2016). For the purpose of introducing this framework,
we choose a simple relation, based on local flow fields of the
dense flow.

We assume that the dense flow is composed of small and
large particles with diameters d5 and d8, respectively. Up-
take of particles into the suspension layer requires small par-
ticles to be made available by the dense layer that mostly
consists of large particles (Bartelt et al., 2016) and the capa-
bility of the suspension layer to keep them suspended. The
latter is already implemented into the model in the form of
the settling model of the suspension flow S

φ
5→8. This term

depends on the particle Reynolds number Reg, which is sim-
ilar to the Stokes number and a good indicator of the flow
regime.

The first step, making small particles available to the sus-
pension, is assumed to be triggered by a fluidized flow that
expands in volume, sucks in air, and increases the distance
between particles. There are various hints on how this expres-
sion should look. At first it is useful to look at dimensionless
properties in the dense flow. Besides the non-dimensional
volumetric mass flux Sφ8→5/|u8|, these are the friction co-
efficient µ8 = |τ8|/p8, the packing density φ8, and the in-
ertial number (Forterre and Pouliquen, 2008; Rauter, 2021):

I8 =
d8 γ̇8√
p8/ρg

, (45)

with the shear rate at the bottom of the dense flow, which is
assumed to follow Bagnold (1954):

γ̇8 =
4
3
|u8|

h8
. (46)

It is well established that µ8 and φ8 can be expressed as
a function of only the inertial number I8, and it is reason-
able to assume that fluidization can be described the same
way. This is further emphasized by the linear relationship
between the packing density and the inertial number in the
dense-flow regime (Forterre and Pouliquen, 2008). Finally,

Rauter et al. (2016) found a specific relation between the
shear rate γ̇8 and the pressure p8 in a granular kinetic theory
model (Vescovi et al., 2013) at the point where fluidization
suddenly occurs:

γ̇8

p0.37
8

= const. (47)

Comparing this relation to the expression for the inertial
number, one can observe a striking resemblance; solely the
exponent of the pressure is slightly lower in the relation of
Rauter et al. (2016). This strongly indicates that the mass flux
from the dense flow to the suspension can be expressed as a
function of the inertial number only, starting at a minimum
value I0 and growing with a specified rate sf from thereon:

S
φ
8→5

|u8|
(I8)=max(I8− I0,0) sf. (48)

The results of Rauter et al. (2016) suggest that the value of
I0 is close to 0.5, as at this point explosive fluidization starts
to occur. The factor sf is expected to be small, as the vertical
velocity has to be substantially smaller than the flow velocity.
This parameter can be optimized to yield the correct relation
between dense flow and powder cloud.

In this model, small particles will be made available to the
suspension when the dense-flow velocity is high or when the
pressure is low (e.g. when an avalanche is running over a
bump). If the small particles are sufficiently small, the sus-
pension will be able to keep the particles suspended and a
powder cloud will form. Otherwise, the particles will fall
back to be reintegrated by the dense core, expressed by
the deposition mass flux of the suspension layer, which is
stronger for larger particles. The parameters for the sug-
gested model are the small and large particle diameters d5
and d8, the minimum value of I at which fluidization occurs
I0, the particle density ρg, and the factor sf. All parameters
except for the latter are already used in the model or known
otherwise.

Relation (48) finally completes the model and closes the
system that will be solved numerically in the following.
The model could be improved by tracking and limiting the
availability of small particles or by making this property
temperature-dependent.

6 Pre- and postprocessing

The pre- and postprocessing of simulations with the pre-
sented models follows the workflow depicted by Rauter et al.
(2018). The capabilities of the respective tools have been
improved and fully implemented in C++ to allow a seam-
less integration into OpenFOAM and computational clusters
that do not support Python and some of the previously used
libraries. Most improvements are based on a native imple-
mentation of two common geographic information system
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(GIS) data types: ESRI® shape files and ESRI® grid files.
The native implementation allows all solvers and utilities of
the OpenFOAM avalanche module to directly read and write
to or from the respective files. This enables many previously
difficult tasks that are presented in the following. Generally,
all tools are steered with text files that follow the usual Open-
FOAM syntax, called dictionary (see Fig. 5). This toolchain-
based workflow follows the concept of OpenFOAM, which
ensures reproducibility and facilitates the reuse of existing
code and the rapid development of new code.

6.1 Mesh generation from terrain data

The mesh generation follows the principles of Rauter et al.
(2018). In a first step a triangulation of the terrain and a
boundary of the surrounding volume is generated. A new
tool for this task, called gridToSTL, was written entirely
in C++ and without any external dependencies. The tool re-
quires input in the form of a polygon that defines the simu-
lation domain and the terrain data in the form of a raster file.
In contrast to the previous version, the polygon can be any
kind of closed and non-intersecting polygon with an arbitrary
number of edges, either convex or concave. This enables flex-
ibility in the choice of the simulation domain, which turned
out to be especially useful to cover long and windy subma-
rine canyons.

The finite volume mesh is generated from the triangu-
lated surface with an arbitrary mesh generator. This toolchain
can be applied to the depth-integrated models presented here
and was also used for the full three-dimensional model pre-
sented by Rauter et al. (2022). In this study we used the
mesh generator pMesh, while Rauter et al. (2022) used
cartesianMesh, both from the cfMesh toolbox (Juretić,
2015). The finite area mesh is then generated on a ded-
icated surface of the finite volume mesh using the tool
makeFaMesh, part of the OpenFOAM finite area module.

6.2 Mapping initial conditions

Initial conditions can be set with the tool
releaseAreaMapping. In addition to the function-
ality of previous versions, this tool is now able to read shape
files and grid files and map them directly onto finite area
fields to be used by any solver. All input for the tool is read
from a dictionary, where further references to shape and grid
files can be listed. This tool enables efficient adaption to new
scenarios.

