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Abstract. Simulation tools are important to investigate and
predict mobility and the destructive potential of gravita-
tional mass flows (e.g., snow avalanches). AvaFrame – the
open avalanche framework – offers well-established compu-
tational modeling approaches, tools for data handling and
analysis, and ready-to-use modules for evaluation and test-
ing. This paper presents the theoretical background, deriva-
tion, and model verification for one of AvaFrame’s core
modules, the thickness-integrated computational model for
avalanches with flow or mixed form of movement, named
com1DFA. Particular emphasis within the description of the
utilized numerical particle–grid method is given to the com-
putation of spatial gradients and the accurate implementa-
tion of driving and resisting forces. The implemented method
allows us to provide a time–space criterion connecting the
numerical particles, grid, and time discretization. The con-
vergence and robustness of the numerical implementation is
checked with respect to the spatiotemporal evolution of the
flow variables using tests with a known analytical solution.
In addition, we present a new test for verifying the accuracy
of the numerical simulation in terms of runout (angle and
distance). This test is derived from the total energy balance
along the center-of-mass path of the avalanche. This article,
particularly in combination with the code availability (open-
source code repository) and detailed online documentation
provides a description of an extendable framework for mod-
eling and verification of avalanche simulation tools.

1 Introduction

Simulation tools for gravitational mass flows – with a focus
on snow avalanches in this article – are in great demand for
operational engineering applications and scientific model de-
velopment and are gaining increasing attention in academic
education. Each of these application requires different out-
puts. For operational engineering applications, the runout
outcome for different scenarios is usually of highest inter-
est. Scientific applications aim at better understanding the
processes and will require outputs such as flow variable evo-
lution. Existing tools for simulating snow avalanches cover
a wide range of numerical implementations and vary from
proprietary (e.g., Christen et al., 2010; Sampl and Zwinger,
2004; Zugliani and Rosatti, 2021; Li et al., 2021) to open-
source software (e.g., Hergarten and Robl, 2015; Mergili
et al., 2017; Rauter et al., 2018). The latter ones are gen-
erally more focused towards scientific and academic issues,
whereas the first are more geared towards operational appli-
cations. AvaFrame – the open avalanche framework – strives
to fill the gap between operations and scientific development
combining over a decade of operational application (using,
e.g., SamosAT; see Sampl and Zwinger, 2004; Fischer et al.,
2014) with an open-source scientific development environ-
ment. Using a modular structure AvaFrame adds in-depth
testing and analysis modules to the core flow modules. Fur-
ther modules provide interfaces for visualization and geodata
handling for all kinds of existing and emerging simulation
tools. It enables us to combine, further develop, and extend
the different tools to best suit the users needs.

At their core, avalanche simulation tools are based on a
large variety of flow models, differing in their basic assump-
tions (what physical processes they include, degree of com-
plexity), mathematical derivation, and/or their numerical im-
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plementation. These range from Eulerian methods (Christen
et al., 2010; Mergili et al., 2017; Rauter and Tuković, 2018;
Zugliani and Rosatti, 2021) using spatially fixed meshes
to Lagrangian methods (Sampl and Zwinger, 2004) where
the mass is discretized. Some methods are combinations
of Eulerian and Lagrangian approaches, such as the Ma-
terial Point method (Stomakhin et al., 2013). AvaFrame’s
com1DFA dense-flow avalanche (DFA) module is based on
a flow model that is derived from the thickness integration of
the conservation equations of mass and momentum. Classic
shallow-water models, e.g., Saint-Venant, integrate in the di-
rection of gravity, often called “depth” integration. Other ap-
proaches, such as Savage–Hutter models (Savage and Hutter,
1989) integrate in the slope-normal direction but also call it
“depth” integrated. To be more consistent with operational
terminology, we propose calling the integration in the slope-
normal direction “thickness” integration. In this way, we can
highlight the special case of gravitational mass flows in steep
terrain.

The resulting equations are solved using a mixed particle–
grid method, in which mass is tracked using particles. Pres-
sure gradients are computed using a smooth particle hydro-
dynamics (SPH) method adapted to steep terrain and flow
thickness is computed on the grid (Sampl and Zwinger,
2004; Monaghan, 2005; Liu and Liu, 2010; Granig et al.,
2016). To avoid nonphysical behavior at starting and stop-
ping, com1DFA applies the method proposed in Mangeney-
Castelnau et al. (2003), allowing for a friction balanced start-
ing and stopping of the flow.

Verifying and validating the methods applied in our im-
plementation is a challenging but crucial step, as it is for all
simulation tools. Verification is done by comparing the nu-
merical model results to an analytical solution (e.g., Zugliani
and Rosatti, 2021; Rauter and Tuković, 2018). Validation can
be tackled in different ways, either by comparing the model
results to observations (e.g., Christen et al., 2010) or by com-
paring them to the results of already trusted numerical mod-
els. In this article, the focus is on model verification, and the
numerical model results are compared to tests with known
(semi-)analytical solutions using two different approaches.

The flow variable tests (Hutter et al., 1993; Faccanoni and
Mangeney, 2013) allow us to investigate the local spatiotem-
poral evolution of flow thickness and velocity. This enables
us to verify the proper implementation of the pressure gra-
dient and friction force computation among others. In con-
trast, the energy line test is based on the investigation of the
total energy balance (Körner, 1980). It focuses on the accu-
racy of the global kinetic energy (velocity) along the path
and the corresponding center-of-mass runout. Thereby, the
proper implementation of stopping behavior, that is to say
the proper balancing of driving and friction forces, can be
assessed. It also provides a test where the runout, a quantity
which is important for operational applications, is tested. We
explore and explain the limitations of these two approaches.

The article is structured as follows. Section 2 summarizes
the underlying flow model, including fundamental assump-
tions and derivations of the thickness-integrated equations,
building the foundation for the gravitational mass flow sim-
ulations. In Sect. 3 the temporal and spatial discretizations
of the model equations, employing a particle–grid approach,
are described. The implementation in the AvaFrame compu-
tational module com1DFA is outlined in Sect. 4. Model ver-
ification tests are presented in Sect. 5, targeting the correct
implementation of the mathematical model and the conver-
gence and robustness of the numerical model code. In addi-
tion to employing test cases with a known (semi-)analytical
solution, a new energy line test is introduced in Sect. 5.2.

Besides the in-depth description within this article,
Oesterle et al. (2022) provide a combination of code and
corresponding documentation. Users find more information
according to their individual scientific, operational, or ed-
ucational focus, and the reader is invited to contribute to
the future development. It is important to note that this ar-
ticle presents the latest development state of the com1DFA
module. It differs slightly from the implementation of the
com1DFA module used for operational purposes, which is
described in the online AvaFrame documentation. For exam-
ple, differences include improvements of the SPH gradient
computation method and how friction forces are taken into
account.

2 Mathematical model: from 3D equations to
thickness-integrated Lagrangian equations

In this section, the mathematical model and associated equa-
tions used to simulate DFA processes are presented. The
derivation is based on the thickness integration of the three-
dimensional Navier–Stokes equations, using a Lagrangian
approach with a terrain-following coordinate system. The
equations are simplified using the assumption of shallow
flow on a mildly curved topography, meaning flow thick-
ness is considerably smaller than the length and width of the
avalanche, and it is considerably smaller than the topography
curvature radius.

We consider snow as the material; however, the choice of
material does not influence the derivation in the first place.
We assume constant density ρ0 and a flow on a surface S ,
subjected to the gravity force and friction on the surface S. If
needed, additional processes such as entrainment or other ex-
ternal effects can be taken into account. These processes are
included in the following derivations but will not be consid-
ered for model verification (Sect. 5), as test cases with an an-
alytical solution are only available for simplified conditions
where entrainment or any additional forces are discarded.
The mass conservation equation applied to a Lagrangian vol-
ume of material V (t) reads:
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d
dt

∫
V (t)

ρ0 dV

︸ ︷︷ ︸
m(t)

= ρ0
dV (t)

dt
=

∮
∂V (t)

qent dA, (1)

where the source term qent represents the snow entrain-
ment rate (incoming mass flux). The momentum conserva-
tion equation applied to the same volume of material V (t)
reads as follows:

d
dt

∫
V (t)

ρ0udV =
∮
∂V (t)

σ ·ndA

︸ ︷︷ ︸
surface forces

+

∫
V (t)

ρ0g dV

︸ ︷︷ ︸
body force

+ Fext, (2)

where u is the fluid velocity and g the gravity acceleration.
σ =−p1+T represents the stress tensor, where 1 is the
identity tensor, p the pressure, and T the deviatoric part of the
stress tensor. n is the normal vector on ∂V (t). Fext represents
additional forces due to snow entrainment (force needed to
break and compact the entrained snow) or due to added re-
sistance (trees, obstacles, etc.). Fext is assumed to be surface
parallel. Problem-specific assumptions are needed to solve
the mass and momentum conservation equations (closure
equation on the stress tensor in Sect. 2.2). These constitutive
equations are introduced in the following sections alongside
a local coordinate system and boundary conditions.

