Articles | Volume 16, issue 23
https://doi.org/10.5194/gmd-16-7013-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-7013-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
AvaFrame com1DFA (v1.3): a thickness-integrated computational avalanche module – theory, numerics, and testing
Matthias Tonnel
Department of Natural Hazards, BFW – Austrian Research Center for Forests, Innsbruck, Austria
Anna Wirbel
Department of Natural Hazards, BFW – Austrian Research Center for Forests, Innsbruck, Austria
Department of Natural Hazards, BFW – Austrian Research Center for Forests, Innsbruck, Austria
Jan-Thomas Fischer
Department of Natural Hazards, BFW – Austrian Research Center for Forests, Innsbruck, Austria
Related authors
No articles found.
Michael Neuhauser, Anselm Köhler, Anna Wirbel, Felix Oesterle, Wolfgang Fellin, Johannes Gerstmayr, Falko Dressler, and Jan-Thomas Fischer
Nat. Hazards Earth Syst. Sci., 25, 4185–4202, https://doi.org/10.5194/nhess-25-4185-2025, https://doi.org/10.5194/nhess-25-4185-2025, 2025
Short summary
Short summary
This study examines how particles move in snow avalanches. The researchers used AvaNodes, a sensor system that tracks particle movement, in combination with radar data and simulations from the open avalanche framework AvaFrame. By comparing measurements and simulations, particle velocity and avalanche front position were matched with high accuracy. The study illustrates how multiple parameter sets can yield appropriate results and highlights the complexity of avalanche simulation.
Kalin Markov, Andreas Huber, Momchil Panayotov, Christoph Hesselbach, Paula Spannring, Jan-Thomas Fischer, and Michaela Teich
EGUsphere, https://doi.org/10.5194/egusphere-2025-2143, https://doi.org/10.5194/egusphere-2025-2143, 2025
Short summary
Short summary
With growing demand for decision support in recreational and professional use of avalanche terrain, we applied machine learning for automated Avalanche Terrain Exposure Scale (AutoATES) mapping in Bulgaria. A Random Forest model, trained on expert-labelled data from the Pirin Mountains, accurately classifies avalanche terrain and reduces reliance on manual expert mapping, offering an effective and scalable solution for large-scale regional AutoATES applications.
Christopher J. L. D'Amboise, Michael Neuhauser, Michaela Teich, Andreas Huber, Andreas Kofler, Frank Perzl, Reinhard Fromm, Karl Kleemayr, and Jan-Thomas Fischer
Geosci. Model Dev., 15, 2423–2439, https://doi.org/10.5194/gmd-15-2423-2022, https://doi.org/10.5194/gmd-15-2423-2022, 2022
Short summary
Short summary
The term gravitational mass flow (GMF) covers various natural hazard processes such as snow avalanches, rockfall, landslides, and debris flows. Here we present the open-source GMF simulation tool Flow-Py. The model equations are based on simple geometrical relations in three-dimensional terrain. We show that Flow-Py is an educational, innovative GMF simulation tool with three computational experiments: 1. validation of implementation, 2. performance, and 3. expandability.
Anna Wirbel and Alexander Helmut Jarosch
Geosci. Model Dev., 13, 6425–6445, https://doi.org/10.5194/gmd-13-6425-2020, https://doi.org/10.5194/gmd-13-6425-2020, 2020
Short summary
Short summary
We present an open-source numerical tool to simulate the free-surface evolution of gravity-driven flows (e.g. glaciers) constrained by bed topography. No ad hoc post-processing is required to enforce positive ice thickness and mass conservation. We utilise finite elements, define benchmark tests, and showcase glaciological examples. In addition, we provide a thorough analysis of the applicability and robustness of different spatial stabilisation and time discretisation methods.
