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Abstract. Long time series of rainfall at different levels of
aggregation (daily or hourly in most cases) constitute the
basic input for hydrological, hydraulic and climate studies.
However, oftentimes the length, completeness, time resolu-
tion or spatial coverage of the available records falls short of
the minimum requirements to build robust estimations. Here,
we introduce NEOPRENE, a Python library to generate syn-
thetic time series of rainfall. NEOPRENE simulates multi-
site synthetic rainfall that reproduces observed statistics at
different time aggregations. Three case studies exemplify the
use of the library, focusing on extreme rainfall, as well as on
disaggregating daily rainfall observations into hourly rain-
fall records. NEOPRENE is distributed from GitHub with an
open license (GPLv3), free for research and commercial pur-
poses alike. We also provide Jupyter notebooks with the ex-
ample use cases to promote its adoption by researchers and
practitioners involved in vulnerability, impact and adaptation
studies.

1 Introduction

Stochastic rainfall models are used in hydrological, hydraulic
and climate studies because rainfall records at ground sta-
tions are often inadequate for applications in terms of their
length, completeness, time resolution or spatial coverage.
These models are able to generate arbitrarily long time series
of synthetic rainfall that reproduce different observed rain-
fall statistics (means, variances and covariances, frequencies,
extremes, spatial and temporal correlation, etc.) at differ-
ent levels of aggregation (Cowpertwait, 2006; Cowpertwait

et al., 2013). Stochastic rainfall models and weather genera-
tors have also been used in water resource assessments (Alo-
dah and Seidou, 2019; Kiem et al., 2021; Fowler et al., 2000),
landslide analysis (Thomas et al., 2018) and urban flooding
assessment (Park et al., 2021).

A number of stochastic rainfall models have been devel-
oped in the last decades based on different statistical tech-
niques such as Poisson–gamma models, Markov models,
Monte Carlo models and Bayesian networks models (Legasa
and Gutiérrez, 2020; Kleiber et al., 2012; Wilks and Wilby,
1999). Poisson clustered models are among the most com-
monly used due to their flexibility and the high degree of ac-
curacy they provide (Rodriguez-Iturbe and Eagleson, 1987;
Cowpertwait et al., 2013; Burton et al., 2010; Fowler et al.,
2005; Leonard et al., 2008). These models are based on a
Poisson process of storm origins which have a random num-
ber of rectangular pulses (“rain cells”) associated with them,
with heights corresponding to rain intensity and widths to
cell duration. Different cells and storms may overlap so that
the total rain intensity at any time is the sum of the intensities
of all cells active at that time (Cowpertwait et al., 2002).

Considerable research on the modeling of rainfall has
been undertaken using two different Poisson clustered ap-
proaches: Neyman–Scott and Bartlett–Lewis. Several stud-
ies have demonstrated that both approaches, which differ in
the displacement of cell origins relative to storm origins,
are able to reproduce observed rainfall statistics, including
second-order properties (see Islam et al., 1990; Cowpert-
wait, 1991, 1995; Cowpertwait et al., 1996b, a; Cowpertwait,
1998; Kaczmarska et al., 2014; Onof and Wang, 2020; Park
et al., 2019; Kim and Onof, 2020).
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Poisson clustered models are useful for many purposes,
specially in engineering practice (e.g., return period estima-
tion for flood analysis), have been used for applications in hy-
drology (Puente et al., 1993) and have been tested to evaluate
their suitability to represent extreme events (Verhoest et al.,
2010). However, their main use so far has been related to
analyzing rainfall itself (Onof and Wheater, 1994; Cowpert-
wait and O’Connell, 1997; Diez-Sierra and del Jesus, 2019)
probably due to the difficulty of properly implementing these
models ex novo.

Indeed, there is a lack of readily available software solu-
tions implementing this kind of model, which severely limits
its usefulness to the general scientific and technical commu-
nity. To our knowledge, only three software tools have been
developed to date: RainSim (Burton et al., 2008); HyetosR
(Kossieris et al., 2012); and Let-It-Rain, which has a web ver-
sion (Kim et al., 2017) as well as a desktop version (Kim and
Onof, 2020). RainSim is based on the Neyman–Scott process
and HyetosR and Let-It-Rain on the Bartlett–Lewis one.

RainSim is able to simulate multi-site stochastic rainfall at
different temporal aggregations and uses the shuffled com-
plex evolution (SCE-UA; Duan et al., 1992) optimization
algorithm for calibration. Its major limitation, in our opin-
ion, is its availability (upon demand from the authors, only
for research purposes and for one specific operating system).
HyetosR, implemented in R, may simulate stochastic time
series of rainfall that reproduce several observed statistics
at daily and hourly temporal aggregation (mean, variance,
covariance and probability of a dry period). In contrast to
RainSim, it is readily available since it is distributed with an
open-source library. However, HyetosR only deals with point
precipitation, so it cannot be used to generate rainfall fields.

The web version of Let-It-Rain can be used to simulate
synthetic point rainfall time series at hourly resolution for
the United States and the Republic of Korea, using a modi-
fied Bartlett–Lewis rectangular pulse model. It also presents
a regionalization that allows the user to generate synthetic
time series even at ungauged locations. The desktop version
is a later development that allows the user to reproduce rain-
fall characteristics from very short timescales (5 min) to very
long ones (decades). The software is provided as a compiled
executable for the MS Windows operating system.