2.1 Natural coordinate system (NCS) and
thickness-integrated quantities

In order to solve the previously described equations, a lo-
cal coordinate system is introduced. The avalanche flows on
a surface S, a 2D manifold embedded in the 3D Euclidian
space. Different approaches exist to define a coordinate sys-
tem on this curved surface. Some define a tangent space in
every point on S based on the coordinate lines, which leads
to an orthogonal but not orthonormal coordinate system for a
curved surface S (e.g., Luca et al., 2016). Instead of this and
because of the Lagrangian approach used here, we define a
local coordinate system in the tangent plane to S at any point
using the velocity direction and the normal to the surface S
at this position. This results in a time-dependent orthonor-
mal coordinate system that is advected along with the flow,
referred to as the natural coordinate system (NCS).

A control volume V (t) is assumed to be a small truncated
pyramid shape extending from the bottom surface Sb (lying
on the topography S) up to the free surface in the surface-
normal direction Nb as illustrated in Fig. 1. With the as-
sumption of moderately curved surfaces, this is close to be-
ing a prism shape since the normals of the lateral surfaces
are almost parallel to the bottom. Note that the bottom sur-
face Sb of area Ab has no predefined shape. The octagonal
shape used in Fig. 1 is just one possible option.

Figure 1. Example of a small Lagrangian volume considered in the
equations and corresponding notations. The gray surface (denoted
S) represents the bottom surface (topography), and T P represents
the tangent plane to the surface at the point O. The normal vector
to S and T P in O is v3 =N

b. The control volume, represented in
blue, has a basal surface Sb lying in T P , a lateral surface Sl aligned
with Nb, and a free surface Sfs.

The normal vector Nb to the bottom surface is pointing
upwards, whereas nb

=−Nb is the bottom normal vector to
the Lagrangian control volume (pointing out of the volume).

V (t)=

∫
V (t)

dV =
∫
Sb

 s∫
b

det(J)dx3

 dA, (3)

where J is the transformation matrix from the Cartesian co-
ordinate system to the NCS. The NCS is an orthonormal
coordinate system (v1,v2,v3) aligned with the bottom sur-
face. v3 =N

b
=−nb is the normal vector to the bottom sur-

face pointing upwards. v1 is pointing in the direction of the
thickness-integrated fluid velocity u (introduced below).

v1 =
u

||u||
, v2 =

v3 ∧ v1

||v3 ∧ v1||
, v3 =N

b. (4)

In the case of shallow flow on weakly curved surfaces,
det(J)= (1− κ1x3)(1− κ2x3)≈ 1. κ{1,2} represents the sur-
face curvature in v{1,2} directions, while x3 is the elevation
from the bottom surface in the direction Nb. This approxi-
mation is valid if the curvature radius is much larger than the
flow thickness h. In this case, the control volume reads as
follows:

V (t)≈

∫
Sb

s∫
b

dx3

︸ ︷︷ ︸
h(t)

dA. (5)

The following volume (indicated by the superscript �̃),
area (indicated by the superscript �̂), and thickness (indi-
cated by the superscript �) averaged quantities are intro-
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duced (where f is a scalar or vector function on �⊂R3):

f̃ =
1
V (t)

∫
V (t)

f dV

f̂ =
1

Ab(t)

∫
Sb

f dA

f =
1
h(t)

h(t)∫
0
f dx3

and f̃ (x3)=
1

Ab (̂h− x3)

∫
Sb

 h(t)∫
x3

f det(J)dx3

 dA

≈
1

Ab (̂h− x3)

∫
Sb

 h(t)∫
x3

f dx3

 dA

f (x3)=
1

(h− x3)

h(t)∫
x3

f dx3. (6)

Note that f̃ (0)= f̃ and f (0)= f . When the control vol-

ume goes to 0, i.e., basal area goes to a point, f̃
Ab
→0
−→ f and

f̂
Ab
→0
−→ f . Also, note that we assume integration on a tangent

plane being equivalent to integration on a small surface in the
manifold defined by the terrain (or 3D space in which the ter-
rain is embedded). This is justified by the relative smallness
of the basal particle surface compared to the curvature.

The NCS has some interesting properties that will be use-
ful for projecting and solving the equations. Because of
the orthogonality of this NCS, we have vi · vj = δij , {i,j} ∈
{1,2,3}2, which gives after time derivation:

d(vi · vj )
dt

= vi ·
dvj
dt
+

dvi
dt
· vj = 0, (7)

meaning that{
dvi
dt · vi = 0H⇒ dvi

dt ⊥ vi
dvi
dt · vj =−vi ·

dvj
dt , i 6= j.

(8)

It is possible to express dv1
dt in terms of (v1,v2,v3) and using

orthogonality of dvi
dt and vi :

dv1

dt
= αivi = +α2v2+α3v3, αi =

dv1

dt
· vi . (9)

The derivative of the thickness-integrated velocity decom-
poses to

du
dt
=

d(u1v1)

dt
= u1

dv1

dt
+

du1

dt
v1 = u1(α2v2+α3v3)

+
du1

dt
v1. (10)

2.2 Boundary conditions

To complete the conservation Eqs. (1) and (2) the following
boundary conditions at the bottom (Sb) and free (Sfs) sur-
faces are introduced. σ s and σ b represent the restriction of σ
to the free surface Sfs and bottom surface Sb, respectively:

– traction-free top surface –

σ s ·ns = 0 on Sfs; (11)

– impenetrable bottom surface without detachment –

ub
·nb
= 0 on Sb; (12)

– bottom friction law –

τ b
= σ b

·nb
− ((σ b

·nb) ·nb)nb

= f (σ b, u, h, ρ0, t, x)

=−f (σ b, u, h, ρ0, t, x)v1 on Sb. (13)

2.3 Constitutive relation: friction force

To close the momentum equation, a constitutive equation de-
scribing the basal shear stress tensor τ b as a function of the
avalanche flow state is required:

τ b
= f σ b,u,h,ρ0, t,x). (14)

The model verification tests (Sect. 5) are carried out with a
Mohr–Coulomb friction model, which describes the friction
interaction between two solids. The bottom shear stress reads
as follows:

τ b
=− tanδ σ b

·nb u

||u||
, (15)

where δ is the friction angle and µ= tanδ is the friction co-
efficient. The bottom shear stress linearly increases with the
normal stress component pb.

With Mohr–Coulomb friction an avalanche starts to flow
if the slope inclination exceeds the friction angle δ. In the
case of an infinite slope of constant inclination, the avalanche
velocity would increase indefinitely. However, because of its
relative simplicity, the Mohr–Coulomb friction model is con-
venient for deriving analytical solutions and testing numeri-
cal implementations. For a more detailed discussion of fric-
tion laws and their applicability, we refer to Salm and Gubler
(1985); Gubler (1987); Gauer (2014).

Different friction models accounting for the influence of
flow velocity, flow thickness, etc., have been proposed. Three
friction models are available in the com1DFA module. First, a
Coulomb one, which is used in this paper, second a Voellmy
friction model (Voellmy, 1955), and third the samosAT fric-
tion model, which is the one used for hazard mapping by
Austrian federal agencies (Sampl, 2007).

2.4 Expression of surface forces in the NCS

Taking advantage of the NCS and using the boundary con-
ditions, it is possible to split the surface forces into bottom,
lateral, and free surface forces and perform further simplifi-
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cations:

(16)

Using the notations introduced in Sect. 2.1 and the decompo-
sition of the stress tensor, the bottom force can be expressed
as a surface-normal component and a surface-tangential one:∫
Sb

σ b
·nb dA=

∫
Sb

(−pb1+T) ·nb dA=−
∫
Sb

pbnb dA

+

∫
Sb

T ·nb dA=−
∫
Sb

pbnb dA

+

∫
Sb

τ b dA=−Abp̂bnb+Abτ̂ b, (17)

where τ b is the basal friction term (introduced in Sect. 2.2).
Applying Green’s theorem, the lateral force reads as follows:

∮
∂Sb

 h∫
0

σ ·ndx3

 dl =
∮
∂Sb

 h∫
0

(−p1+T)dx3

 ·ndl

=−

∮
∂Sb

 h∫
0

p dx3

 ·ndl

+

∮
∂Sb

 h∫
0

T dx3

 ·ndl

=−

∮
∂Sb

hpndl+
∮
∂Sb

hT ·ndl

=−

∫
Sb

∇(hp)dA+
∫
Sb

∇ · (hT)dA

=−Ab
∇̂(hp)+Ab

∇̂ · (hT). (18)

Equations (17) and (18) represent the thickness-integrated
form of the surface forces and can now be used to write the
thickness integrated momentum equation.

2.5 Thickness-integrated momentum equation

Using the definitions of average values given in Sect. 2.1 and
the decomposition of the surface forces given by Eqs. (17)

and (18), the momentum equation reads as follows:

ρ0
d(V (t )̃u)

dt
= ρ0V

dũ
dt
+ ρ0ũ

dV
dt
=

∮
∂V (t)

σ ·ndA

+ ρ0V g+Fext, (19)

which leads to

ρ0V
dũ
dt
= −Abp̂nb︸ ︷︷ ︸

bottom
normal force

+Abτ̂ b︸ ︷︷ ︸
bottom

shear force

−Ab
∇̂(hp)︸ ︷︷ ︸

lateral
pressure force

+︸ ︷︷ ︸
lateral

shear force

+ ρ0V g+Fext
−ũ

∮
∂V (t)

qent dA.