6.3 Simulation run

Once the mesh and the initial conditions are defined, the
solver of choice can be run. Currently there are three
solvers available in the avalanche module, the dense-
flow solver faSavageHutterFoam, the suspension flow
solver faParkerFukushimaFoam, and the mixed-flow
solver faTwoLayerAvalancheFoam (Fig. 5 shows

faTwoLayerAvalancheFoam only, but it can be re-
placed with any of the other two models). Physical parame-
ters are read from the file transportProperties, gen-
eral simulation settings from controlDict, and numeri-
cal algorithms and parameters from the files faSolution
and faSchemes. To run the solver in parallel, the tool
decomposePar has to be run before the solver, and the
tool reconstructPar has to be run after the solver. In the
common OpenFOAM manner, all steps for a simulation are
listed in a script file named Allrun, which can be launched
by the user to automatically execute the pipeline outlined
here. Another script, named Allclean, can be run to clean
up the simulation directory.

6.4 Postprocessing and data export

The OpenFOAM architecture allows the execution of cus-
tomized code, called function objects, in every simulation
step. Various function objects are made available in the
avalanche module. Most importantly, this includes function
objects to export simulation results as either shape or raster
files. The export as shape files can be done cellwise (one
polygon for each computational cell), or the numerical data
can be recombined to generate isolines that are written into
the shape file. Function objects can be loaded by placing
the respective entry into the control dictionary. As of ver-
sion v2312, all solvers are able to run in a post-processing
mode, in which old results are read from a hard disc and the
function objects are executed. This allows the execution of
function objects in a post-processing workflow without re-
running the whole simulation.

7 Results and discussion

7.1 Dense-flow model

The dense-flow model has been applied to various cases
in multiple studies. The interested reader is referred to
Rauter and Tuković (2018) for lab scale simulations, Rauter
et al. (2018) and Huber et al. (2018) for large-scale snow
avalanche simulations, Rauter and Köhler (2020) for simula-
tions with the deposition model, and to Shimizu (2022) for
an application to pyroclastic flows.

7.2 Suspension flow model

Parker et al. (1986) simulate steady suspension flows on con-
stantly inclined one-dimensional slopes with the model pre-
sented in Sect. 4. Four cases with uniform model parameters
but different boundary conditions give a good overview of
the behaviour of the model and a verification (as defined by
Roache, 1997, as solving the equations right) of the presented
implementation. The four simulations are conducted on one-
dimensional slopes with a gradient of 5 %. The gravitational
acceleration follows as g = (0.49,0,−9.81)T m s−2 (chosen

https://doi.org/10.5194/gmd-17-6545-2024 Geosci. Model Dev., 17, 6545–6569, 2024



6556 M. Rauter and J. Kowalski: OpenFOAM-avalanche module

Figure 5. Pipeline of the OpenFOAM avalanche module. The pipeline has been simplified substantially since the work of Rauter et al. (2018).
Most notably, all components are fully implemented in C++ and included into the module. The pipeline includes the complete workflow,
starting from GIS data and returning all results to GIS data. The user can modify parameters in the respective dictionaries and geometry of
the simulation domain and the initial conditions in the geographic input data. The solver can be any of the three models.

to match the setup by Parker et al., 1986). The parameters
suggest that the suspensions are composed of sediment in
water on a scale of a small turbidity current.

Material parameters for this setup are given in Table 1.
The left boundary condition (at x = 0) prescribes the in-
flow in terms of the height h5, velocity u5, and grain flux
ψ5 = h5 φ5u5, in particular as shown in Table 2. All pa-
rameters are given normalized to reference values H = 2 m,
U = 0.874 m s−1, and 9 = 0.00828 m2 s−1.

The right boundary condition is modelled as a zero gra-
dient for all fields, mimicking an outlet boundary condition.
For a basic verification of the novel implementation of the
suspension model, the respective simulations are repeated
and compared to the original results. We will evaluate the
buoyancy assumption of Parker et al. (1986), as well as the
formulation with the correct density given in here. The sim-

ulations are conducted in an unsteady manner until the flow
reaches a steady state, comparable to the results reported by
Parker et al. (1986). Figure 6 shows results for the four cases.

The first case, starting with a high velocity but low parti-
cle fraction increases its particle fraction quickly, as the high
velocity is sufficient to erode and pick up sediment. The sec-
ond case starts with a very high phase fraction, leading to a
sudden ignition of the flow at x/H = 60. The height of the
suspension stays low and even decreases, showing that a high
phase fraction can keep the suspension concentrated at the
bottom. The third and fourth case start with a low velocity
and low particle phase fraction, respectively, and the suspen-
sion fades out quickly. The height of the flow increases in
both cases where the flow fades out, indicating that the mo-
mentum of the flow is diffused over larger volumes of fluid.
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Table 1. Parameters for the small-scale simulations of Parker et al. (1986).

Submodel Parameter Description Value

Flow model Parker–Fukushima

ρs density of solid phase (particles) 2650 kg m−3

ρc density of fluid phase (water) 1000 kg m−3

r density ratio, follows as 1.65
νc viscosity of fluid phase (water) 10−6 m2 s−1

d5 particle diameter 10−4 m

Basal friction fluid flow

cD drag coefficient 0.004

Particle entrainment Parker–Fukushima

Zc empirical parameter 0.5
Zm empirical parameter 13.2

Ambient fluid entrainment Parker–Fukushima

Ri0 reference Richardson number 0.0204
α reference ambient fluid entrainment 0.00153

Deposition Parker–Fukushima (no parameters)

Table 2. Inlet boundary conditions for the small-scale simulations
of Parker et al. (1986), simulating four scenarios of igniting or fad-
ing turbidity currents.

