Fischer, J. T., Kowalski, J., and Pudasaini, S.: Topographic curvature effects in applied avalanche modeling, Cold Reg. Sci. Technol., 74–75, 21–30,
https://doi.org/10.1016/j.coldregions.2012.01.005, 2012.
a
Fischer, J.-T., Fromm, R., Gauer, P., and Sovilla, B.: Evaluation of probabilistic snow avalanche simulation ensembles with Doppler radar observations, Cold Reg. Sci. Technol., 97, 151–158,
https://doi.org/10.1016/j.coldregions.2013.09.011, 2014.
a
Granig, M., Sampl, P., Fischer, J., Kofler, A., and Joerg, P.: Adaption and further development of the numerical solution in the avalanche simulation model SamosAT, in: 13th Congress INTERPRAEVENT, Lucerne, Switzerland, 30 May–2 June 2016, 284–289,
https://interpraevent2016.ch/wp-content/ (last access: 23 October 2023), 2016.
a,
b
Gubler, H.: Measurements and modelling of snow avalanche speeds, in: Avalanches Formation, Movement and Effects, edited by: Salm, B. and Gubler, H., IAHS Publication, 162, 405–420, 1987. a
Harten, A., Lax, P. D., and Leer, B. v.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25, 35–61,
https://doi.org/10.1137/1025002, 1983.
a
Hergarten, S. and Robl, J.: Modelling rapid mass movements using the shallow water equations in Cartesian coordinates, Nat. Hazards Earth Syst. Sci., 15, 671–685,
https://doi.org/10.5194/nhess-15-671-2015, 2015.
a
Hutter, C., Siegel, M., Savage, S., and Nohguchi, Y.: Two-dimensional spreading of a granular avalanche down an inclined plane Part I. Theory, Acta Mech., 100, 37–68,
https://doi.org/10.1007/BF01176861, 1993.
a,
b,
c
Ihmsen, M., Orthmann, J., Solenthaler, B., Kolb, A., and Teschner, M.: SPH Fluids in Computer Graphics, in: Eurographics 2014 – State of the Art Reports, edited by: Lefebvre, S. and Spagnuolo, M., The Eurographics Association,
https://doi.org/10.2312/egst.20141034, 2014.
a
Barbolini, M., Domaas, U., Faug, T., Gauer, P., Hakonardottir, K. M., Harbitz, C. B., Issler, D., Johannesson, T., Lied, K., Naaim-Bouvet, M., and Rammer, L.: The design of avalanche protection dams, in: Recent practical and theoretical developments European Commission, edited by: Jóhannesson, T., Gauer, P., Issler, D., and Lied, K., Project Report: EUR 23339, European Commission, Directorate General for Research, 212 pp., 2009. a
Li, X., Sovilla, B., Jiang, C., and Gaume, J.: Three-dimensional and real-scale modeling of flow regimes in dense snow avalanches, Landslides, 18, 3393–3406,
https://doi.org/10.1007/s10346-021-01692-8, 2021.
a
Liu, M. and Liu, G.: Smoothed Particle Hydrodynamics (SPH): an overview and recent developments, Arch. Comput. Method. E., 17, 25–76,
https://doi.org/10.1007/s11831-010-9040-7, 2010.
a,
b,
c,
d
Mangeney-Castelnau, A., Vilotte, J.-P., Bristeau, M.-O., Perthame, B., Bouchut, F., Simeoni, C., and Yerneni, S.: Numerical modeling of avalanches based on Saint Venant equations using a kinetic scheme, J. Geophys. Res.-Sol. Ea., 108, 2527–2544,
https://doi.org/10.1029/2002JB002024, 2003.
a,
b,
c
Mergili, M., Fischer, J.-T., Krenn, J., and Pudasaini, S. P.: r.avaflow v1, an advanced open-source computational framework for the propagation and interaction of two-phase mass flows, Geosci. Model Dev., 10, 553–569,
https://doi.org/10.5194/gmd-10-553-2017, 2017.
a,
b
Oesterle, F., Tonnel, M., Wirbel, A., and Fischer, J.-T.: avaframe/AvaFrame: Version 1.3, Zenodo [code and data set],
https://doi.org/10.5281/zenodo.7189007, 2022.
a,
b,
c
Oesterle, F., Tonnel, M., Wirbel, A., and Fischer, J.-T.: avaframe/AvaFrame: Version 1.6.1, Zenodo [code], https://doi.org/10.5281/zenodo.8319432, 2023.
Rauter, M., Kofler, A., Huber, A., and Fellin, W.: faSavageHutterFOAM 1.0: depth-integrated simulation of dense snow avalanches on natural terrain with OpenFOAM, Geosci. Model Dev., 11, 2923–2939,
https://doi.org/10.5194/gmd-11-2923-2018, 2018.
a
Sampl, P. and Zwinger, T.: Avalanche simulation with SAMOS, Ann. Glaciol., 38, 393–398,
https://doi.org/10.3189/172756404781814780, 2004.
a,
b,
c,
d
Stomakhin, A., Schroeder, C., Chai, L., Teran, J., and Selle, A.: A material point method for snow simulation, ACM T. Graphic., 32, 1–10,
https://doi.org/10.1145/2461912.2461948, 2013.
a
Voellmy, A.: Über die Zerstörungskraft von Lawinen, Schweizerische Bauzeitung, Sonderdruck aus dem 73. Jahrgang, 1–25, 1955. a
Zugliani, D. and Rosatti, G.: TRENT2D: An accurate numerical approach to the simulation of two-dimensional dense snow avalanches in global coordinate systems, Cold Reg. Sci. Technol., 190, 103343,
https://doi.org/10.1016/j.coldregions.2021.103343, 2021.
a,
b,
c