︸ ︷︷ ︸
speed loss due
to entrainment

. (20)

The lateral shear stress term is neglected because of its rel-
ative smallness in comparison to the other terms as shown
by the dimensional analysis carried out in Gray and Edwards
(2014). The mass conservation reads as follows:

ρ0
dV
dt
=

∮
∂V (t)

qent dA. (21)

Using the approximations from Sect. 2.1, the equation of mo-
tion becomes

ρ0V
du
dt
=−Abpnb

+Abτ b
−Ab

∇(hp)+ ρ0V g

+Fext
−u

∮
∂V (t)

qent dA, (22)

where all quantities are evaluated at the center of the basal
area (point O in Fig. 1). This equation is projected in the
normal direction v3 =N

b to get the expression of the basal
pressure pb. The projection of this same equation on the tan-
gential plane leads to the differential equations satisfied by
u.

2.5.1 Pressure distribution, thickness-integrated
pressure, and pressure gradient

We can project the momentum equation (Eq. 22), using the
volume between x3 and the surface h, in the normal direc-
tion (v3 =N

b
=−nb). Applying the properties of the NCS

(Eq. 10) the surface-normal component of Eq. (22) reads as
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follows:

(23)

Neglecting the normal component of the pressure gradient
gives the expression for pressure. Under the condition that u
is independent of x3, pressure follows a linear profile from
the bottom surface to the free surface:

p(x3)= ρ0(h− x3)

{
−gNb −u ·

dNb

dt

}

and p(x3 = 0)= pb
= ρ0h

{
−gNb −u ·

dNb

dt

}
. (24)

Note that the bottom pressure should always be positive. A
negative pressure is nonphysical and means that the material
is not in contact with the bottom surface anymore. This can
happen in the case of large velocities on convex topography.
If so, the material should be in a free-fall state until it gets
back in contact with the topography. A description on how
this is handled within the numerical implementation can be
found in Sect. 4.3.

Using Eq. (24), it is possible to express the thickness-
integrated pressure p:

hp =

h∫
0

p(x3)dx3 =−ρ0
h2

2

(
gNb +u ·

dNb

dt

)

=−ρ0
h2

2
geff, (25)

where geff is the effective normal acceleration acting on the
volume, including the normal component of gravity and a
curvature component. Because of the utilized Lagrangian ap-
proach, the curvature terms are expressed as the temporal
derivative of the normal vector dNb

dt , effectively computing
the curvature along the particle trajectories. The resulting
curvatures are equivalent to the ones obtained through Eu-
lerian approaches (Fischer et al., 2012) but does not require
the computation of the related κ{1,2}.

The expression of the thickness-integrated pressure is used
to derive the pressure gradient ∇(hp). Assuming geff to be

locally constant (i.e., effectively neglecting curvature; other-
wise geff would remain inside the gradient operator) leads to

∇(hp)=−ρ0 g
eff h∇h. (26)

2.5.2 Tangential momentum equation

Using the derived expression of the thickness-integrated
pressure (Eq. 26), we project the momentum balance (Eq. 22)
in the tangent plane, which leads to the following equation:

ρ0V

(
du
dt
−

(
du
dt
· v3

)
v3

)
= Abτ b

− ρ0 g
eff hAb

∇sh

+ ρ0V gs+Fext

−u

∮
∂V (t)

qent dA, (27)

where ∇s =∇− (∇ ·Nb)Nb and gs = g− (g ·N
b)Nb are

the tangential component of the gradient operator and of the
gravity acceleration, respectively.

After replacing the velocity derivative component in the
normal direction with the expression developed in Eq. (23),
Eq. (27) reads as follows:

ρ0V
du
dt
= Abτ b

− ρ0 g
eff hAb

∇sh+ ρ0V gs+Fext

−u

∮
∂V (t)

qent dA− ρ0V

(
u ·

dv3

dt

)
v3.︸ ︷︷ ︸

curvature acceleration

, (28)

The curvature acceleration is in the normal direction to the
tangent plane in order to keep the flow on the surface.

3 Numerical method: particle–grid approach

In the previous section, the equation of motion was derived
using a Lagrangian approach. In order to solve this set of
equations numerically, we employ a mix of particle and
grid approaches. We discretize the material into numerical
particles and solve the equation of motion, with the total
avalanche mass being the sum of the mass associated with
each particle. The grid is used to compute several parameters
that are required for the computations, e.g., surface-normal
vectors and flow thickness. Combining both approaches al-
lows us to best exploit the advantages of each. The particle
approach is used to track the mass, compute the curvature
terms and the gradient of the flow thickness, and update the
particle positions. The grid is used to handle the topography
information and compute the flow thickness and artificial vis-
cosity. We found this to help with numerical stability, and it
is more efficient as it decreases the required number of par-
ticles. A theoretical convergence criterion is described in the
last section.
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3.1 Interpolation between particle and grid values

Topography information is usually provided in a raster for-
mat which corresponds to a regular rectilinear mesh on the
global horizontal x–y plane, henceforth referred to as grid.
In order to get information on the surface elevation and nor-
mal vectors, the topography information needs to be interpo-
lated at the particle locations, and this needs to be repeated at
each time step since the particles are moving. Similarly, the
particle properties such as mass or momentum, which trans-
late into flow thickness and velocity, also need to be inter-
polated onto the grid. Grid velocity is required to compute
the artificial viscosity term, ensuring numerical stability; see
Sect. 4.2. Grid flow thickness is used to compute the parti-
cle flow thickness, which is required for computing the fric-
tional forces. The mesh being regular and rectilinear, we use
bilinear interpolation for simplicity and efficiency. This also
ensures the conservation of mass or momentum when inter-
polating from the particles to the grid and back. The proper-
ties of the grid and the interpolation method are detailed in
the AvaFrame documentation (https://docs.avaframe.org/en/
latest/DFAnumerics.html#interpolation, last access: 5 Octo-
ber 2023).

3.2 The particle momentum equation

Discretizing the material into particles (particle quantities are
denoted by the subscript k; e.g., mk = ρ0Vk is the mass of
particle k) leads to the following continuity equation:

d
dt
mk = A

ent
k q

ent, (29)

where Aent
k is the interface area between the particle and

the entrainable material while qent
k represents the flux of en-

trained mass.
By assuming that the Lagrangian control volume V can

be represented by a particle, we can derive the particle mo-
mentum equation in the normal direction and in the tangent
plane:
pb
k = ρ0 hk g

eff
k

mk
duk
dt = A

b
kτ

b
−mk g

eff
k ∇sh+mkgs+Fext

k

−ukA
ent
k q

ent
k −mk

(
uk ·

dv3,k
dt

)
v3,k.

(30)

In this equation, flow thickness gradient, basal friction, and
curvature acceleration terms need to be further developed and
discretized.

3.3 Flow thickness and its gradient

3.3.1 Flow thickness gradient computation using SPH

To assess the flow thickness gradient, we employ an SPH
method (smoothed particles hydrodynamics method (Liu and
Liu, 2010)), where the gradient is directly derived from the

particles and does not require any mesh. In contrast, a mesh
method or an MPM (material point method) would directly
use a mesh formulation to approximate the gradient or in-
terpolate the particle properties on an underlying mesh and
then approximate the gradient of the flow thickness using a
mesh formulation. There are two main advantages of using
SPH. First is the computational efficiency, since only the par-
ticles of interest are computed without needing to compute
the area of the whole terrain (as with Eulerian methods). Sec-
ond, mass transfer is not required because it is handled by the
particles directly, making the implementation easier (Granig
et al., 2016).

In theory, an SPH method does not require any mesh to
compute the gradient. However, applying this method re-
quires finding neighbor particles. This process can be sped
up with the help of an underlying grid; different neighbor
search methods are presented in Ihmsen et al. (2014), and a
“uniform grid method” is used in this paper.

The SPH method is used to express a quantity (the flow
thickness in our case) and its gradient at any particle location
as a weighted sum of its neighbors’ properties. The principle
of the method is described well in Liu and Liu (2010), and
the basic formula reads as follows:

f (x)' 〈f (x)〉 =
∑
l

flAlW(x,xl)

∇f (x)' 〈∇f (x)〉 = −
∑
l

flAl∇W(x,xl), (31)

whereW represents the SPH-kernel function (we employ the
spiky kernel; see Eq. B2) and the subscript l enumerates the
neighboring particles. This kernel function is designed to sat-
isfy the unity condition, be an approximation of the Dirac
function and have a compact support domain (Liu and Liu,
2010).