Case h5/H u5/U ψ5/9

a 1.0 1.3 0.2
b 1.0 0.9 1.7
c 1.0 0.7 1.2
d 1.0 1.0 0.2

This is consistent with the expected scaling of fluid entrain-
ment with the Richardson number.

It can be seen that results of Parker et al. (1986) are repro-
duced with only small deviations. The OpenFOAM solver
yields sharper edges than the implementation of Parker et al.
(1986), especially visible in Fig. 6b. This small difference is
most likely attributable to the numerical solution method or
the numerical resolution. The correction of the time deriva-
tive and advection term with (1+ r φ5) has only a minimal
influence on the model results. This is reasonable, consid-
ering the low value for the buoyant density ratio r = 1.65
in these cases. These simulations suggest that the model of
Parker et al. (1986) is implemented correctly. However, this
can not be seen as a validation (Roache, 1997) of the model.

7.3 Two-layer model

7.3.1 Synthetic tests and sensitivity study

In order to better understand the two-layer model, we will
conduct tests on synthetic topographies. The topography is
based on a parabola with a length ofL= 4000 m and a height
ofH = 2000 m, with an additional flat runout area of 2000 m.
The slope has a width of 2000 m, leading to a simulated re-
gion of x = [−4000,2000]m and y = [−1000,1000]m. In
addition, the influence of topographic structures will be in-
vestigated, as terrain features often initialize the formation
of suspension flows (e.g. powder snow avalanches). A bump
in the surface is created by superposing the parabola with
a Secans hyperbolicus sech(x)= 2/(exp(x)+ exp(−x)) at
Xp =−2700 m with a height of Hp = 150 m and a length of
Lp = 200 m:

z=Hp sech
(
x−Xp

Lp

)
+

H
( x
L

)2
for x < 0,

0 otherwise,
(49)

inspired by the experiments of Viroulet et al. (2017). All
boundaries are implemented as von Neumann (zero gradient)
boundary conditions.

The release area (initial condition) of the slide was formed
by a rectangle between x = [−3900,−3500]m and y =

[−500,500]m and an initial dense-flow height of h8 = 5 m
within that square. All other flow fields are set to zero. The
parameters, roughly corresponding to snow avalanches, are
given in Table 3, if not mentioned otherwise. The value for
the coupling factor sf is varied, and the sensitivity of the
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Figure 6. Numerical simulation of the four test cases presented by Parker et al. (1986) with OpenFOAM, with and without the buoyancy
assumption (corrected and uncorrected, respectively). The results of Parker et al. (1986) are reproduced with good accuracy. The buoyancy
assumption fits well to the conditions of these numerical experiments.

model to this parameter is investigated. Entrainment and de-
position to and from the static layer are not included in this
section for simplicity. The simulations were run for 90 s.

Besides the flow thickness, velocity, and phase fraction,
we can analyse the dynamic pressure, which is an important
indicator of the destructive potential of the flow. It is defined
as

pd8 = ρ8 |u8|
2 (50)

for the dense flow and as

pd5 =
(
ρg φ5+ ρc (1−φ5)

)
|u5|

2 (51)

for the powder cloud (e.g. Jóhannesson et al., 2009). In par-
ticular we evaluate the dynamic peak pressure, which is de-
fined as the maximum of the dynamic pressure at a fixed
point over time. Important limits that are used in the defini-
tion of hazard zones (e.g. in Austria) are 1 kPa (yellow zone)
and 10 kPa (red zone) (Jóhannesson et al., 2009). Notably,
the shape factor should be applied to the dynamic pressure
for consistency, increasing all simulated pressures by 25 %.
However, this is neglected in order to be consistent with pre-
vious work and the definition of hazard zones.

Results for a simple parabola (without surface bump) are
shown in Fig. 7 for three values of sf (10−5, 10−4, 10−3).
This set of simulations allows some valuable conclusions on
the model and in particular the coupling model. All simula-
tions start with a dense flow that eventually feeds the powder
cloud. The feeding rate of the powder cloud varies strongly
due to the variation of the parameter sf.

For a low value of sf, the dense flow is not able to gener-
ate a strong powder cloud with a considerable particle phase
fraction and thus density. A suspension flow develops even-
tually; however, it consists almost entirely of air, without any
ice particles. Basically, this can be seen as a layer of air that

is dragged along by the dense flow. The velocity, dynamic
pressure, and runout distance of this layer are correspond-
ingly low. As shown before, the flow height of the suspension
layer grows strongly for fading flows, indicating a strong dif-
fusion of momentum.

Increasing the value for sf up to 10−4 leads to higher phase
fractions up to 0.004, roughly corresponding to a density of
4 kg m−3. Further increasing the value to 10−3 leads to phase
fractions of up to 0.02 and densities of 20 kg m−3, how-
ever only for short periods. Notably, these are depth-averaged
phase fractions and densities, and the respective values close
to the surface might be considerably higher. The correspond-
ing dynamic pressure of the powder cloud is still low, and
only the simulation with the highest coupling factor sf is able
to generate a red zone that extends beyond the red zone of
the dense flow. These results seem reasonable, considering
the average slope gradient of 50 % and the absence of any
topographic features that might enhance the feed of the pow-
der cloud. More powerful powder snow avalanches can be
expected on steeper slopes and on slopes with high topog-
raphy variations (e.g. steep cliffs or rough terrain). Further
simulations (not shown here) revealed that the powder cloud
increases substantially with higher slope gradients.