Cited articles
Ata, R. and Soulaïmani, A.: A stabilized SPH method for inviscid shallow water flows, Int. J. Numer. Meth. Fl., 47, 139–159, https://doi.org/10.1002/fld.801, 2005. a
Baker, J. L., Barker, T., and Gray, J. M. N. T.: A two-dimensional depth-averaged μ(I)-rheology for dense granular avalanches, J. Fluid Mech., 787, 367–395, https://doi.org/10.1017/jfm.2015.684, 2016. a
Ben Moussa, B. and Vila, J. P.: Convergence of SPH method for scalar nonlinear conservation laws, SIAM J. Numer. Anal., 37, 863–887, https://doi.org/10.1137/S0036142996307119, 2000. a, b
Christen, M., Kowalski, J., and Bartelt, P.: RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain, Cold Reg. Sci. Technol., 63, 1–14, https://doi.org/10.1016/j.coldregions.2010.04.005, 2010. a, b, c
Faccanoni, G. and Mangeney, A.: Exact solution for granular flows, Int. J. Numer. Anal. Met., 37, 1408–1433, https://doi.org/10.1002/nag.2124, 2013. a, b
Fischer, J. T., Kowalski, J., and Pudasaini, S.: Topographic curvature effects in applied avalanche modeling, Cold Reg. Sci. Technol., 74–75, 21–30, https://doi.org/10.1016/j.coldregions.2012.01.005, 2012. a
Fischer, J.-T., Fromm, R., Gauer, P., and Sovilla, B.: Evaluation of probabilistic snow avalanche simulation ensembles with Doppler radar observations, Cold Reg. Sci. Technol., 97, 151–158, https://doi.org/10.1016/j.coldregions.2013.09.011, 2014. a
Gauer, P.: Comparison of avalanche front velocity measurements and implications for avalanche models, Cold Reg. Sci. Technol., 97, 132–150, https://doi.org/10.1016/j.coldregions.2013.09.010, 2014. a
Granig, M., Sampl, P., Fischer, J., Kofler, A., and Joerg, P.: Adaption and further development of the numerical solution in the avalanche simulation model SamosAT, in: 13th Congress INTERPRAEVENT, Lucerne, Switzerland, 30 May–2 June 2016, 284–289, https://interpraevent2016.ch/wp-content/ (last access: 23 October 2023), 2016. a, b
Gray, J. and Edwards, A.: A depth-averaged μ(I)-rheology for shallow granular free-surface flows, J. Fluid Mech., 755, 297–329, https://doi.org/10.1017/jfm.2014.450, 2014. a, b, c
Gubler, H.: Measurements and modelling of snow avalanche speeds, in: Avalanches Formation, Movement and Effects, edited by: Salm, B. and Gubler, H., IAHS Publication, 162, 405–420, 1987. a
Harten, A. and Hyman, J. M.: Self adjusting grid methods for one-dimensional hyperbolic conservation laws, J. Comput. Phys., 50, 235–269, https://doi.org/10.1016/0021-9991(83)90066-9, 1983. a
Harten, A., Lax, P. D., and Leer, B. v.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25, 35–61, https://doi.org/10.1137/1025002, 1983. a
Hergarten, S. and Robl, J.: Modelling rapid mass movements using the shallow water equations in Cartesian coordinates, Nat. Hazards Earth Syst. Sci., 15, 671–685, https://doi.org/10.5194/nhess-15-671-2015, 2015. a
Hutter, C., Siegel, M., Savage, S., and Nohguchi, Y.: Two-dimensional spreading of a granular avalanche down an inclined plane Part I. Theory, Acta Mech., 100, 37–68, https://doi.org/10.1007/BF01176861, 1993. a, b, c
Ihmsen, M., Orthmann, J., Solenthaler, B., Kolb, A., and Teschner, M.: SPH Fluids in Computer Graphics, in: Eurographics 2014 – State of the Art Reports, edited by: Lefebvre, S. and Spagnuolo, M., The Eurographics Association, https://doi.org/10.2312/egst.20141034, 2014. a
International Association of Hydrological Sciences. International Commission on Snow and Ice: Avalanche atlas, in: Illustrated international avalanche classification, Unesco, Paris, 265 pp., https://unesdoc.unesco.org/images/0004/000480/048004MB.pdf (last access: 5 October 2023), 1981. a
Barbolini, M., Domaas, U., Faug, T., Gauer, P., Hakonardottir, K. M., Harbitz, C. B., Issler, D., Johannesson, T., Lied, K., Naaim-Bouvet, M., and Rammer, L.: The design of avalanche protection dams, in: Recent practical and theoretical developments European Commission, edited by: Jóhannesson, T., Gauer, P., Issler, D., and Lied, K., Project Report: EUR 23339, European Commission, Directorate General for Research, 212 pp., 2009. a
Körner, H. J.: The energy-line method in the mechanics of avalanches, J. Glaciol., 26, 501–505, https://doi.org/10.3189/s0022143000011023, 1980. a