The NEOPRENE library constitutes – to the best of our
knowledge – the first open-source library for stochastic rain-
fall generation based on the spatiotemporal Neyman–Scott
process. The open-source GPLv3 ensures that the code can
be freely used for research and commercial purposes. NEO-
PRENE is readily available for all major operating systems
from its GitHub repository (Diez-Sierra et al., 2021a) and
from Zenodo (Diez-Sierra et al., 2021b), which enable long-
term archival of repository snapshots. NEOPRENE simu-
lates synthetic multi-site rainfall at different temporal ag-
gregations that reproduce different observed rainfall statis-
tics. NEOPRENE can be used for multiple purposes such
as extreme rainfall analysis or rainfall disaggregation. NEO-

Figure 1. Model scheme showing the meaning of the main param-
eters.

PRENE is designed to reproduce second-order moments (see
Cowpertwait, 1998) and allows several storm systems to be
simulated simultaneously – each system with its own set of
parameters (see Leonard et al., 2008) – to capture different
rainfall generation processes (i.e., frontal and convective pre-
cipitation), making NEOPRENE a powerful tool for rainfall
extreme analysis and for vulnerability, impact and adaptation
(VIA) studies.

2 Methods

2.1 Mathematical model description

Point processes based on clustered Poisson models for rain-
fall modeling have been widely presented in the scientific
literature. A good introduction to Neyman–Scott models can
be found in Cox and Isham (1988). A detailed description
of the mathematical model behind the NEOPRENE library
can be consulted in Cowpertwait et al. (2013), although ad-
ditional details can be found in Cowpertwait (1995) and
Leonard et al. (2008). In del Jesus et al. (2015) some interest-
ing derivations are also presented, mainly related to parame-
ter fitting from satellite observations and the characterization
of dry periods. Diez-Sierra and del Jesus (2019) present a
methodology for subdaily rainfall estimation through daily
rainfall downscaling using Neyman–Scott models.

In this subsection, a brief description of the mathemati-
cal model is provided – enough to understand which are the
model parameters, their effects and the results generated by
the library. Readers interested in a more exhaustive inspec-
tion of the mathematical innards of the library are invited to
consult the references provided above and the documentation
section available on the GitHub repository (Diez-Sierra et al.,
2021a).

The model used for the NEOPRENE library assumes that
rainfall at a given region occurs by the superposition of dif-
ferent types of storms (Si); each storm is represented by an
independent point process. The NEOPRENE library allows
a maximum of two storm types (or independent point pro-
cesses), which tends to be sufficient for most applications.
For instance, in many places this decomposition may serve to
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capture frontal (S1) and convective (S2) precipitation. Each
type of superposed process (Si) would represent some pro-
portion (αi) of the total number of storms.

The interarrival time between the origins of storms of type
i follows an exponential distribution with parameter λi . Each
storm is composed of several rainfall cells which form a
marked point process. Each rainfall cell is assumed to be cir-
cular and to contain a random amount of water that produces
rainfall at a random rate (cell intensity) during the lifetime of
the rainfall cell (cell duration). The superposition of all these
cells and their combined intensities produces the total rainfall
intensity of the model. The marked point process generated
by the rainfall cells is characterized by

– Ui and Vi , the 2D coordinates of the cell center that fol-
low a 2D Poisson process with rate 3ci (per unit area);

– Rci, the radius of the cell that follows an exponential
distribution with parameter ρci;

– Li , the lag from the storm origin to the origin of the cell
that follows an exponential distribution with parameter
βi ;

– Di , the duration of the rainfall cell, the time during
which the storm produces rainfall, that follows an ex-
ponential distribution with parameter ηi ;

– Ii , the rainfall intensity of the cell that may follow dif-
ferent distributions but that is usually taken to follow
an exponential distribution of average θi (or parameter
1/θi).

Rainfall occurs at any give location and time if, and only
if, a rain cell covers that point during that time. The total
rainfall intensity at any given time and location is the sum of
the rainfall intensities induced by all the rain cells active at
that point at that time. The total number of rain cells covering
a point follows a Poisson distribution with parameter νi =
2π 3ci/ρ

2
ci.

As some relations exist among all the above-mentioned
parameters, a set of six parameters – λi , νi , βi , ηi , ρci, θi – is
sufficient to represent any storm type. When using two differ-
ent storm types, all the characteristics of the rainfall process
are captured by a set of 12 parameters – 6 for each storm
type.

Note that in the case of the spatiotemporal model, we work
with normalized statistics, making it necessary to introduce
an additional parameter, ξi , which is estimated for each pe-
riod using the observed average rainfall. ξi acts as a scale
parameter that captures the differences in average precipita-
tion at different locations (gauge location). ξi serves to re-
produce the gradients of average rainfall in the area of inter-
est. This parameter is adjusted on a site-by-site basis once
the rest of the parameters have been estimated (Cowpertwait
et al., 2013).

2.2 Aggregated properties

The Neyman–Scott model represents a continuous process
in space and time. However, any rainfall measurement – rain
gauge or satellite observations – aggregates information: in
time for the former and in time and space for the latter. There-
fore, the properties of the aggregated process are necessary
to compare the model and the observations. There is also the
need to derive some aggregated properties because the model
is a simplified conceptualization of the rainfall process, and
some of the properties defined – e.g., the cell radius or the
cell intensity – cannot be measured independently; only their
effects can be measured.