Results for the slope with a bump are shown in Fig. 8.
The model shows a high sensitivity to the terrain, and this
case represents natural slopes with varying gradients bet-
ter. All simulations create a considerable powder cloud with
high phase fractions. The highest phase fraction is reached
shortly after the top of the bump where the negative centrifu-
gal forces are strongest and the basal pressure the lowest. The
phase fraction reaches up to 0.05, roughly corresponding to
a density of 50 kg m−3. A shock is formed at the bump in the
suspension layer due to the high gradient in the phase frac-
tion, leading to a considerable pressure gradient that deceler-
ates the flow. In all simulations the dynamic powder cloud
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pressure exceeds 10 kPa, and the respective high pressure
zone extends beyond the dense-flow runout. The 1 kPa zone
of the powder cloud reaches considerable runouts beyond the
dense flow.

The results on synthetic terrain show a reasonable be-
haviour of the model, both in terms of parameterization and
response to the terrain. The effect of the terrain is well visible
and corresponds to the assumptions from which the model
was derived. The sensitivity of the model to the parameter
sf is well pronounced, and this factor can be utilized to fit
the model to real-world observations. A value between 10−4

and 10−5 seems reasonable for the parameter of the coupling
model.

Finally, we use the synthetic cases to showcase the sensi-
tivity of the model to the air entrainment. Figure 9 shows the
simulation on the synthetic terrain with the three presented
air entrainment models. The differences are small but no-
ticeable. In particular, the entrainment is stronger with the
model of Ancey (2004), however, which is just a question
of parameterization. More importantly, the model of Turner
(1986) shows a more pronounced flow head. The Richardson
number is low in the head, and the relation of Turner (1986)
predicts the strongest entrainment at low Richardson num-
bers (see Fig. 4). Generally, all relations appear reasonable
and well in line with each other. We will continue with the
entrainment model of Parker et al. (1986) from here on. Con-
sidering an optimization of air entrainment parameters to real
events, it might be useful to apply the model of Ancey (2004)
instead, as it provides the clearest parameterization.

7.3.2 Real-case example: the 1988 Wolfsgruben
avalanche

The 1988 Wolfsgruben avalanche represents an important
event in Austria, as it was the trigger for many developments
and used repeatedly as a benchmark. The event, or at least its
dense core, was featured by Fischer et al. (2015) and Rauter
et al. (2018). Here we revisit the event with the new two-
layer model and include the powder cloud into the analysis.
The avalanche is characterized by a channellized, steep slope
with an angle of 30° that transitions fairly abruptly to the flat
valley floor and the opposite slope.

The preprocessing and simulation setup follows Rauter
et al. (2018) but with the novel tool chain and an extended
simulation domain to cover the full runout of the powder
cloud. The initial release areas of the avalanche and the erodi-
ble snow covers are the same, following the linear approach:

h6(x,y,z, t = 0)=
(
h6(z0)+

∂h6

∂z
(z− z0)

)
cos(θ (x,y,z)) , (52)

where z is the surface elevation and z0 the elevation of a ref-
erence point with the base value h6(z0). The growth rate ∂h6

∂z
defines the change with elevation from that point. θ is the

angle between the gravitational acceleration and the surface-
normal vector. For the 1988 Wolfsgruben avalanche, we use
the snow cover parameters h6(z0)= 1.61 m, z0 = 1289 m,
and ∂h6

∂z
= 8× 10−4.

The model parameters are shown in Table 3. The dense-
flow parameters have been optimized in a previous study
(Fischer et al., 2015; Rauter et al., 2018), however for a
model ignoring the powder cloud. The addition of the pow-
der cloud could lead to different optimal dense-flow param-
eters. However, that is out of the scope of this work, and we
assume that the previously used parameters fit sufficiently
well. The suspension parameters are deduced from literature
where possible (density, grain diameter). The coupling pa-
rameter sf = 10−5 was found after running some simulations,
starting from the values derived from the simulations on syn-
thetic cases. A higher value leads to an unrealistically short
dense-flow runout and a lower value to a severe underesti-
mation of the suspension impact pressure. The friction co-
efficient cD was chosen to be sufficiently large for the pow-
der cloud to not completely decouple from the dense core.
Apart from this effect, the simulation is rather insensitive to
the friction coefficient cD.

Four time steps of the simulation are shown in Fig. 10,
displaying isolines of the dense-flow height h8 (a–d) and the
suspension flow height h5 (e–h). The avalanche starts as a
dense flow and rapidly accelerates due to the steep release
area (Fig. 10a). Shortly after the release a strong suspension
layer is formed that further accelerates beyond the velocity
of the dense-flow layer (Fig. 10b, f). After roughly 40–50 s
the avalanche reaches the bottom of the valley (Fig. 10c, g).
The powder cloud outruns the dense flow and hits the valley
floor first. The dense flow is stopped quickly due to the high
granular friction, while the powder cloud keeps running up
on the opposite slope for approximately 50 m of elevation.
Both flows experience a shock that increases the flow height
in the valley floor drastically. The deposition (i.e. the dense-
flow height in the last time step) reaches up to 15 m, however,
which does not account for the difference between flow (≈
200 kg m−3) and deposition density (≈ 600 kg m−3).

Results for the dense flow can be validated by a compar-
ison with the deposition (see Fig. 11b), and they are simi-
lar to previous studies with the same model and the model
SamosAT (Fischer et al., 2015; Rauter et al., 2018). Results
for the powder cloud are more difficult to validate. Traces of
the powder cloud that can be identified in the field are lim-
ited and not straightforward to interpret, as no clear deposi-
tion pattern emerges from suspended flows. Further, the re-
spective deposition can hardly be related to the impact pres-
sure and thus the destructive potential of the flow. There-
fore, we compare the simulated dynamic pressure with ob-
served building damages from the respective avalanche (see
Fig. 11a). This includes not only the suspension layer but
also the dense flow. An evaluation of the dynamic peak pres-
sure and the deposition height at damaged objects is shown
in Table 4.
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Table 3. Parameters for the two-layer model for synthetic cases on parabolas and for the Wolfsgruben and Eiskar avalanches.