This method is usually either used in a 3D space, in which
particles move freely and where the weighting factor for the
summation is the volume of the particle, or on a 2D horizon-
tal plane, where the weighting factor for the summation is
the area of the particle and the gradient is 2D. Here we want
to compute the gradient of the flow thickness on a 2D sur-
face (the topography) embedded in 3D space. The method
used is analogous to the SPH gradient computation on the
2D horizontal plane but the gradient is 3D and tangent to the
surface (co-linear to the local tangent plane). The theoretical
derivation in Appendix B2 shows that the SPH computation
is equivalent to applying the 2D SPH method in the local tan-
gent plane instead of in the horizontal plane. This leads to the
following SPH expression of the flow thickness gradient:

∇hk '−
∑
l

hlAl∇W(xk,xl)=−
∑
l

ml

ρ
∇W(xk,xl). (32)

3.3.2 Flow thickness computation

The particle flow thickness is computed with the help of the
grid. The mass of the particles is interpolated onto the grid
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using a bilinear interpolation method (described in Sect. 3.1).
Then, dividing the mass at the grid cells by the area of the
grid cells, while taking the slope of the cell into account, re-
turns the flow thickness field on the grid. This is interpolated
back to the particles, which leads to the particle flow thick-
ness property.

We do not compute the flow thickness directly from the
particle properties (mass and position) using an SPH method
because it induced instabilities. Indeed, the cases where too
few neighbors are found lead to very small flow thickness,
which becomes an issue for flow-thickness-dependent fric-
tion laws. Note that using such an SPH method would lead
to a full particle method. But since the flow thickness is only
used in some cases for the friction force computation, using
the previously described grid method should not affect the
computation significantly.

3.4 Friction force discretization

The Coulomb friction force term in Eq. (30) for a particle
reads:

Ab
k τ

b
=−Ab

k tanδ pb
k v1 =−A

b
k tanδ ρ0 hk g

eff
k v1

=−mk tanδ geff
k v1 =−

∣∣∣∣∣∣Ffric
k

∣∣∣∣∣∣
max

v1. (33)

This relation stands if the particle is moving. The starting
and stopping processes satisfy a different equation and are
handled differently in the numerical implementation (using
the same equation would lead to nonphysical behavior). This
is described in more detail in Sect. 4.5.

3.5 Time discretization

The momentum equation is solved numerically in time using
an Euler time scheme. The time derivative of any quantity f
is approximated by

dfk
dt
≈
f n+1
k − f nk

1t
, (34)

where 1t represents the time step and f n = f (tn), tn =
n1t . For the velocity this reads as follows:

duk
dt
≈
un+1
k −unk

1t
. (35)

The positions of the particles are updated using a centered
Euler scheme:

xn+1
k = xnk +

1t

2m

(
un+1
k +unk

)
. (36)

The forces are taken into account in two subsequent steps as
forces acting on the particles can be sorted into driving forces
and friction forces. Friction forces act against the particle
motion, only affecting the magnitude of the velocity. They
can in no case become driving forces. This is why in a first
step the velocity is updated with the driving forces before up-
dating in a second step the velocity magnitude applying the
friction force.

3.6 Convergence

We are looking for a criterion that relates the properties of
the spatial and temporal discretization to ensure convergence
of the numerical solution. Simply decreasing the time step
and increasing the spatial resolution, by decreasing the grid
cell size and kernel radius and increasing the number of par-
ticles, does not ensure convergence. Ben Moussa and Vila
(2000) analyzed hyperbolic one- and two-dimensional, non-
linear transport equations with a particle and SPH method
and showed that the kernel radius size cannot be varied inde-
pendently from the time step and number of particles. Indeed,
they showed that the numerical solution converges towards
the solution of the equation under the following condition:
rpart → 0
rkernel → 0
r2
part

r3
kernel

→ 0
and dt ≤ Crkernel, (37)

where rpart represents the “size” of a particle, rkernel repre-
sents the SPH kernel radius, dt is the time step and C a con-
stant. The conditions in Eq. (37) mean that both rpart (particle
size) and rkernel (SPH kernel radius) need to go to zero but
also that the particle size needs to go faster to zero than the
SPH kernel radius. Finally, the time step needs to go to zero
at the same rate as rkernel. The particle size can be expressed
as a function of the SPH kernel radius:

rpart =

(
Ab

π

)1/2

=

(
Akernel

πnppk

)1/2

=
rkernel

n
1/2
ppk

, (38)

where the particle basal area was assumed to be a circle. Note
that this does not affect the results except adding a different
shape factor in front of this expression. nppk is the number
of particles per kernel support area and defines the density
of the particles when initializing a simulation. Let nppk be
defined by a reference number of particles per kernel support
area n0

ppk > 0, a reference kernel radius r0
kernel > 0, and a real

exponent α:

nppk = n
0
ppk

(
rkernel

r0
kernel

)α
. (39)

This leads to

rpart =

(
r0

kernel
α

n0
ppk

)1/2

r
1−α/2
kernel . (40)

Replacing rpart with the previous equation in Eq. (37) leads
to the following condition:

r0
kernel

α

n0
ppk

r−1−α
kernel → 0. (41)
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This brings us to the following choice:
dt = Ctimerkernel

nppk = n0
ppk

(
rkernel
r0
kernel

)α
,

(42)

which satisfies the convergence criterion if

α <−1. (43)

Note that this criterion (which is similar to a Courant–
Friedrichs–Lewy (CFL) condition) leaves some freedom of
choice for the exponent α and that there are no constraints
on the reference kernel radius r0

kernel and reference number of
particles per kernel radius n0

ppk. Nevertheless, it seems appro-
priate to require a minimum number of particles per kernel
radius so that enough neighbors are available to get a rea-
sonable estimate of the gradient. These parameters should
be adjusted according to the expected accuracy of the results
and/or available compute power. Determining the optimal pa-
rameter values for α, r0

kernel, and n0
ppk, for example, according

to a user’s needs in terms of accuracy and computational ef-
ficiency, requires a specific and detailed investigation of the
considered case. In Sect. 5, we will explore model conver-
gence using the condition Eq. (43) with different values of
α.

4 Numerical implementation and solver

In this section, the numerical implementation and algo-
rithm of the com1DFA module are described. The follow-
ing sections are organized following the workflow used in
the com1DFA code, which is also illustrated in Fig. 2. First,
the release mass is discretized into particles and the grid
is initialized. As a result of the partial differential equa-
tions considered and the time discretization used, stabil-
ity issues might arise. Hence, artificial viscosity is added
in order to ensure the stability of the solution. As a next
step, driving forces (including curvature effects) are ac-
counted for. Friction forces are taken into account sub-
sequently in order to ensure proper starting and stopping
behavior. Finally, a reprojection step is needed to ensure
that particles lie on the topography and that particle veloc-
ities are tangential to the topography. For simplicity and
because they are not considered in the verification tests
in Sect. 5, entrainment and added resistance effects are
not included in what follows. Additional information about
entrainment or resistance forces is available in the the-
ory section (https://docs.avaframe.org/en/theorypapercode/
theoryCom1DFA.html#entrainment, last access: 5 Octo-
ber 2023) of the AvaFrame documentation.

4.1 Initialization

To start a simulation with com1DFA, input information about
topography, material properties, and initial conditions is re-

quired. Topography is described by a DEM (digital eleva-
tion model) using the ESRI ASCII format. It supplies a grid
of altitude values, preceded by a header with information
about the number of data rows and columns, coordinates of
the center or corner of the lower-left cell, the edge length
of the quadratic cells, and the code used for missing values.
The material is characterized by its density and some fric-
tion properties. The initial condition is given by release ar-
eas, polygons describing the initial material location, and the
release thickness, in our case measured in the surface-normal
direction. It is possible to provide several polygons with dif-
ferent initial thickness values.

Then the material is discretized into particles. The field
of normal vectors to the surface is computed from the in-
put DEM and the different grid fields are initialized. The de-
tails of the initialization process are given in the initializa-
tion section (https://docs.avaframe.org/en/theorypapercode/
com1DFAAlgorithm.html#initialization, last access: 5 Octo-
ber 2023) of the AvaFrame documentation.

4.2 Numerical stability

Because the lateral shear force term was removed when de-
riving the model equations (because of its relative smallness,
Gray and Edwards, 2014), Eq. (22) is hyperbolic. Hyperbolic
systems have the characteristic of carrying discontinuities or
shocks which will cause numerical instabilities. They would
fail to converge if, for example, an Euler forward-in-time
scheme is used (LeVeque, 1990). Several methods exist to
stabilize the numerical integration of a hyperbolic system of
differential equations. All add some upwinding in the dis-
cretization scheme. Some methods tackle this problem by in-
troducing some upwinding in the discretization of the deriva-
tives (Harten et al., 1983; Harten and Hyman, 1983). Others
introduce some artificial viscosity (as in Monaghan, 1992),
which is also implemented in com1DFA. The following arti-
ficial viscosity force acting on particle k is added to stabilize
the momentum equation:

Fvisc
k =−

1
2
ρ0CLatA

Lat
k ||duk||

2 duk

||duk||

=−
1
2
ρ0CLatA

Lat
k ||duk||duk, (44)

where the velocity difference reads duk = uk − ûk (̂uk rep-
resents the averaged velocity of the neighbor particles and is
practically the grid velocity interpolated at the particle posi-
tion). CLat is a coefficient that controls the viscous force. It
would be the equivalent ofCDrag in the case of the drag force.
CLat is a numerical parameter that depends on the grid size.