The integrated properties of the model are presented in the
references provided at the beginning of the section (Cox and
Isham, 1988; Cowpertwait et al., 2013; Cowpertwait, 1995;
del Jesus et al., 2015). The properties of the aggregated pro-
cess can be derived using the theory of random fields (Van-
marcke, 2010). Integration over space and time would result
in a process similar to satellite rainfall observations, while
integration over time only would result in the equivalent of
rain gauge observations.

The library allows us to fit the aggregated average (mean),
variance, temporal autocorrelation, probability of no rain-
fall, transition probabilities between two successive wet pe-
riods or two successive dry periods, skewness, and cross-
correlation. The formulas for these aggregated statistics, as
well as their derivation process, were obtained from three
references (Cowpertwait, 2006; Cowpertwait et al., 2013; del
Jesus et al., 2015), and they are available in the documenta-
tion section available on the GitHub repository (Diez-Sierra
et al., 2021a).

2.3 Parameter fitting and rainfall simulation

NEOPRENE fits the model parameters by minimizing the
weighted Euclidean distance between the observed statistics
and the modeled ones. Any subset of all the possible ag-
gregated statistics (multiple of a daily or an hourly tempo-
ral aggregation) may be used for fitting. It is important to
remember here that observations do not belong to the con-
tinuous point process but to the aggregated one, so the ob-
served statistics cannot be directly equated to the point pro-
cess statistics.

The weights for the weighted Euclidean distance can be
freely chosen by the user. Particle swarm optimization (PSO;
Kennedy, 2011) is used for fitting (which is a minimization
process). The result of the fitting procedure is the set of opti-
mal parameters.

Once the model parameters are defined, time series gen-
eration is a straightforward process. Storm arrivals are sim-
ulated following a Poisson process with parameter λi . The
number of cells corresponding to the storm is simulated also
with a Poisson process, this time with parameter νi . Then,
for each cell, four values are obtained from four exponential
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distributions with parameters βi , ηi , ρi and θi , corresponding
to the cell lag (with respect to the storm origin), its duration,
its radius and its average intensity.

Repeating this process in time, a time series of total pre-
cipitation intensity can be generated for all the points in a
given domain or for any given isolated point.

Seasonality is included in the model accounting for differ-
ent sets of model parameters and observed statistics. For in-
stance, a single set of parameters will be used to calibrate and
generate from a model without seasonality, where the year is
assumed to be a stationary period. However, in regions where
two well-differentiated periods may be observed – a wet and
a dry season, for instance – two different sets of parameters
will be used: one for the dry season and another one for the
wet season; i.e., seasonality is accounted for by decomposing
the complete time series into subseries that only contain the
information related to the desired season or time period.

3 The NEOPRENE library

The NEOPRENE library implements the Neyman–Scott pro-
cess for the analysis of spatiotemporal rainfall; i.e., spatial
fields of rainfall can be captured or simulated as they change
over time. The model can also be used to reproduce rainfall
at a specific point without taking into consideration the be-
havior of rainfall in the surroundings.

Rainfall generation can be decomposed into two steps: a
calibration step and a simulation step (as shown in Fig. 2).
The calibration step serves to find the set of parameters that
best reproduces the statistical properties of the series given
as an input or that best match the provided rainfall statistics.
The simulation step takes a set of parameters as input and
reproduces a time series of the process (punctual or spatial)
that follows the supplied parameters. Additionally, the NEO-
PRENE library provides several functions for validation and
for daily-to-hourly rainfall disaggregation.

The disaggregate_rainfall function (see
Sect. 3.1.3) performs the disaggregation process. This
function scans the observed daily time series. For each day,
the function looks in the synthetic time series for the most
similar day to the one being disaggregated – the one being
selected in the observed time series. To improve the quality
of the disaggregation, previous days are also used in the
search. The series of days that minimizes the Euclidean
distance between the observations and the aggregated
synthetic time series is selected, and the hours that constitute
that day are used for the disaggregated time series. The
process is then repeated for each day until the complete
observed time series has been disaggregated. This function is
also implemented for the multi-site model. A more detailed
explanation of the disaggregation process can be found in
Cowpertwait (2006).

The normal use case for the library would be to config-
ure the calibration process – setting the hyperparameters of

the calibration process – and then provide the observed data
to the calibrator. The calibrator would look for the optimal
set of parameters, where the definition of “optimum” can be
tweaked through the hyperparameters. Once finished, the cal-
ibrator would provide a set of optimal parameters.

Hyperparameters are all those parameters that do not be-
long to the Neyman–Scott process but that are required to
configure either the calibration or the simulation steps. Such
parameters may be the maximum number of calibration iter-
ations or the starting and ending dates for a simulation.

Then, a simulation should be configured, again through the
use of hyperparameters. The simulation step also requires the
time coverage of the simulated time series to be defined. The
simulator receives, in addition to the hyperparameters, the set
of optimal parameters and uses them to generate a time series
of rainfall.