Submodel Parameter Description Parabola Wolfsgruben Eiskar

ρs density of solid phase (snow/ice) 800 kg m−3 800 kg m−3 800 kg m−3

ρc density of fluid phase (air) 1.25 kg m−3 1.25 kg m−3 1.25 kg m−3

νc viscosity of fluid phase (air) 1.5× 10−5 m2 s−1 1.5× 10−5 m2 s−1 1.5× 10−5 m2 s−1

Dense flow Savage–Hutter model

φ8 packing density in the dense flow 0.25 0.25 0.25
d8 large particle diameter 10−2 m 10−2 m 10−2 m
ξ8 shape factor 1.25 1.25 1.25
ξt8 shape factor for velocity at top 1.67 1.67 1.67

Dense-flow friction simplified Kinetic Theory

µ dry friction coefficient 0.25 0.26 0.20
χ dynamic friction coefficient 104 m−1 s−2 8700 m−1 s−2 104 m−1 s−2

Dense-flow entrainment erosion energy

eb erosion energy 103 m2 s−2 103 m2 s−2

Powder cloud Parker–Fukushima model

d5 small particle diameter 10−4 m 10−4 m 10−4 m
ξ5 shape factor 1.25 1.25 1.25

Powder cloud friction laminar flow

cD drag coefficient 0.5 0.5 0.1

Ambient fluid entrainment Parker–Fukushima

Ri0 reference Richardson number 0.0204 0.0204 0.0204
α reference air entrainment factor 0.00153 0.00153 0.00153

Powder cloud deposition Parker–Fukushima (no parameters)

Coupling inertial number scaling
I0 reference inertial number 0.5 0.5 0.5
sf reference suspension feed factor 10−5 10−5 10−4

The dense flow does not reach the two destroyed build-
ings (Point 1 and 2 in Fig. 11a and Table 4) and stops about
20 m short. Points 12 and 18 were only slightly damaged by
the suspension flow in reality but severely hit by the dense
flow in the simulation, showing that the simulation tends
too strongly to the left side (viewed in the flow direction).
The deposition height that was recorded at selected points
(Table 4) is matched well, assuming a compaction of the
avalanche by a factor of 3 after deposition.

The suspension layer shows a very limited zone of high
dynamic pressure (> 10 kPa) but an extended zone of inter-
mediate dynamic pressure (1–10 kPa). The model predicts
dynamic pressures of 1–4 kPa where balconies and roofs
have been damaged and 1–3 kPa where windows have been
destroyed. This corresponds well with engineering estima-
tions of resistance capabilities of the respective parts: win-
dows are assumed to break at 2–4 kPa and doors, walls, and
roofs at 3–6 kPa (Sovilla et al., 2015). The dynamic pres-
sure of the suspension layer at the destroyed buildings (Point
1 and 2 in Fig. 11) is not sufficient to destroy the respec-
tive brick structures (25–45 kPa). These high values strongly
indicate that the dense flow or a saltation layer must be re-

sponsible for these high impact pressures (see pictures in Fis-
cher et al., 2015). Therefore, we conclude that the simulated
suspension layer reaches all observed traces of the powder
cloud without covering the region where no traces could be
observed.

7.3.3 Real-case example: the 2019 Eiskar avalanche

On 15 January 2019, the Eiskar avalanche occurred after in-
tense snowfall and a rapid temperature drop (Oesterle, 2019).
The Eiskar avalanche differs substantially from the Wolfs-
gruben avalanche regarding topography and thus provides
a good supplement to that case. The avalanche was initi-
ated by a slab on the right-hand side of the avalanche path
(looking in the flow direction) that fell onto a larger snow
field. From there, the avalanche slope continues with an in-
clination of approximately 25° for 1500 m until reaching a
flatter slope of 10°. The dense-flow avalanche ran 1000 m
on the flattening slope, and the powder flow exceeded the
dense flow by another 500 m, reaching the village of Ram-
sau. The powder cloud destroyed a wooden building, dam-
aged a hotel, and knocked over a bus. The dynamic pressure
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Figure 7. Numerical simulations of mixed-snow avalanches on a parabolic slope with the two-layer model. The parameter sf was varied
between 10−5 (a, d, g, j), 10−4 (b, e, h, k), and 10−3 (c, f, i, l). Panels (a)–(i) show the cross section in the middle of the slide. The slope is
shown as the lower black line. The flow thickness h8 is shown as an offset of the surface magnified by a factor of 20; the flow thickness h5
is shown above the dense flow magnified by a factor of 10. The powder cloud is coloured according to the phase fraction φ5. The red and
yellow lines below the slope mark the regions of high dynamic peak pressure pd > 10 kPa and intermediate dynamic pressure pd > 1 kPa
for the dense flow (top) and the powder cloud (bottom) respectively. Panels (j)–(l) show the regions of high and intermediate dynamic peak
pressure (dashed: dense flow, continuous: powder cloud) from the top. One tick on the axis equals 1000 m.

required for the damage was estimated at 1–3 kPa. Areal pic-
tures were taken after the event, which allowed the estima-
tion of the initial snow cover, the release area, and the depo-
sition. The data were used to derive parameters for the snow
cover function (Eq. 52), h6(z0)= 1.60 m, z0 = 1275 m, and
∂h6
∂z
= 2× 10−3, to reach a snow cover thickness of approx-

imately 2.7 m at an elevation of 2200 m (Oesterle, 2019).
Other aspects of the simulation, such as the preparation of
the terrain data, match the simulation of the Wolfsgruben
avalanche.