In this expression, let unk be the velocity at the beginning
of the time step and un+1

k

N
be the velocity after adding the

numerical viscosity (Fig. 2). In the norm term ||duk|| the par-
ticle and grid velocity at the beginning of the time step are
used. This ensures explicit time discretization with respect to
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the norm ||duk|| and û in duk . In contrast, an implicit formu-
lation is used in duk because the new value of the velocity is
used there. The artificial viscosity force now reads:

Fvisc
k =−

1
2
ρ0CLatA

Lat
k

∣∣∣∣∣∣unk − ûnk ∣∣∣∣∣∣(un+1
k

N
− û

n

k

)
. (45)

Updating the velocity then gives

un+1
k

N
=
unk +Cvisû

n

k

1+Cvis
, (46)

with

Cvis =
1
2
ρ0CLatA

Lat
k

∣∣∣∣∣∣unk − ûnk ∣∣∣∣∣∣ 1tmk . (47)

This approach to stabilize the momentum equation (Eq. 30)
is not optimal for different reasons. Firstly, it introduces a
new coefficient Cvis, which is not a physical quantity and
will require calibration. Secondly, it artificially adds a force
that should be described physically. So it would be more in-
teresting to take the physical force into account in the first
place.

Potential solutions could be taking the physical shear force
into account, using for example the µ(I)-rheology (Gray and
Edwards, 2014; Baker et al., 2016). Another option would be
to replace the artificial viscosity with a purely numerical ar-
tifact aiming to stabilize the equations, such as an SPH ver-
sion of the Lax–Friedrichs scheme as presented in Ata and
Soulaïmani (2005).

4.3 Curvature acceleration term

The last term of the particle momentum equation (Eq. 30),
as well as the effective gravity geff, are the final terms to
be discretized before the time integration. In both of these
terms, the remaining unknown is the curvature acceleration
term uk ·

dv3,k
dt . Using the forward Euler time discretization

for the temporal derivative of the normal vector v3,k gives

dv3,k

dt

∣∣∣∣n ≈ vn+1
3,k − v

n
3,k

1t
. (48)

vn3,k is a known quantity, the normal vector of the bottom
surface at xnk which is interpolated from the grid normal vec-
tor values at the position of the particle k at time tn. vn+1

3,k

is unknown since xn+1
k is not known yet, hence we estimate

xn+1
k based on the position xnk and the velocity at tn:

xn+1
k = xnk +1t u

n+1
k

N
. (49)

This position at tn+1 is projected onto the topography, and
vn+1

3,k can be interpolated from the grid normal vector values.
Note that the curvature acceleration term is needed to com-

pute the bottom pressure (Eq. 24), which is used for the bot-
tom friction computation and for the pressure gradient com-
putation. The curvature acceleration term can lead to a neg-
ative value, which means detachment of the particles from

the bottom surface. In com1DFA, surface detachment is not
allowed, and if pressure becomes negative, it is set back to
zero forcing the material to remain in contact with the topog-
raphy.

4.4 Driving forces

Adding the driving forces is done after adding the artificial
viscosity as described in Fig. 2. The velocity is updated as

follows ( is the velocity after taking the driving force
into account):

= un+1
k

N
+
1t

mk
Fdrive
k = un+1

k

N

+
1t

mk

(
−mk g

eff
k ∇sh+mkgs

−mk

(
un+1
k

N
·

dv3,k

dt

∣∣∣∣n)vn3,k) , (50)

where the flow thickness gradient term is computed using the
SPH formulation in Eq. (32).

4.5 Friction forces

The friction force related to the bottom shear force needs to
be taken into account in the momentum equation and the ve-
locity needs to be updated accordingly. Friction force acts
against motion, hence it only affects the magnitude of the
velocity and cannot be a driving force (Mangeney-Castelnau
et al., 2003). Moreover, the friction force magnitude depends
on the particle state, i.e., whether it is flowing or at rest. If

the velocity of the particle k is after adding the driving
forces, adding the friction force leads, depending on the sign

of
mk

∣∣∣∣∣
∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣

1t
−
∣∣∣∣Ffric

k

∣∣∣∣
max, to

–
∣∣∣∣Ffric

∣∣∣∣= ∣∣∣∣Ffric
k

∣∣∣∣
max and un+1

k =1− 1t
mk

∣∣∣∣Ffric
k

∣∣∣∣
max∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

, if
mk

∣∣∣∣∣
∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣

1t
>
∣∣∣∣Ffric

k

∣∣∣∣
max

–
∣∣∣∣Ffric

k

∣∣∣∣≤ ∣∣∣∣Ffric
k

∣∣∣∣
max, and the particle stops mov-

ing (un+1
k = 0) before the end of the time step if

mk

∣∣∣∣∣
∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣

1t
≤
∣∣∣∣Ffric

k

∣∣∣∣
max.

This method prevents the friction force from becoming a
driving force and nonphysically changing the direction of the
velocity. This would lead to oscillations of the particles in-
stead of stopping. Adding the friction force following this
approach (Mangeney-Castelnau et al., 2003) allows the par-
ticles to start and stop flowing properly.
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4.6 Reprojection

The last term in Eq. (30) (accounting for the curvature ef-
fects) adds a non-tangential component allowing the new ve-
locity to lie in a different plane than the one from the previous
time step. This enables the particles to follow the topography.
Because the curvature term was only based on an estimation
(see Sect. 4.3), the new particle position is not necessarily
on the topography, and the new velocity does not necessar-
ily lie in the tangent plane at this new position. Furthermore,
in cases with a strong convex curvature and high velocities,
the particles can theoretically be in a free-fall state (detach-
ment), as mentioned in Sect. 2.5.1. Thus, com1DFA does not
allow detachment of the particles, and the particles are forced
to stay on the topography. This is a limitation of the model
or method, which will lead to nonphysical behavior in spe-
cial cases (material flowing over a cliff). In both of the pre-
viously mentioned cases, the particle positions are projected
back onto the topography and the velocity direction is cor-
rected to be tangential to the topography. The position re-
projection is done using an iterative method that attempts to
conserve the distance traveled by each particle between tn

and tn+1. The velocity reprojection changes the direction of
the velocity, but its magnitude is conserved.

5 Model verification

In this section, the numerical implementation of the mathe-
matical model is tested. We present different tests where, for
specific conditions, a (semi-)analytical solution exists. The
tests described here are implemented in the ana1Tests mod-
ule from AvaFrame. In the first set of tests, the flow vari-
able tests, we compare the temporal and spatial evolution of
the flow thickness (h) and the thickness-integrated momen-
tum flux (hu) of the com1DFA simulation results to a (semi-
)analytical solution. With these tests, we aim to verify the nu-
merical discretization and implementation of the solver and
check the validity of the convergence criterion described in
Sect. 3.6.

In the second test, the energy line test, we investigate
global variables, such as mass-averaged position and kinetic
energy, that are derived from the DFA simulations. This test
is based on energy conservation considerations for simpli-
fied topographies. This allows us to verify the accuracy of
the DFA simulations in terms of mass-averaged runout. All
the tests presented and used in what follows are implemented
and available in AvaFrame (both data and helper functions).
All results and figures can be reproduced using the code
available on the AvaFrame GitHub repository (https://github.
com/avaframe/AvaFrame/tree/theoryPaperCode, last access:
5 October 2023).

5.1 Flow variable tests

Before performing the abovementioned similarity solution
and dam break tests, it is necessary to describe the quanti-
ties that are compared and the measures that are used to as-
sess the convergence, accuracy or precision of the numerical
model. Both the flow thickness (h) and thickness-integrated
flow momentum flux (hu) are used to compare the analyti-
cal solution to the simulation results. Two different deviation
measures are used to quantify the deviation between a refer-
ence solution and the simulation result on a domain (one- or
two-dimensional). The first is based on the Lmax norm (uni-
form norm), and the second is based on the Euclidean norm
(L2 norm). Let fnum be the numerical solution and fref the
reference solution defined on a domain �. The local devia-
tion is defined by E(x)= fnum(x)− fref(x), and the global
deviation is defined by the following terms.

– The uniform norm (Lmax) measures the largest absolute
value of the deviation E on �:

Lmax(E)= sup
x∈�

(|E(x)|).

This norm is applied to one- or two-dimensional results.
It can also be normalized by dividing the uniform norm
of the deviation by the uniform norm of the reference.
In this case we refer to the relative deviation:

RLmax =
Lmax(E)
Lmax(fref)

.

– The Euclidean norm (L2 norm) gives an overall measure
of the deviations

L2(E)=
∫
x∈�

||E(x)||2 dx.

It is useful to normalize the norm of the deviation either
by dividing with the norm of the reference solution:

RL2 =
L2(E)
L2(fref)

or by the measure of the interval (L2(1)=
∫
x∈�

dx):

RSL2 =

√
L2(E)
L2(1)

.

The first normalization approach will give a relative de-
viation, whereas the second will give an average devia-
tion of f on �.