In some cases, the same set of optimal parameters may
be used to generate different time series, either with varying
hyperparameters or with small modifications of the optimal
parameters, for instance for a sensibility analysis. The library
is flexible enough to adapt to many possible use cases.

It is important to note that the underlying mathematical
model is, in our own experience, flexible enough to adapt to
different combinations of the rainfall statistics. Therefore, it
should be able to properly model rainfall for different cli-
mates, the main limitation being in locations where more
than two types of precipitation occur. In this case, the model
may struggle to provide optimal performance.

3.1 Library implementation

The library has been implemented following the two-step op-
eration described so far: there is a “calibration” sublibrary
and a “simulation” one. In general, both steps will be fol-
lowed sequentially, but in some cases (the evaluation of sev-
eral life cycles of a given infrastructure, for instance) several
simulation steps may be carried out connected to only one
calibration step. A third sublibrary, “analysis”, contains sev-
eral functions to extend the functionality of the library and to
simplify its use, like a function to compare the simulated se-
ries with the observed ones and a function for daily-to-hourly
rainfall disaggregation, for instance.

The library contains two main Python classes, NSRP and
STNSRP, which allow us to simulate single-site and multi-
site synthetic rainfall series, respectively. The first Python
class calculates the observed rainfall statistics from a single
time series and simulates an arbitrarily long time series of
synthetic rainfall which reproduces the observed statistics.
This class is able to reproduce the following statistics for any
daily or hourly temporal aggregation: mean, variance, tempo-
ral autocorrelation, probability of no rainfall, transition prob-
abilities between two successive wet periods or two succes-
sive dry periods, and the skewness. The second Python class
calculates the average rainfall statistics from a list of series
and simulates a synthetic list of rainfall series which repro-
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Figure 2. Schematic representation of the three main modules implemented in the NEOPRENE library: calibration, simulation and analysis.
Observed time series (daily or hourly) or observed statistics need to be provided by the user to the calibration module, which returns the
optimal set of parameters. The simulation module uses the optimal parameters to generate arbitrarily long time series of synthetic rainfall
data that reproduce different observed rainfall statistics. Daily and hourly time series, as well as their statistics, are returned in all cases by
the simulation module. Observed and simulated rainfall time series can be compared with the analysis module which also contains some
functions for daily-to-hourly rainfall disaggregation. Calibration and simulation hyperparameters are required to define, for instance, the
maximum number of calibration iterations, the statistics and aggregation levels that have to be fitted and simulated, or the starting and ending
dates for a simulation.

duce observed statistics averaged over all the series (except
for the mean statistic which varies in space to mimic rain-
fall intensity fields). In addition to the above statistics, the
STNSRP is able to reproduce the cross-correlation.

Figure 2 shows a schematic representation of the three
main classes implemented for the NEOPRENE library: cali-
bration, simulation and analysis. These classes are described
in depth in the following subsections.

3.1.1 Calibration

The calibration step is implemented within the calibration
sublibrary, specifically in the Calibration Python class
(one within NSRP for the point model and another within
STNSRP for the multi-site model). It requires as input a sin-
gle time series or multiple ones or the observed statistics. It
outputs the calibrated optimal parameters needed for the sim-
ulation.

It is important to note that, internally, the library calibrates
against the specified statistics. Therefore, in order to ensure
a good calibration and representation of the areal rainfall, the
length of the time series as well as its completeness should
allow a robust computation of any of the selected statistics.
In general terms, the amount of information required for cal-
ibration will depend on the final applications of the data. If
rainfall extremes are desired, then at least 30 years of data

should be collected. If missing data are below an acceptable
threshold (20 % of the overall length of the time series), no
data filling should be required.

The calibration process is controlled by a set of parameters
– that we will call hyperparameters – that should be set by the
Calibration Python class of the hyperparameter subli-
brary (HiperParams, again one within NSRP and another
within STNSRP). The following calibration hyperparameters
can be set:

– data – a Pandas DataFrame containing the original time
series;

– seasonality – a Python list that configures the desired
seasonality;

– temporal resolution – a string that defines the temporal
resolution of the provided time series (hourly and daily
temporal resolution can be provided);

– process – a string configuring whether one or two storm
systems should be considered;

– statistics – a Python list of strings that contain the statis-
tics that have to be considered during the fitting process;

– weights – a list that contains the weight for computing
the total error – Euclidean distance – between the ob-
served statistics and the generated ones;
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– number of iterations – an integer that defines the maxi-
mum number of iterations of the calibration process;

– number of bees – an integer that defines the number of
particles to use in the PSO algorithm;

– number of initializations – an integer that defines the
number of initializations to be performed during the cal-
ibration procedure;

– time between storms – a range of acceptable values of
storm interarrival times (in hours);

– storm cell displacement – a range of acceptable values
of cell lags (in hours);

– number of storm cells – a range of acceptable values for
the number of cells per storm;

– cell duration – a range of acceptable values for the du-
ration of a storm cell (in hours);

– cell intensity – a range of acceptable values for the in-
tensity of a storm cell (in mm h−1);

– coordinates – a string defining the type of coordinates,
either geographical (in degrees) or UTM (in meters);

– cell_radius – a range of acceptable values of the cell
radius (in km).

The “coordinates” and “cell_radius” hyperparameters are
only required for the multi-site model (STNSRP).

