Articles | Volume 16, issue 17
https://doi.org/10.5194/gmd-16-5035-2023
https://doi.org/10.5194/gmd-16-5035-2023
Model description paper
 | 
01 Sep 2023
Model description paper |  | 01 Sep 2023

NEOPRENE v1.0.1: a Python library for generating spatial rainfall based on the Neyman–Scott process

Javier Diez-Sierra, Salvador Navas, and Manuel del Jesus

Related authors

Coastal flooding risk associated to tropical cyclones in a changing climate. Application to Port of Spain (Trinidad and Tobago)
Cristina Izaguirre, Iñigo J. Losada, Antonio Espejo, Javier Diez-Sierra, and Pedro Díaz-Simal
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2017-150,https://doi.org/10.5194/nhess-2017-150, 2017
Manuscript not accepted for further review
Short summary

Related subject area

Hydrology
The global water resources and use model WaterGAP v2.2e: description and evaluation of modifications and new features
Hannes Müller Schmied, Tim Trautmann, Sebastian Ackermann, Denise Cáceres, Martina Flörke, Helena Gerdener, Ellen Kynast, Thedini Asali Peiris, Leonie Schiebener, Maike Schumacher, and Petra Döll
Geosci. Model Dev., 17, 8817–8852, https://doi.org/10.5194/gmd-17-8817-2024,https://doi.org/10.5194/gmd-17-8817-2024, 2024
Short summary
Generalised drought index: a novel multi-scale daily approach for drought assessment
João António Martins Careto, Rita Margarida Cardoso, Ana Russo, Daniela Catarina André Lima, and Pedro Miguel Matos Soares
Geosci. Model Dev., 17, 8115–8139, https://doi.org/10.5194/gmd-17-8115-2024,https://doi.org/10.5194/gmd-17-8115-2024, 2024
Short summary
Development and performance of a high-resolution surface wave and storm surge forecast model: application to a large lake
Laura L. Swatridge, Ryan P. Mulligan, Leon Boegman, and Shiliang Shan
Geosci. Model Dev., 17, 7751–7766, https://doi.org/10.5194/gmd-17-7751-2024,https://doi.org/10.5194/gmd-17-7751-2024, 2024
Short summary
Deep dive into hydrologic simulations at global scale: harnessing the power of deep learning and physics-informed differentiable models (δHBV-globe1.0-hydroDL)
Dapeng Feng, Hylke Beck, Jens de Bruijn, Reetik Kumar Sahu, Yusuke Satoh, Yoshihide Wada, Jiangtao Liu, Ming Pan, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 17, 7181–7198, https://doi.org/10.5194/gmd-17-7181-2024,https://doi.org/10.5194/gmd-17-7181-2024, 2024
Short summary
PyEt v1.3.1: a Python package for the estimation of potential evapotranspiration
Matevž Vremec, Raoul A. Collenteur, and Steffen Birk
Geosci. Model Dev., 17, 7083–7103, https://doi.org/10.5194/gmd-17-7083-2024,https://doi.org/10.5194/gmd-17-7083-2024, 2024
Short summary

Cited articles

Alodah, A. and Seidou, O.: The Adequacy of Stochastically Generated Climate Time Series for Water Resources Systems Risk and Performance Assessment, Stoch. Env. Res. Risk A., 33, 253–269, https://doi.org/10.1007/s00477-018-1613-2, 2019. a
Burton, A., Kilsby, C. G., Fowler, H. J., Cowpertwait, P. S. P., and O'Connell, P. E.: RainSim: A Spatial–Temporal Stochastic Rainfall Modelling System, Environ. Modell. Softw., 23, 1356–1369, https://doi.org/10/b8532z, 2008. a
Burton, A., Fowler, H. J., Blenkinsop, S., and Kilsby, C. G.: Downscaling Transient Climate Change Using a Neyman–Scott Rectangular Pulses Stochastic Rainfall Model, J. Hydrol., 381, 18–32, https://doi.org/10.1016/j.jhydrol.2009.10.031, 2010. a
Cowpertwait, P., Ocio, D., Collazos, G., de Cos, O., and Stocker, C.: Regionalised spatiotemporal rainfall and temperature models for flood studies in the Basque Country, Spain, Hydrol. Earth Syst. Sci., 17, 479–494, https://doi.org/10.5194/hess-17-479-2013, 2013. a, b, c, d, e, f, g
Cowpertwait, P. S. P.: Further Developments of the Neyman-scott Clustered Point Process for Modeling Rainfall, Water Resour. Res., 27, 1431–1438, https://doi.org/10.1029/91WR00479, 1991. a, b, c, d
Download
Short summary
NEOPRENE is an open-source, freely available library allowing scientists and practitioners to generate synthetic time series and maps of rainfall. These outputs will help to explore plausible events that were never observed in the past but may occur in the near future and to generate possible future events under climate change conditions. The paper shows how to use the library to downscale daily precipitation and how to use synthetic generation to improve our characterization of extreme events.