The first simulation (not shown) was conducted with the
same parameters as for the Wolfsgruben avalanche. How-
ever, these parameters lead to a severe underestimation of
the powder cloud, running short by approximately 400 m.
Simulations with the model SamosAT (Sampl and Zwinger,
2004) showed similar results with the standard parameters
(Oesterle, 2019). Therefore, the friction coefficients and the
coefficient for the suspension feed were adjusted (see Ta-
ble 3) to reach an appropriate runout and dynamic pressure
at the observed impacts.

Five time steps of the simulation are shown in Fig. 12
in terms of the dense-flow height h8 (a–e) and the suspen-
sion flow height h5 (f–j). The collapsing slab (Fig. 12a)
falls down the steep cliff onto a larger snow field where it
can entrain additional snow. After around 30 s the avalanche
reaches a second cliff, and a powder cloud starts to emerge
(Fig. 12b, g). The suspension layer keeps growing substan-
tially in the slope section with an inclination of 25° (Fig. 12c,
h) and starts to detach when reaching the flatter slope of the
10° inclination. The suspension layer reaches the village of
Ramsau after approximately 90 s (Fig. 12i, j), while the dense
flow comes to a halt at the exit of the valley (Fig. 12d, e). In-
terestingly the dense flow is pushed towards the left by terrain
features at the exit of the valley, while the suspension layer
is essentially unaffected by these small obstacles.

The corresponding zones of dynamic pressure are shown
in Fig. 13a. The 1 kPa isoline of the suspension layer extends
far into the village. This fit was used as a benchmark to de-
termine the optimal model parameters and thus matches ob-
servations well. The final deposition of the model is shown
in Fig. 13b and compared to the observed deposition. The
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Figure 8. Numerical simulations of snow avalanches on a parabolic slope with a bump with the two-layer model. Same as Fig. 7 but with a
bump with height 150 m and length 200 m at x =−2700 m.

Table 4. Simulated dynamic peak pressure at the location where damage was observed.

Number h8 pd8 pd5 Observed damage

1 0.2 m 0 kPa 3.1 kPa Destroyed house (> 10 kPa)
2 0.2 m 0 kPa 2.6 kPa Destroyed house (> 10 kPa)
3 12.5 m 71.9 kPa 5.1 kPa Large deposition (4.0 m)
4 12.2 m 73.1 kPa 4.1 kPa Large deposition (3.5 m)
5 11.3 m 72.5 kPa 4.3 kPa Large deposition (2.5 m)
6 12.3 m 13.1 kPa 2.1 kPa Large deposition (1.8 m)
7 2 m 0 kPa 4.2 kPa Damaged roof and balcony (> 1 kPa)
8 0.5 m 0 kPa 2.3 kPa Damaged balcony (> 1 kPa)
9 5.3 m 1.1 kPa 2.3 kPa Damaged roof (> 1 kPa)

10 2 m 0 kPa 1.9 kPa Damaged roof (> 1 kPa)
11 0.4 m 0 kPa 0.9 kPa Damaged roof and windows (> 1 kPa)
12 11.2 m 29.4 kPa 1.7 kPa Damaged windows (> 1 kPa)
13 3.7 m 0.8 kPa 1.9 kPa Damaged windows (> 1 kPa)
14 0.7 m 0 kPa 2.5 kPa Damaged windows (> 1 kPa)
15 0.3 m 0 kPa 2 kPa Damaged windows (> 1 kPa)
16 0.2 m 0 kPa 2.8 kPa Damaged windows (> 1 kPa)
17 0.2 m 0 kPa 1.4 kPa Damaged windows (> 1 kPa)
18 6.8 m 16.7 kPa 1.3 kPa Delimbed tree
19 0.2 m 0 kPa 2.4 kPa Delimbed tree
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Figure 9. Numerical simulations of snow avalanches on a parabolic slope with a bump. Same as Fig. 8 but with a variation of the air
entrainment model and a fixed parameter sf.

Figure 10. Numerical simulation of the Wolfsgruben avalanche with the two-layer model. The first row (a–d) shows the height of the dense-
flow layer; the second row (e–h) shows the height of the powder cloud layer. Each tick on the x and y axes corresponds to 500 m. Terrain
data: Amt der Tiroler Landesregierung (AdTLR).
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Figure 11. (a) The dynamic peak pressure of the suspension layer (solid lines) and the dense-flow layer (dashed line). The yellow line marks
the 1 kPa isoline and the red line the 10 kPa isoline. (b) The deposition of the avalanche (at t = 180 s). Terrain data: AdTLR.

Figure 12. Numerical simulation of the Eiskar avalanche with the two-layer model. The first row (a–e) shows the height of the dense-flow
layer; the second row (f–j) shows the height of the powder cloud layer. Each tick on the x and y axes corresponds to 500 m. Terrain data:
Land Steiermark/GIS-Steiermark.
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Figure 13. (a) The dynamic peak pressure of the suspension layer (solid lines) and the dense-flow layer (dashed line). The yellow line marks
the 1 kPa isoline and the red line the 10 kPa isoline. The black line marks the limit of the estimated 1 kPa isoline following observations.
(b) The deposition of the avalanche (at t = 200 s). The black polygons mark regions of dense-flow deposition (above) and powder cloud
deposition (below). Terrain data: Land Steiermark/GIS-Steiermark.

observations distinguish between suspension and dense-flow
depositions (Oesterle, 2019), and the same can be done in
the numerical model. The dense-flow layer leaves behind up
to 10 m thick deposits (to be corrected by a factor of 1/3
to match the deposition density) with sharp edges, while the
suspension generates deposits with 0.1–0.2 m thickness (to
be corrected as well) that fade out gradually. Both the po-
sition of the respective deposits and their shape match the
observations.