The “number of iterations” and “number of bees” hyper-
parameters control how exhaustive the search is in the pa-
rameter space for the optimal solution. In our experience 100
iterations and 1000 bees are a good minimal value set to get
good results. Additional advice may be found in specific lit-
erature (Kennedy, 2011).

The “number of initializations” hyperparameters allow the
library to restart the search multiple times to ensure that the
search did not get trapped in a local minimum. This is al-
most never the case, but the number of initializations may
be increased in cases where the initial results seem subopti-
mal. Indeed, we recommend increasing this hyperparameter
before increasing the number of bees or iterations.

The hyperparameters that refer to physical properties of
the storm itself (time between storms, storm cell displace-
ment, number of storm cells, cell duration, cell intensity and
cell radius) should be used to ensure that reasonable values
are obtained. To set these parameters, a minimum knowledge
of the properties of the rainfall process in the specific loca-
tion being analyzed is required. The “time between storms”
normally represents the time lag that separates independent
storms, while “storm cell displacement” captures the time lag
between rain cells belonging to the same storm. Similarly,
“cell duration” captures the time lag during which rainfall
intensity is constant, “cell intensity” captures the range of

possible intensities at a site and “cell radius” represents the
maximum length that may be affected by a given storm. The
reader is advised to consult some of the included references
(Isham et al., 2005, for instance) to obtain a deeper grasp of
the selection of these hyperparameters.

3.1.2 Simulation

The simulation step is implemented within the simula-
tion sublibrary (Simulation, one for the point model
and another for the multi-site one), specifically in the
Simulation Python class. It requires as input the cali-
brated parameters and returns the simulated rainfall series at
both daily and hourly temporal aggregations.

The simulation process is controlled by a set of hyperpa-
rameters that should be set by the Simulation Python
class of the hyperparameter sublibrary (HiperParams,
again one for the point model and another for the multi-site
one). The following simulation hyperparameters can be set:

– parameters_simulation – the values of the parameters,
usually the calibrated ones;

– year_ini and year_fin – the initial and final years of the
simulation;

– seasonality, temporal resolution, process, statistics –
fully independent simulation and calibration subli-
braries, thus several hyperparameters being necessarily
repeated.

3.1.3 Analysis

The analysis module is not required for either rainfall calibra-
tion or simulation, but it is helpful for many tasks such as to
check the performance of the model or for rainfall disaggre-
gation. This functionality is implemented within the analysis
sublibrary (Analysis, one for the point model and another
one for the multi-site one), specifically in the Analysis
Python class.

To evaluate the quality of the fit, the user should deter-
mine which statistical test may be appropriate in every case.
A Kolmogorov–Smirnov test could be suitable to test if the
generated rainfall and the observed one come from the same
distribution, while a t test could serve to analyze if the differ-
ence in mean precipitation is significant. The number of pos-
sible hypothesis tests that may be carried out over the model
results is huge, since different applications may require dif-
ferent quality evaluations. Therefore, we do not provide any
goodness-of-fit routine or specific hypothesis testing within
the Analysis module. However, we do provide functions
to help to inspect the quality of the fits.

The Analysis Python class contains several functions
for validation and for daily-to-hourly rainfall disaggregation.
So far the functions implemented are as follows.
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– compare_statistics_fig(). This function re-
turns an image with the observed (Obs), fitted (Fitted)
and simulated (Sim) statistics (see Fig. 3).

– exceedance_probability_fig(). This func-
tion returns an image comparing the exceedance proba-
bility for the observed and simulated series (see Fig. 4).

– correlation_fig(). This function returns an im-
age with the observed (Obs), fitted (Fitted) and simu-
lated (Sim) cross-correlation (see Fig. 7).

– disaggregate_rainfall and
disaggregation_fig. The first function is used
for daily-to-hourly rainfall disaggregation (see Cow-
pertwait, 2006). The second function returns an image
comparing the observed rainfall time series and the dis-
aggregated ones (see Fig. 5).

– save_figures. This function allows us to save the
figures in a folder.

4 Use cases

In this section three use cases for the library are introduced.
The code and a detailed application for these use cases can
be found in the Jupyter notebooks NSRP_test.ipynb and
STNSRP_test.ipynb on the GitHub repository (Diez-
Sierra et al., 2021a). The objectives and main steps are briefly
described here, but we recommend that the reader executes
the interactive code from the Jupyter notebooks while read-
ing this section for a more complete and easier understanding
of the applications presented. A small executable is provided
to run the examples without having to install the library.

The file NSRP_test.ipynb contains a single-site rain-
fall simulation at hourly and daily scale (although only
the latter is presented here) and a disaggregation from
daily-to-hourly rainfall (rainfall downscaling). The file
STNSRP_test.ipynb contains a multi-site rainfall sim-
ulation (commented below) and a multi-site rainfall down-
scaling example (not included below).

4.1 Single-site synthetic rainfall simulation

4.1.1 Objective

The library is used here to calibrate the model to reproduce
the rainfall characteristics at a specific rainfall station. Once
the model is calibrated, it can be used to generate synthetic
time series of precipitation showing the same statistical prop-
erties as the observations. Such a model would be useful to
explore alternative rainfall realizations at the location of in-
terest, i.e., to explore plausible time series of rainfall that may
not have been observed due to the limited duration of the ob-
servation period. A rainfall station in northern Spain has been
selected.