5.1.1 Similarity solution test

The similarity solution is one of the few cases where a
semi-analytic solution is available for solving the thickness-
integrated equations. This makes it very useful for validat-
ing the implementation of dense-flow avalanche numerical
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Figure 2. Dense-flow avalanche solver (com1DFA) workflow.

methods (here com1DFA). In this problem, we consider an
avalanche governed by a dry-friction law (Coulomb friction)
flowing down an inclined plane. The release mass is initially
distributed in an ellipse (diameters of length Lx and Ly) with
a parabolic thickness shape (H in the middle). This mass
is released at t = 0 and flows down the inclined plane, as
illustrated in Fig. 3a for the initial time step and at some
later time t . This semi-analytic solution can be derived un-
der the following assumptions. First, the ratio ε =H/L of
flow thickness over spatial extent in flow and cross-flow di-
rection should be smaller than 1. Second, the slope angle
must be larger than the bed friction angle. Third, the solu-
tion is assumed to retain the symmetry properties of the ini-
tial configuration relative to the moving center of mass. The
full description of the conditions and assumptions, as well as
the derivation of the solution, is presented in detail by Hutter
et al. (1993). The term semi-analytic is used here because the
method enables us to transform the PDE (partial differential
equation) of the problem into an ODE (ordinary differential
equation) using a similarity analysis method. The ODE can
be solved with much less effort, e.g., using an explicit fourth-
order Runge–Kutta scheme.

This test is implemented in the ana1Tests module of
AvaFrame, which offers functions to compute the semi-

analytic solution, compare it to the output from the DFA
computational module, and visualize the results.

5.1.2 Dam break test

The dam break test is the second test for which an analyti-
cal solution of the thickness-integrated equations is known.
In this test, we also consider an avalanche governed by a
dry-friction law (Coulomb material), released from rest on
an inclined plane (see Fig. 3b). In the case of a thickness-
integrated model as derived by Savage and Hutter (e.g., in
Hutter et al., 1993), an analytical solution exists under the
assumption of shallowness of the flow. Furthermore, the fric-
tion angle has to be smaller than the slope of the inclined
plane. This test, in contrast to the similarity solution test,
focuses on the very early stages of the flow and not on the
evolution over time and lateral spreading. The derivation of
the dam break solution is described in Faccanoni and Man-
geney (2013) and corresponds to a Riemann problem. It has
the following initial conditions:

(h,u)(x, t = 0)=
{
(h0,0), if x ≤ 0
(0 ,0), if x > 0. (51)

The dam break assumes an invariance in the y direction,
which is achieved using a wide enough domain in the y di-
rection so that lateral effects can be neglected.
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Figure 3. Flow variable test setups. (a) Similarity solution showing a 3D view of the material on the inclined plane at t = 0 (center located
in x1 = x0) and at a general time t (center located in x1 = xc). The footprint of the material on the inclined plane at the initial time is an
ellipse of principal axes Lx and Ly , the thickness follows a parabolic distribution, with the maximum thickness of H in the middle of the
ellipse and 0 on the edge. (b) Dam break showing a 2D view of the material on the inclined plane (profile in flow direction) at t = 0 and for
different t > 0.

5.1.3 Results

DFA simulations are computed using the com1DFA mod-
ule in AvaFrame varying the different numerical parameters
listed in Table 1. The range of α values (called “aPPK” in
the code and figures) is determined by the convergence cri-
terion (Eq. 43). The SPH kernel radius rkernel (called “sphK-
ernelRadius” in the code and figures) is varied around 5 m,
which is the raster cell size value currently used for opera-
tional hazard mapping in Austria. The tested values of nppk0
(called “nPPK0” in the code and figures) and Ctime (called
“cMax” in the code and figures) are listed in Table 1. A large
nppk0 and small Ctime lead to very long computation time,
which makes these values unrealistic and impractical to use.
Instructions on how to reproduce the results presented below
are provided in the Supplement.

For both of the tests, the numerical schemes to apply fric-
tion and the method used to compute the SPH gradient are
crucial for obtaining a proper starting and stopping behav-
ior of the flow. Some intermediate developments showed that
adding the friction with methods differing from as the one
presented here and computing the SPH gradient without tak-
ing the slope inclination into account leads to unsatisfactory
results. This is why the friction force is added as described in
Sect. 4.5 and the SPH force is computed as described in Ap-
pendix B2. In what follows, artificial viscosity is added with
CLat = 10) in the similarity solution test, which stabilizes the
solution without degrading the match with the semi-analytic
solution. For the dam break test, adding artificial viscosity
has a negative impact on the solution and the following re-
sults were produced with no artificial viscosity (CLat = 0).

Figure 4 shows an example where a DFA simulation is
compared to the semi-analytical solution of the similarity

solution test case. The chosen parameters for this example
are rkernel = 3 m, α =−3, n0

ppk = 15 and Ctime = 0.02 s m−1

and correspond to the most accurate of the simulations pre-
sented here. The reader can find the results of the similarity
solution test with the standard parameters in the Supplement.
Figure 4a and b show the flow thickness and momentum pro-
files in and across flow direction after 20 s of flow. Figure 4d
shows the evolution of the RL2 and RLmax deviation with
time. The deviation at the initial time step (t = 0 s) is rather
high (this is related to the random process to initialize the
particles in the simulation) and then quickly decreases after
a few seconds of simulation due to the reorganization of the
particles. The deviation then increases again as the numer-
ical inaccuracies accumulate. When varying the numerical
parameters in the DFA simulations (according to Eq. 42), the
computed L2 deviations between DFA results and the semi-
analytical solution decrease (see Fig. 5). In Fig. 6, the com-
parison between a DFA simulation and the analytical solution
of the dam break test is shown for flow thickness, flow veloc-
ity and momentum at t = 15 s (upper panel). Figure 6d shows
a top view of the flow colored by flow thickness. This panel
also shows the domain on which the deviation between ana-
lytical and numerical solution is computed. Figure 6e shows
the relative deviations RL2 and RLmax on flow thickness
and momentum. The same behavior as for the similarity so-
lution test is observed regarding the time evolution of the de-
viation. Computation was done with rkernel = 3 m, α =−3,
n0

ppk = 15 and Ctime = 0.02 s m−1. The reader can find the
results of the similarity solution test with the standard pa-
rameters in the Supplement.

Results from both the similarity solution tests and the
dam break test validate the convergence criterion from Ben
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Table 1. Parameter variation used to study convergence of the DFA simulation solution for both similarity solution and dam break test ( the
parameters used for the figures presented in this article are given in bold).

Test sphKernelRadius nPPK0 aPPK cMax

Similarity solution {10,8,6,5,4,3} {15,20,30,40} {0,−0.5,−1,−1.5,−2,−2.5,−3} {0.04,0.02,0.01,0.005}
Dam break {10,8,6,5,4,3} {15,20,30} {0,−0.5,−1,−1.5,−2,−2.5,−3} {0.04,0.02,0.01,0.005}

Figure 4. Comparison of the analytical (dashed lines) and numerical (solid lines) solution for the similarity solution test case at t = 20.04 s.
Panel (a) shows the profile in the flow direction (along the x axis), whereas (b) shows the profiles across flow direction (along the y axis).
Panel (c) provides a top view of the flow thickness (flow thickness contour lines). Panel (d) shows the time evolution of the deviation
(both RLmax and RL2) on flow thickness h and momentum ||hu|| between the analytic and numerical solutions (rkernel = 3 m, α =−3,
n0

ppk = 15 and Ctime = 0.02 s m−1). Large relative error values are mainly connected to differences in the generally small upstream values
in flow direction. The vertical dashed line in (d) marks the time at which data in panels (a), (b), and (c) are shown. Results of the similarity
solution test with the standard parameters are shown in the Supplement.

Moussa and Vila (2000). Indeed, with an α exponent smaller
than −1, decreasing the SPH kernel radius and varying the
other parameters according to Eq. (42) leads to a decrease
in the deviation, whereas for larger exponents, α =−0.5 for
both tests or α = 0 for the dam break test (Fig. 7), the devi-
ation decreases only slightly or even increases. Moreover, it
is observed (not shown in the figure) that decreasing the time
step (decreasing the Cmax parameter) with all other parame-
ters fixed leads to a decreasing deviation. Finally, for these
two specific cases, DFA simulation results converge towards
the semi-analytical or analytical solution.

5.2 Energy and runout testing

The energy line test compares the results of the com1DFA
simulation to a geometrical solution derived from the total
energy of the system. Solely considering Coulomb friction,
this solution is motivated by the first principle of energy con-
servation along a simplified topography. In this case, the fric-
tion force only depends on the slope angle. The analytical
runout is the intersection of the path profile with the geo-
metrical line (α line) defined by the friction angle α. From
the geometrical line it is also possible to extract information
about the mass-averaged flow velocity at any time or posi-
tion along the path profile (see example in Fig. 9). For the
detailed theory of this test, please refer to Appendix A.
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Figure 5. RL2 deviation of flow momentum in the similarity solution test case for different α exponents and SPH kernel radii rppk. Other
parameters are kept fixed (reference kernel radius r0

ppk = 5 m, time constant Ctime, and reference number of particles per kernel radius n0
ppk).

Due to the reference kernel radius all points for rppk = 5 m are identical. The colored lines are added to give an idea of the convergence speed
trend associated with each α scenario. The decrease in the deviation is stronger for lower α exponents, and no or little decrease is observed
for α = 0 or α =−0.5.