Overall, the model is able to reproduce the observed flow
traces, from the dynamic pressure to the varying snow de-
posits, in a single simulation. However, the model parameters
had to be fitted to achieve these results. The friction param-
eters have to be substantially lower than in the Wolfsgruben
case, and the coupling factor has to be an order of magnitude
higher. This indicated that conditions were substantially dif-
ferent between the two cases or that the model does not cover
some important processes.

8 Conclusions

This work provides an overview of the implementation
of the granular dense-flow model of Savage and Hutter
(1989, 1991) and the suspension flow model of Parker et al.
(1986) into OpenFOAM. Further, the models have been com-
bined by means of a novel coupling mechanism to provide
a simple yet effective mixed-snow avalanche model. These
three models form the core of the OpenFOAM avalanche
module. The module is accompanied by a new toolchain
that substantially simplifies the practical application of the
framework. The integration of geographic information sys-
tem (GIS) file types into the OpenFOAM framework en-
ables a simple and deep integration in existing workflows.

Moreover, the dependencies on third-party libraries for GIS
support were removed as they were often missing on com-
putational clusters. In comparison to the work of Rauter
et al. (2018), the models and all tools are integrated into
OpenFOAM to simplify installation. The physical models are
highly modular. Tweaking and replacing specific empirical
relation or process models are a core feature of the frame-
work and highly encouraged.

The implementation of the suspension flow model of
Parker et al. (1986) was verified by repeating published re-
sults, assuring the absence of implementation errors. A novel
two-layer model was developed and evaluated with simple
synthetic cases. The results are reasonable and follow the ex-
pectations set in the model. Further investigations have been
conducted with two different real-case avalanches. The reach
of the dense-flow layer and the suspension layer matched the
observed runout in both cases with good accuracy, although a
quantitative comparison was not conducted. The dense flow
of the Wolfsgruben avalanche came short of approximately
20 m. The impact pressure of the suspension flow is reason-
able considering the observed damage. Results for the Eiskar
avalanche similarly match observations well if the parame-
ters are fitted accordingly.

The good results are strongly linked to the parameteriza-
tion, which is highly uncertain due to the limited experience
with mixed-snow avalanche models in general and this model
in particular. A wide variety of results can be achieved by
tweaking the parameters of the model, and substantial inves-
tigations will be required to find the appropriate parameters
for the large number of semi-empirical relations embedded in
the flow models. Substantially different parameters were re-
quired to yield reasonable results in both cases, a well-known
problem in gravitational mass flow modelling (Scheidegger,
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1973; Lucas et al., 2014). Further, snow properties and tem-
peratures might have been substantially different between the
two avalanche events. In this regard we see a strong oppor-
tunity to substantially improve the two-layer model. Temper-
ature has a strong influence on the particle diameter distri-
bution in snow avalanches and will thus have a high effect
on the mobility and the ability to generate suspension flows
(Steinkogler et al., 2015a, b).

The dense-flow runout and especially its dynamic pressure
at a specific point are very sensitive to the parameters. This is
related to the strong friction that rises rapidly in flat regions,
where the driving gravitational acceleration also vanishes.
The suspension cloud is less sensitive to such influences, as
the friction is lower and independent of the inclination and
the basal pressure. Therefore, the suspension runout is less
sensitive to the parameters.

For practical applications we advise to use the existing
guidelines for the dense-flow parameters (e.g. Salm et al.,
1990). For snow avalanches with a high potential to gener-
ate powder snow clouds, we suggest to apply the suspen-
sion and coupling parameters as used in the Eiskar case. It
should be noted that the suspension model absorbs mass from
the dense-flow model, which reduces the respective runout.
Therefore, it might be reasonable to simulate scenarios with
less powder flow generation to not underestimate the runout
of the dense core. Finally, it should be kept in mind that the
results of the model are accompanied by a high number of
uncertainties and that they should be used accordingly. Nev-
ertheless, the simulations presented here recreate the pro-
cesses of the events well and provide a considerable amount
of additional information.

Generally, the model and the whole framework aim to be
very flexible to provide researchers with a strong platform
to develop and evaluate novel friction, entrainment, and cou-
pling models. The introduced coupling model represents a
reasonable approach that yields promising results, but there
might be big opportunities for improvement. We hope that
the framework can provide a starting point for other re-
searchers to develop new coupling mechanisms with better
performance. Further, new solvers can be implemented on
the basis of the framework, e.g. multiphase models for debris
flows (e.g. Pudasaini, 2012; Kowalski and McElwaine, 2013;
Iverson and George, 2014) as done by Garcés et al. (2023)
with faDebrisFoam or landslide tsunamis (e.g. George
et al., 2017). The toolchain and post-processing routines pre-
sented here can be reused with these models, and additional
pre- and postprocessing utilities can be added to enlarge the
functionality of the whole framework.

Appendix A: Simplified computation of centrifugal
forces

The basal pressure is computed following Eq. (14) in the
model of Rauter and Tuković (2018). For the Parker et al.