4.1.2 Use case configuration

A monthly analysis is carried out, which means that we as-
sume that the model parameters can be considered homoge-
neous for any month of the year, but they change from month
to month. Hyperparameters for the calibration and for the
simulation are reported in the files Input_Cal_PD.yml
and Input_Sim_PD.yml, respectively, on the GitHub
repository. In this case, only one storm system is considered.
The average rainfall is given 100 times more importance (rel-
ative weight in the weighted Euclidean distance) in the cal-
ibration process than any other statistic. All of the possible
statistics included in the NEOPRENE library are used for
calibration to obtain a model that reproduces as well as pos-
sible the statistical behavior of the observations. Multi-daily
temporal aggregations are selected for some of the statistics
in order to simulate longer aggregations which are necessary
for hydrological applications. Synthetic rainfall data span-
ning a total of 80 years are simulated at daily and hourly
temporal aggregations, although here we focus on the for-
mer.

4.1.3 Main results

Figure 3 shows the validation of the first use case. The ob-
served, fitted and simulated values for the selected statistics
are compared to evaluate the performance of the model. Ob-
served and simulated statistics are very close to each other,
except for the variance (σnd) and skewness (µ31d ) for August.
For this month, the fitted and observed statistics differ indi-
cating that the model parameters fitted are not able to repro-
duce the observed statistics. In these cases, we recommend
increasing the number of calibration iterations or extending
the range of acceptable values for the parameters. If after this
modification results do not improve, further analysis should
be carried out to test if the model is not able to capture the
rainfall properties. As mentioned before, very complex loca-
tions, where more than two physical processes are responsi-
ble for rainfall, may not be correctly captured by the under-
lying mathematical model.

The calibrated model can then be used to explore different
properties of the rainfall process. For instance, Fig. 4 shows
an exceedance probability plot, comparing the observed and
simulated time series. For high exceedance probability val-
ues, these plots can be used as another validation tool. For
the local exceedance probability values, however, it can be
seen that the simulated values provide a much finer descrip-
tion of the process so that synthetic generation can be used to
better explore the space of extremes, i.e., to explore plausible
extremes that are never observed but are likely to happen.
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Figure 3. Validation plot comparing the observations (dashed line) and the fitted (blue squares) and the simulated (red triangles and red
shading) statistics, where µ refers to rainfall average, σ to the variance, ACF-lag1 to the autocorrelation of lag one, 8 to the probability of
dry period, 8WW to the probability of having two consecutive wet periods, 8DD to the probability of having to consecutive dry periods and
µ3 to the skewness. The subscripts (1d, 2d, etc.) represent the level of aggregation (in days) at which the statistic was computed. The shading
shows the range between the 5th and the 95th percentiles. This figure is generated with the Analysis Python class.
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Figure 4. Exceedance probability of daily rainfall values for use
case no. 1. Exceedance probabilities of observed (black dots) and
simulated (red line) rainfall values are shown. This figure is gener-
ated with the Analysis Python class implemented for the NEO-
PRENE library.

4.2 Rainfall disaggregation

4.2.1 Objective

The objective is to disaggregate a time series of daily precip-
itation, producing the most likely hourly time series to have
generated the observed daily one, i.e., to produce an hourly
time series such that when aggregated produces a daily time
series as similar as possible to the observed record. Rainfall
disaggregation may be an important procedure in the foren-
sics analysis of storms, where having a plausible hourly dis-
tribution of rainfall may help in understanding the observed
impact of an event for which only an aggregated observation
was collected.

4.2.2 Use case configuration

Rainfall disaggregation requires first generating a synthetic
time series of rainfall that reproduces the statistics observed
– what we did in the first use case. In this case, the simulation
must be at the hourly scale, even when the objective is to
reproduce the observed daily statistics.

4.2.3 Main results

Figure 4 shows an example of the disaggregation results
for February 2000. Observed and simulated lines are equal,
meaning that the model is able to perfectly reproduce the
daily observed precipitation. Black lines show the hourly dis-
aggregation created with the model.

4.3 Multi-site synthetic rainfall simulation

4.3.1 Objective

The library is used here to calibrate the model to reproduce
the average rainfall characteristics for a collection of rain-
fall time series. Once the model is calibrated, it can be used
to generate multi-site synthetic time series of precipitation

that follow the same statistical properties of the input time
series. Note that simulated series reproduce the average rain-
fall statistics calculated with the entire collection of observed
rainfall time series except for the mean which fits to each lo-
cation. Several gauges from a basin located in northern Spain
were selected.

4.3.2 Use case configuration

A seasonal analysis is carried out, which means that we as-
sume that the model parameters can be considered homoge-
neous for any given season (winter, spring, summer and fall),
but they change from season to season. Hyperparameters for
the calibration and for the simulation are reported in the files
Input_Cal_SPD.yml and Input_Sim_SPD.yml, re-
spectively, on the GitHub repository. Similarly to the first
use case, only one storm system is considered. The cross-
correlation is given 10 times more importance (relative
weight in the weighted Euclidean distance) in the calibra-
tion process than any other statistic. Synthetic rainfall data
spanning a total of 100 years are simulated for each one of
the gauges at both daily and hourly temporal aggregations.