LeVeque, R. J.: Numerical methods for conservation laws, Birkhäuser Basel, https://doi.org/10.1007/978-3-0348-8629-1, 1990. a
Li, X., Sovilla, B., Jiang, C., and Gaume, J.: Three-dimensional and real-scale modeling of flow regimes in dense snow avalanches, Landslides, 18, 3393–3406, https://doi.org/10.1007/s10346-021-01692-8, 2021. a
Liu, M. and Liu, G.: Smoothed Particle Hydrodynamics (SPH): an overview and recent developments, Arch. Comput. Method. E., 17, 25–76, https://doi.org/10.1007/s11831-010-9040-7, 2010. a, b, c, d
Luca, I., Tai, Y.-C., and Kuo, C.-Y.: Shallow Geophysical Mass Flows down Arbitrary Topography, Springer International Publishing, https://doi.org/10.1007/978-3-319-02627-5, 2016. a
Mangeney-Castelnau, A., Vilotte, J.-P., Bristeau, M.-O., Perthame, B., Bouchut, F., Simeoni, C., and Yerneni, S.: Numerical modeling of avalanches based on Saint Venant equations using a kinetic scheme, J. Geophys. Res.-Sol. Ea., 108, 2527–2544, https://doi.org/10.1029/2002JB002024, 2003. a, b, c
Mergili, M., Fischer, J.-T., Krenn, J., and Pudasaini, S. P.: r.avaflow v1, an advanced open-source computational framework for the propagation and interaction of two-phase mass flows, Geosci. Model Dev., 10, 553–569, https://doi.org/10.5194/gmd-10-553-2017, 2017. a, b
Monaghan, J.: Smoothed particle hydrodynamics, Annu. Rev. Astron. Astr., 30, 543–574, https://doi.org/10.1146/annurev.aa.30.090192.002551, 1992. a
Monaghan, J. J.: Smoothed particle hydrodynamics, Rep. Prog. Phys., 68, 1703–1759, https://doi.org/10.1088/0034-4885/68/8/r01, 2005. a
Oesterle, F., Tonnel, M., Wirbel, A., and Fischer, J.-T.: avaframe/AvaFrame: Version 1.3, Zenodo [code and data set], https://doi.org/10.5281/zenodo.7189007, 2022. a, b, c
Oesterle, F., Tonnel, M., Wirbel, A., and Fischer, J.-T.: avaframe/AvaFrame: Version 1.6.1, Zenodo [code], https://doi.org/10.5281/zenodo.8319432, 2023.
Rauter, M. and Tuković, Z.: A finite area scheme for shallow granular flows on three-dimensional surfaces, Comput. Fluids, 166, 184–199, https://doi.org/10.1016/j.compfluid.2018.02.017, 2018. a, b
Rauter, M., Kofler, A., Huber, A., and Fellin, W.: faSavageHutterFOAM 1.0: depth-integrated simulation of dense snow avalanches on natural terrain with OpenFOAM, Geosci. Model Dev., 11, 2923–2939, https://doi.org/10.5194/gmd-11-2923-2018, 2018. a
Salm, B. and Gubler, H.: Measurement and analysis of the motion of dense flow avalanches, Ann. Glaciol., 6, 26–34, https://doi.org/10.1017/s0260305500009939, 1985. a
Sampl, P.: SamosAT – Modelltheorie und Numerik, AVL List GMBH, Tech. Rep., Zenodo, https://doi.org/10.5281/zenodo.8007681, 2007. a
Sampl, P. and Zwinger, T.: Avalanche simulation with SAMOS, Ann. Glaciol., 38, 393–398, https://doi.org/10.3189/172756404781814780, 2004. a, b, c, d
Savage, S. B. and Hutter, K.: The motion of a finite mass of granular material down a rough incline, J. Fluid Mech., 199, 177–215, https://doi.org/10.1017/s0022112089000340, 1989. a
Stomakhin, A., Schroeder, C., Chai, L., Teran, J., and Selle, A.: A material point method for snow simulation, ACM T. Graphic., 32, 1–10, https://doi.org/10.1145/2461912.2461948, 2013. a
Voellmy, A.: Über die Zerstörungskraft von Lawinen, Schweizerische Bauzeitung, Sonderdruck aus dem 73. Jahrgang, 1–25, 1955. a
Zugliani, D. and Rosatti, G.: TRENT2D: An accurate numerical approach to the simulation of two-dimensional dense snow avalanches in global coordinate systems, Cold Reg. Sci. Technol., 190, 103343, https://doi.org/10.1016/j.coldregions.2021.103343, 2021. a, b, c
Short summary
Avaframe - the open avalanche framework - provides open-source tools to simulate and investigate snow avalanches. It is utilized for multiple purposes, the two main applications being hazard mapping and scientific research of snow processes. We present the theory, conversion to a computer model, and testing for one of the core modules used for simulations of a particular type of avalanche, the so-called dense-flow avalanches. Tests check and confirm the applicability of the utilized method.
Avaframe - the open avalanche framework - provides open-source tools to simulate and investigate...