Figure 6. Comparison of the analytical and numerical solution for the dam break test case at t = 15.0 s. Thee top panels show flow thickness
(a), velocity (b), and momentum profiles (c) in flow direction. Panel (d) provides a top view of the flow thickness. The gray-shaded rectangle
represents the domain on which the deviations are computed. Panel (e) shows the time evolution of the deviation (both RLmax and RL2)
on flow thickness h and momentum ||hu|| between the analytic and numerical solutions (rkernel = 3 m, α =−3, n0

ppk = 15 and Ctime =

0.02 s m−1). The vertical dashed line in (e) marks the time at which data in the other panels are shown.
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Figure 7. RL2 deviation in flow momentum in the dam break case for different α exponents and SPH kernel radii rppk. Other parameters
are kept fixed (reference kernel radius r0

ppk = 5 m, time constant Ctime, and reference number of particles per kernel radius n0
ppk). Due to the

reference kernel radius, all points for rppk = 5 m are identical. The colored lines are added to give an idea of the convergence speed trend
associated with each α scenario. One can observe that the decrease in deviation is stronger for lower α exponents and that no or little decrease
is observed for α = 0 or α =−0.5.

Figure 8. Example of trajectory where the steepest descent path
hypothesis fails. The mass point is traveling from x(t) to x(t + dt).
The slope angle θ and travel angle γ are also illustrated. Here (ez ·
n)dl = cosθ ds

cosγ 6= ds.

In this test, we use the α line to evaluate the DFA simula-
tion. Computing the mass-averaged path profile for the par-
ticles (each particle corresponding to a material point) in the
simulation and comparing it to the α line allows us to com-
pute four error indicators. Fig. A1 illustrates the concept.

The first three are related to the analytical runout point
defined by the intersection between the α line and the mass-
averaged path profile. The last one is related to the velocity.

– The horizontal distance between the analytical runout
point and the end of the path profile defines the εs =

sγ − sα error in meters.

– The vertical distance between the analytical runout
point and the end of the path profile defines the εz =
zγ − zα error in meters.

– The runout angle difference between the α line angle
and the DFA simulation runout line defines the εα = γ−
α runout angle error.

– The root-mean-square error (RMSE) between the α line
and the DFA simulation energy points defines an error

in the velocity altitude v2

2g .

5.2.1 Limitations and applicability

It is essential to state where the assumptions of this test hold.
One of the important hypotheses for the energy solution is
that the inclination of the material point trajectory is equal to
the slope angle of the surface, i.e., where dl = ds

cosθ . If this
hypothesis fails, e.g., due to a particle trajectory deviating
from the steepest slope direction, as illustrated in Fig. 8, it is
impossible to derive the analytical energy solution. In the 3D
case, the distance traveled by the particles reads ||dl|| = ds

cosγ ,
where γ is the angle between the dl vector and the horizontal
plane, which can differ from the slope angle θ (γ ≤ θ ). Here
the energy solution is not the solution to the problem and
hence cannot be used as reference. In this case, it would not
be possible to distinguish what deviation is caused by the
numerical error or because of the hypothesis being violated.

The α line can be used to study the effect of terms such
as curvature acceleration, artificial viscosity, or pressure gra-
dients. For example, the curvature acceleration modifies the
friction term, depending on topography curvature and parti-
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Figure 9. Energy line test for an inclined plane smoothly transitioning to a horizontal plane with particles following Coulomb friction and
not subject to pressure forces. All conditions for the energy line test to be applicable are satisfied, and the geometrical solution can be used as
reference to compute the numerical error (here less than 10−2 m and 10−4◦). Panel (a) shows the center of mass profile, which is indicated
in the top view of peak flow velocity in panel (b). Panel (c) shows a zoomed-in view of the lower end of the profile.

cle velocity, leading to a mismatch between the energy solu-
tion and the DFA simulation. Figure 10 shows this curvature
effect. The topography considered here is an inclined plane
that smoothly transitions into a horizontal plane, meaning
that curvature only occurs in the transition part. The energy
line test for this case shows that there is added dissipation
only in the transition part, seen by squares not following the
α line. Once all particles have reached the horizontal plane,
the squares follow the α line again (with a shift in s coordi-
nate or, perhaps more intuitively, in the z coordinate).

Finally, the effects of the pressure force can be studied.
For example, with this test it can be shown that adding the
pressure forces does not influence the simulation runout (not
shown here). This can be explained by the fact that pressure
forces do not dissipate any energy and hence should not af-
fect the energy balance. However, pressure forces lead to par-
ticle trajectories that do not necessarily follow the steepest

direction, which means that the fundamental hypothesis il-
lustrated in Fig. 8 is not satisfied.

5.2.2 Grid orientation effect

The energy line test previously described is also used to test
whether the numerical method implemented in com1DFA
performs independently of the grid orientation. Indeed we
saw in Sect. 3.1 that com1DFA uses a regular grid to up-
date some variables such as flow thickness or flow velocity.
In order to quantify the effect of the grid orientation on the
simulation results, we perform tests where grid orientation is
changed while keeping the grid cell size and topography the
same. In the Supplement, we show two examples where we
consider a parabolic slope, i.e., the topography varies only
in one direction, and a bowl shape, i.e., the topography with
a rotational symmetry about its center. The main axis of the
flow is not always aligned with the grid, and we provide three
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Figure 10. Energy line test for an inclined plane smoothly transitioning to a horizontal plane with particles following Coulomb friction, not
subject to pressure forces but taking curvature acceleration into account. The geometrical solution and the numerical solution match on the
inclined plane and horizontal parts and differ on the curved part. This shows the effect of curvature on the runout (decrease of runout because
of the added friction due to curvature). Panel (a) shows the center of mass profile, which is indicated in the top view of peak flow velocity in
panel (b). Panel (c) shows a zoom-in to the lower end of the profile.

cases. First, a 0◦ case in which the slope is invariant in the y
direction (main flow direction aligned with the grid). Second,
a 225◦ case, with the slope being invariant in a direction an-
gled 225◦ from the y direction (main flow direction aligned
with the grid diagonal). Third, a 120◦ case meaning that the
slope is invariant in a direction angled 120◦ from the y di-
rection (main flow direction is neither aligned with the grid
nor with the grid diagonal). For each of these test cases, two
simulations are performed, i.e., with or without pressure gra-
dients. The results of these tests and the instructions on how
to reproduce them are provided in the Supplement. The re-
sults are very satisfying. The runout distances differ by only
a few centimeters between the 0, 120, and 225◦ cases. This is
of the same order of magnitude as the numerical errors com-
puted with the energy line tests. This proves the rather low
dependence of the simulation results on the grid orientation.

6 Conclusions

The presented com1DFA module within the open-source sim-
ulation framework AvaFrame is aimed at and developed for
the simulation of avalanches with flow or a mixed form of
movement. These may mostly be classified as A2B7C1D-
E7F7G1H7J1 according to the morphological classification
code (International Association of Hydrological Sciences.
International Commission on Snow and Ice, 1981). Effects
of snow entrainment or additional sources of resistance can
be included. The corresponding theoretical background is not
described in this publication but is available in the AvaFrame
online documentation (Oesterle et al., 2022).

The default setup of the module targets very large to
extremely large avalanches of catastrophic intensity, cor-
responding to avalanches of size 4–5 of the European
Avalanche Warning Service (EAWS) size classification or a
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150-year return period in the case of Austrian hazard map-
ping (Johannesson et al., 2009). Additional calibrated pa-
rameter sets for small- and medium-sized avalanches and
wet-snow avalanches (albeit experimental) are also provided
within the framework. However, these are exclusively op-
timized on a subset of Austrian test cases. Other types of
avalanches, such as powder snow avalanches or similar, are
unsuitable applications for the com1DFA module.

Com1DFA is based on the slope-normal thickness inte-
gration of the mass and momentum conservation equations,
which are solved with a mixed particle–grid method. Parti-
cles are used to track mass and to compute the pressure forces
following a smooth particle hydrodynamics (SPH) approach
adapted to the special case of steep terrain. An underlying
Eulerian grid is used to compute the flow thickness from the
distribution of the particles. Velocity is also interpolated from
the particles to the grid in order to compute the stabilizing ar-
tificial viscosity term. Physical starting and stopping behav-
ior is ensured by considering differences in the friction force,
whether the material is flowing or at rest. A time–space cri-
terion ensuring the convergence of the implemented numer-
ical method is provided. Of course limitations and assump-
tions exist, one of the main ones being the assumption of a
moderately curved surface. For currently used resolutions of
topographies (about 5–10 m at the time of writing) terrain
features remain relatively smooth, but this already requires
forcing of particles to stay on the topography. For potential
higher-resolution applications in the future, this assumption
needs to be re-evaluated.

To verify the numerical implementation of com1DFA, we
apply a series of tests separated into two categories. Flow
variable tests, i.e., similarity solution and dam break tests,
are used for checking the proper spatiotemporal evolution of
flow thickness and velocity. Runout testing checks the accu-
racy of global variables such as center-of-mass runout and ki-
netic energy. The tests show the validity of the chosen time–
space criterion, as well as the accuracy and precision of the
com1DFA numerical solution.