4.3.3 Main results

Figure 6 shows an exceedance probability plot, comparing
the exceedance probability of observed and simulated rain-
fall values aggregated for the collection of rainfall time se-
ries. The results for the observed and simulated time series
are very similar, proving the capabilities of NEOPRENE to
reproduce maximum observed aggregated rainfall events and
thus that it is a useful tool for flood analysis.

Finally, Fig. 7 shows a comparison of the observed, fitted
and simulated results for the cross-correlation. The observed
and simulated cross-correlations are empirically computed
from the time series, while the calibrated cross-correlation
is computed using analytic expressions. While some exact
analytic expressions exist (for the mean and the variance,
for instance), they do not exist for all the statistics. Indeed,
some statistics require some approximations and series ex-
pansions that induce the behavior shown in the figure: the
calibration values approximate the observed ones quite well,
but the simulated ones present a small bias. For most practi-
cal purposes, the simulated series adequately reproduce the
observed cross-correlation, but the fit should be analyzed to
verify that differences are kept below acceptable thresholds.

5 Discussion

NEOPRENE constitutes a user-friendly tool for spatiotem-
poral synthetic rainfall generation based on the Neyman–
Scott process. Compared with other statistical approaches for
synthetic rainfall generation such as probability distribution
models or Markov chain models (Wilks, 1998), point pro-
cesses, like the Neyman–Scott, are more efficient at captur-
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Figure 5. Disaggregation plot for the rainfall of the month of February 2000. Blue (observation) and red (simulated) lines correspond to
the observed and simulated series at daily scale, respectively. Black lines show the hourly disaggregation simulated with the model for odd
(square) and even (asterisk) days. This figure is generated with the Analysis Python class.

Figure 6. Exceedance probability of daily rainfall values for use
case no. 3. Exceedance probability of observed (black dots) and
simulated (red line) rainfall values are shown. Note that the figure
shows the exceedance probability averaged over all the rainfall se-
ries. This figure is generated with the Analysis Python class.

ing the temporal and spatial dependence of rainfall and re-
producing different rainfall regimes, particularly the extreme
events’ one. However, it has the disadvantage of requiring
more computational resources and some knowledge of its
internals. Compared with artificial neural networks (ANNs)
(Welten et al., 2022), point processes may be less flexible
in terms of incorporating nonlinear relationships or exter-
nal information. However, ANNs are still not widely used
as rainfall synthetic generators, being more commonly used
for rainfall–runoff prediction.

Particularly, NEOPRENE has been validated to reproduce
hourly and daily return periods in hundreds of gauges in
Spain. Furthermore, its implementation removes the main
hindrance to the practical application of the model, which
is related to the complexity of model parameter estimation
(Onof et al., 2000). It is important to point out that the prop-
erties of the spatial model present some limitations: first be-
cause it requires some supervision in order to find a suitable
model adjustment and second because it is based on a num-
ber of assumptions, such as on homogeneity, which makes it
not appropriate for locations where statistics other than the
mean are not homogeneous.

Figure 7. Validation plot comparing the observations (blue), fitted
(black) and the simulated (red) cross-correlation. This figure is gen-
erated with the Analysis Python class implemented for the NEO-
PRENE library.

6 Future challenges

Although the current implementation of NEOPRENE al-
ready provides useful tools for research and hydraulic en-
gineering practice, we plan on improving the functionality of
the library. The main points to improve in the near future are
as follows.

– Parameter smoothing across months. Currently, the
time decomposition makes all the fits independent of
one another. We are planning to implement a hierarchi-
cal scheme that properly weighs the influence of other
close-in-time decomposition units.
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– Storm radius parameter. NEOPRENE does not yet con-
sider a reduction in distant correlations due to the lim-
ited size of the storm. This is only a limitation when
huge domains are involved.

– Sub-hourly implementation. The hourly timescale is de-
tailed enough for most applications. However, we plan
on exploring the generation of sub-hourly time series.

– Virtual gauges. We will implement an interpolation
technique based on the underlying mathematical model,
allowing us to incorporate the fitted structure of the rain-
fall field into the interpolation procedure.

– Raster input/output. Currently, NEOPRENE only works
with rainfall gauges. However, a next step would be to
allow it to ingest rainfall raster data (satellite or radar)
and to also produce them.

We expect that the GPLv3 license of the library and the
fact that it is readily available on GitHub will attract external
collaborators that will help to improve the functionality of
the library even further.

7 Conclusions

We have presented NEOPRENE, an open-source Python
library for generating synthetic rainfall fields using the
Neyman–Scott process. The library allows us to generate
rainfall at different temporal scales of aggregation to match
rainfall observations. The library is available on GitHub
(Diez-Sierra et al., 2021a) and Zenodo (Diez-Sierra et al.,
2021b) under a free license (GPLv3). Therefore, it can be
freely used for research and commercial purposes.

NEOPRENE can be used for multiple purposes such as
water resource assessment, extreme rainfall analysis or rain-
fall disaggregation. NEOPRENE is designed to reproduce
second-order moments and allow two storm systems to be
simulated simultaneously to capture different rainfall gener-
ation processes (i.e., frontal and convective precipitation).