(1986) model we tried to achieve a simpler model that can
also be combined with the empirical process models in the
powder cloud but still follows the general approach. Neglect-
ing the small longitudinal pressure gradient term and remov-
ing the indices marking the layer, Eq. (14) can be simplified
to

hρ gn− ξ ρ∇
0
n · (huu)=−n

0 p8. (A1)

We want to compare this equation to the following equation
with an effective gravitational acceleration that contains the
effects of centrifugal forces:

hρ geff =−n
0 p8. (A2)

Setting n0 p8 in Eqs. (A1) and (A2) equal to one another
yields

hρ geff = hρ gn− ξ ρ∇
0
n · (huu) . (A3)

After approximating ∇0
n · (huu) as h∇0

n · (uu) and dividing
by hρ, we can write

geff ≈ gn− ξ ∇
0
n · (uu) . (A4)

A further approximation neglects the shape factor ξ , fi-
nally leading to the effective gravitational acceleration as de-
scribed by Eq. (26).

Code and data availability. The code is available in the Open-
FOAM avalanche repository at https://develop.openfoam.com/
Community/avalanche (Rauter, 2024) under the tag v2312. It is
further included in the OpenFOAM-v2312 builds and releases
(https://www.openfoam.com/news/main-news/openfoam-v2312,
ESI-OpenCFD team, 2024). The 1988 Wolfsgruben avalanche
simulation and previous test and validation cases are included as a
tutorial in the repository. The code is licensed under GNU General
Public License v3. Test data are licensed under CC BY 3.0 by Amt
der Tiroler Landesregierung (AdTLR).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-17-6545-2024-supplement.
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Juretić, F.: cfMesh User Guide, Creative Fields, Zagreb,
https://cfmesh.com/wp-content/uploads/2015/09/User_
Guide-cfMesh_v1.1.pdf (last access: 18 August 2024), 2015.

Köhler, A., McElwaine, J., and Sovilla, B.: GEODAR data and the
flow regimes of snow avalanches, J. Geophys. Res.-Earth, 123,
1272–1294, https://doi.org/10.1002/2017JF004375, 2018.

Kowalski, J. and McElwaine, J. N.: Shallow two-component
gravity-driven flows with vertical variation, J. Fluid Mech., 714,
434–462, https://doi.org/10.1017/jfm.2012.489, 2013.

Kowalski, J. and Torrilhon, M.: Moment Approximations and
Model Cascades for Shallow Flow, Commun. Comput. Phys., 25,
669–702, https://doi.org/10.4208/cicp.OA-2017-0263, 2019.

LeVeque, R. J.: Finite volume methods for hyperbolic problems,
vol. 31, Cambridge University Press, 2002.

Løvholt, F., Pedersen, G., Harbitz, C. B., Glimsdal, S., and Kim, J.:
On the characteristics of landslide tsunamis, Philos. T. Roy. Soc.
A, 373, 20140376, https://doi.org/10.1098/rsta.2014.0376, 2015.

Lucas, A., Mangeney, A., and Ampuero, J. P.: Frictional velocity-
weakening in landslides on Earth and on other planetary bodies,
Nat. Commun., 5, 1–9, https://doi.org/10.1038/ncomms4417,
2014.

Mergili, M., Fischer, J.-T., Krenn, J., and Pudasaini, S. P.: r.avaflow
v1, an advanced open-source computational framework for the
propagation and interaction of two-phase mass flows, Geosci.
Model Dev., 10, 553–569, https://doi.org/10.5194/gmd-10-553-
2017, 2017.

Moukalled, F., Mangani, L., and Darwish, M.: The finite
volume method in computational fluid dynamics, Springer,
https://doi.org/10.1007/978-3-319-16874-6, 2016.

Oesterle, F.: Eiskar-Avalanche event January 2019 (german), Tech-
nischer Bericht/Nachrechung, Wildbach- und Lawinenverbau-
ung – Fachzentrum Geologie und Lawinen, 2019.

Parker, G., Fukushima, Y., and Pantin, H. M.: Self-
accelerating turbidity currents, J. Fluid Mech., 171, 145–181,
https://doi.org/10.1017/S0022112086001404, 1986.

Pitman, E. B., Nichita, C. C., Patra, A., Bauer, A., Sheridan, M.,
and Bursik, M.: Computing granular avalanches and landslides,

Phys. Fluids, 15, 3638–3646, https://doi.org/10.1063/1.1614253,
2003.

Pudasaini, S. P.: A general two-phase debris flow
model, J. Geophys. Res.-Earth, 117, F03010,
https://doi.org/10.1029/2011JF002186, 2012.

Pudasaini, S. P. and Hutter, K.: Avalanche Dynamics: Dynam-
ics of Rapid Flows of Dense Granular Avalanches, Springer,
https://doi.org/10.1007/978-3-540-32687-8, 2007.

Pudasaini, S. P., Wang, Y., and Hutter, K.: Rapid motions of free-
surface avalanches down curved and twisted channels and their
numerical simulation, Philos. T. Roy. Soc. Lond. A, 363, 1551–
1571, https://doi.org/10.1098/rsta.2005.1595, 2005.

Rastello, M., Rastello, F., Bellot, H., Ousset, F., Du-
four, F., and Meier, L.: Size of snow particles in
a powder-snow avalanche, J. Glaciol., 57, 151–156,
https://doi.org/10.3189/002214311795306637, 2011.

Rauter, M.: The compressible granular collapse in a fluid
as a continuum: validity of a Navier-Stokes model
with µ(J ),φ(J )-rheology, J. Fluid Mech., 915, A87,
https://doi.org/10.1017/jfm.2021.107, 2021.

Rauter, M.: OpenFOAM Avalanche Module Repository,
https://develop.openfoam.com/Community/avalanche, last
access: 18 August 2024.

Rauter, M. and Köhler, A.: Constraints on entrain-
ment and deposition models in avalanche simulations
from high-resolution radar data, Geosciences, 10, 9,
https://doi.org/10.3390/geosciences10010009, 2020.
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