Note that the computational efficiency of the com1DFA
module is not a topic in this article since simulations with the
standard setup compute within seconds to minutes on current
computer hardware. To achieve better computational effi-
ciency, we implemented parallel execution of multiple serial
simulations. However, topics like computational efficiency,
further in-depth testing, and application to real topographies
will be treated in future publications.

Current and future potential improvements to com1DFA
include topics such as the improvement of entrainment and
detrainment (e.g., concerning forests), a more numerically
sound representation of dams and walls, or a probabilistic ap-
proach to uncertainties. These topics will need both concep-
tual developments and numerical improvements, but some
are already being tackled. Possible applications to other types
of gravitational mass flows might also be an exciting devel-
opment, but our current focus lies on snow avalanches. How-

ever, since AvaFrame is an open-source framework, we invite
everyone to use the presented modules and welcome feed-
back and contributions, regardless of the topic.

Appendix A: Theory: energy line test

The conservation of energy for a material point (block
model) flowing downslope from point O to point B reads as
follows (assuming only Coulomb friction):

Etot
B −E

tot
O = E

kin
B +E

pot
B − (E

kin
O +E

pot
O )=

B∫
O

δEfric

=
1
2
mv2

B+mgzB−
1
2
mv2

O−mgzO

=

B∫
O

Ffric · dl =−

B∫
O

µmg(ez ·n)dl, (A1)

where δEfric is the energy dissipation due to friction, n the
normal vector to the slope surface, and dl is the elementary
vector on the path profile traveled by the material point be-
tween O and B. The vertical component of the normal vector
reads ez ·n= cosθ , where θ is the slope angle. Here,m repre-
sents the mass of the material point, g the gravity, µ= tanα
the friction coefficient and friction angle, z the elevation, and
v the velocity of the material point. Note that in the 2D case,
dl = ds

cosθ is only true if the inclination of the material point
trajectory is equal to the slope inclination, i.e., the material
point is flowing in the steepest slope direction. Now consid-
ering O as the origin position (sO = 0 and vO = 0) leads to
the following simplification:

(A2)

Speaking in terms of altitude, the energy conservation equa-
tion can be rewritten (the subscript B is dropped):

zO = z+
v2

2g
+ tanα. (A3)

Considering a system of material points flowing down a
slope with Coulomb friction, we can sum the previous equa-
tion (Eq. A3) of each material point after weighting it by its
mass. This leads to the mass-averaged energy conservation
equation:

zO = z+
v2

2g
+ s tanα, (A4)
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where the mass-averaged value a of a quantity a is (k indi-
cates the points indices) as follows:

a =

∑
kmkak∑
kmk

. (A5)

In this way, we can define the center-of-mass path (x,y)
and the center-of-mass path profile (s,z). The mass-averaged
quantities also follow the same energy conservation law
when expressed in terms of altitude. This result is illustrated
in Fig. A1b and applies to both the material point equa-
tion (Eq. A3) and the mass-averaged energy conservation
equation (Eq. A4). The light blue line in Fig. A1b is ob-
tained by evaluating the mass-averaged energy conservation
(Eq. A4) at the final time (tend) and position ((send, zend)),
where v2

= 0. This leads to the α line (also called energy
line) equation:

z= zO− s tanα. (A6)

Figure A1. Panel (a) shows a top-down view of the avalanche simulation and extracted path. Panel (b) shows a simulation path profile (dark
blue curve and dots) with the runout line (dark blue line and velocity altitude squares), α line, and runout error indicators (εs and εz)
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Appendix B: SPH pressure gradients

The SPH method used in shallow-water equations is in most
applications applied on a horizontal surface. The theoreti-
cal development on a horizontal plane is described in Ap-
pendix B1. The dense-flow avalanche model described in
this paper should be expressed on the bottom surface, which
is not necessarily horizontal. The SPH gradient computation
development is detailed in Appendix B2.

B1 Standard method

Let us start with the computation of the gradient of a scalar
function f : R2

→ R on a horizontal plane. Let Pk = xk =
(xk,1,xk,2) andQl = xl = (xl,1,xl,2) be two points in R2 de-
fined by their coordinates in the Cartesian coordinate system
(Pk,e1,e2). rkl = xk −xl is the vector from Ql to Pkl. Now
consider the kernel function W :

W : R2
×R2

×R→ R, (Pk,Ql, r0) 7−→W(Pk,Ql, r0). (B1)

r0 ∈ R is the smoothing kernel length (or radius). In the case
of the spiky kernel, W reads as follows (2D case):

Wkl =W(xk,xl, r0)=W(xk − xl, r0)=W(rkl, r0) (B2)

=
10
πr5

0

{
(r0− ||rkl ||)

3, 0≤ ||rkl || ≤ r0
0, r0 < ||rkl || .

||rkl || = ||xk − xl || is the distance between particles k and
l, and r0 is the smoothing length. Using the chain rule to
express the gradient ofW in the Cartesian coordinate system
(x1,x2) leads to

∇Wkl =
∂W

∂r
·∇r, r = ||r||

=

√
(xk,1− xl,1)2+ (xk,2− xl,2)2, (B3)

with

∂W

∂r
=−3

10
πr5

0

{
(r0− ||rkl ||)

2, 0≤ ||rkl || ≤ r0
0, r0 < ||rkl || ,

(B4)

and

∂r

∂xk,i
=

(xk,i − xl,i)√
(xk,1− xl,1)2+ (xk,2− xl,2)2

, i = {1,2}, (B5)

which leads to the following expression for the gradient:

∇Wkl =−3
10
πr5

0

{
(r0− ||rkl ||)

2 rkl
rkl
, 0≤ ||rkl || ≤ r0

0, r0 < ||rkl || .
(B6)

The gradient of f is then simply

∇fk =−
∑
l

flAl∇Wkl . (B7)

B2 The 2.5D SPH method

We now want to express a function f and its gradient on
a curved surface and express this gradient in the three-
dimensional Cartesian coordinate system (Pk,e1,e2,e3). Let
us consider a smooth surface S and two points Pk : xk =
(xk,1,xk,2,xk,3) and Ql : xl = (xl,1,xl,2,xl,3) on S. We can
define T Pk the tangent plane to S in Pk . If uk is the (non-
zero) velocity of the particle at Pk , it is possible to define the
local orthonormal coordinate system (Pk,V 1,V 2,V 3 = n)

with time-dependent V 1 =
uk(t)
||uk(t)||

and n the normal to S at
Pk . Locally, S can be assimilated to T Pk and Ql to its pro-
jection Q′l on T Pk (see Fig. B1). Similarly, we assimilate a
function f : S ⊂ R3

→ R to a function f ′ : T Pk ⊂ R3
→ R

satisfying f (Q)= f ′(Q′).

Figure B1. Tangent plane and local coordinate system used to apply
the SPH method

The vector r ′
kl = xk − x

′
l from Q′l to Pk lies in T Pk and

can be expressed in the local basis of T Pk:

r ′
kl = xk − x

′
l = vkl,1V 1+ vkl,2V 2. (B8)

It is important to properly define f and its gradient as fol-
lows:

f ′ : T Pk ⊂ R3
→ R

(x1,x2,x3) 7−→ f ′(x1,x2,x3)

= f ′(x1(v1,v2),x2(v1,v2))

= g′(v1,v2).

(B9)

Indeed, since (x1,x2,x3) lies in T Pk , x3 is not independent
of (x1,x2)

g′ : T Pk ⊂ R2
→ R

(v1,v2) 7−→ g′(v1,v2)

= g′(v1(x1,x2),v2(x1,x2))

= f ′(x1,x2,x3).

(B10)
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The target is the gradient of g′ in terms of the T Pk variables
(v1,v2). Let us call this gradient ∇T P . It is then possible to
apply the Appendix B1 method to compute this gradient:

∇T PWkl =
∂W

∂r
·∇T Pr, r = ||r|| =

√
v2
kl,1+ v

2
kl,2. (B11)

This leads to

∇T PWkl =

− 3
10
πr5

0

(r0−
∣∣∣∣r ′

kl

∣∣∣∣)2
r ′kl

{
vkl,1V 1+ vkl,2V 2, 0≤

∣∣∣∣r ′
kl

∣∣∣∣≤ r0
0, r0 <

∣∣∣∣r ′
kl

∣∣∣∣ ,
(B12)

∇T Pg
′

k =−

∑
l

g′lAl∇T PWkl . (B13)

This gradient can now be expressed in the Cartesian coordi-
nate system. It is clear that the change in coordinate system
was not needed:

∇T PWkl

=−3
10
πr5

0

(r0−
∣∣∣∣r ′

kl

∣∣∣∣)2
r ′kl


rkl,1e1+ rkl,2e2
+rkl,3e3, 0≤

∣∣∣∣r ′
kl

∣∣∣∣≤ r0
0, r0 <

∣∣∣∣r ′
kl

∣∣∣∣ .
(B14)

Computing the gradient in the local coordinate system is,
however, advantageous if the components (in flow direction
or in cross flow direction) need to be treated differently.
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