Jupyter notebooks provide an easy entry point to the li-
brary, presenting its most important functionality and con-
verting it in an accessible tool for many sector professionals
(hydrologists, hydraulic engineers and climate practitioners).
Special attention has been placed on demonstrating the abil-
ity of NEOPRENE to reproduce observed extreme events be-
cause it makes NEOPRENE specially useful in engineering
practice (e.g., return period estimation for flood analysis).

Appendix A: Some statistical properties of the model

In model fitting, it is usually necessary to use equations for
aggregated properties because rainfall data are usually sam-
pled over discrete time intervals. Let Y hij (x) be the aggre-
gated time series of rainfall due to type i storms at point

x = (x,y) ∈ R2 in the j th time interval of width h, and let
Y hj (x) be the total rainfall in the j th interval due to the su-
perposition of the n storm types (Cowpertwait et al., 2013).
Then,

Y hj (x)=

n∑
i=1

jh∫
(j−1)/h

Yi(x, t)dt, (A1)

where Yi(x, t) is the rainfall intensity at point x and time
t due to type i storms (i = 1, . . .,n). Since the superposed
processes are independent, statistical properties of the aggre-
gated time series follow just by summing the various proper-
ties given below.

The mean (Cowpertwait, 1991, their Eq. 12) is

µ(h)=

n∑
i=1

E{Y hij (x)} = h

n∑
i=1

λiνi

χiηi
(A2)

in the STNSRP model, and χi must be changed by χ−1
i .

Covariance (Cowpertwait, 1991, their Eq. 14) is

γ (x,x, l,h)=

n∑
i=1

Cov{Y hij ,Y
h
i,j+l}

=
λi(ν

2
i − 1)[β3

i Ai(h, l)− η
3
i Bi(h, l)]

βiξ2η3
i (β

2
i − η

2
i )

−
4λiχiAi(h, l)

ξ2
i η

3
i

. (A3)

When l = 0,

Ai(h, l)= Ai(h)= ηih− 1+ e−ηih, (A4)

Bi(h, l)= Bi(h)= βih− 1+ e−βih. (A5)

When l > 0,

Ai(h, l)=0.5(1− e−ηih)2exp−ηih(l−1), (A6)

Bi(h, l)=0.5(1− e−βih)2exp−βih(l−1). (A7)

For the probability of no rain in an arbitrary time of length
h (Cowpertwait et al., 1996b, their Eq. 6), the probability that
an arbitrary time interval [(j−1)h,jh] is dry at a point is
obtained by multiplying the probabilities of the independent
processes and is given by the following:

φ(h)=

n∑
i=1

Pr{Y (h)ij (x)= 0} = exp(−λih+ λiβ−1
i (νi − 1)−1

×{1− exp[1− νi + (νi − 1)e−βih]}

− λi

∞∫
0

[1−ph(t)]dt). (A8)

We use the approximation shown in Cowpertwait (1991,
their Eq. 17) to avoid having to solve the following integral:
∞∫

0

[1−ph(t)]dt = β−1
i [γ + ln(ανi − 1)], (A9)
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where γ = 0.5771 and αi = ηi/(ηi −βi)− e−βih.
The transition probabilities, pr{Y (h)i,j+1(x) > 0|Y (h)ij (x) >

0} and pr{Y (h)i,j+1(x)= 0|Y (h)i (x)= 0}, denoted as φWW(h)

and φDD(h), respectively, can be expressed in terms of φ(h)
following Cowpertwait et al. (1996b, their Eqs. 7, 8 and 9):

φDD(h)= φ(2h)/φ(h), (A10)
φ(h)= φDD(h)+{1−φWW(h)}{(1−φ(h))}, (A11)

φWW(h)= {1− 2φ(h)+φ(2h)}{1−φ(h)}. (A12)

The third moment function (Cowpertwait, 1998, their
Eq. 10) is

ξh = E{Y
(h)
j (x)−µ(h)}3 =

n∑
i=1
[6λiνiE(X3) (A13)

× (ηih− 2+ ηihe−ηih+ 2e−ηih)/η4
i

+ 3λiχiE(X2)ν2
i f (ηi,βi,h)/{2η

4
i βi(β

2
i − η

2
i )

2
}

+ λiχ
3
i ν

3
i g(ηi,βi,h)/{eη

4
i βi(eη

2
i −β

2
i )(ηi −βi)

× (2βi + ηi)(βi + 2ηi)}].

In the STNSRP model, C follows a Poisson random vari-
able so thatE{C(C−1)} = ν2 andE{C(C−1)(C−2)} = ν3.
If it follows a geometric one, then E{C(C−1)} = 2ν2(ν−1)
and E{C(C− 1)(C− 2)} = 6ν2(ν− 1)2.

For exponential cell intensities, E(Xijk) and E(Xkijk) are
replaced by 2χ2

i and 6χ3
i , respectively. f (ηi,βi,h) and

g(ηi,βi,h) are derived below:

f (ηi,βi,h)=− 2η3β2 exp(−ηh)− 2η3η2 exp(−βh) (A14)

+ η2β3 exp(−2ηh)+ 2η4β exp(−ηh)

+ 2η4β exp(−βh)

+ 2η3β2 exp(−(η+β)h)

− 2η4β exp(−(η+β)h)− 8η3β3h

+ 11η2β3
− 2η4β + 2η3η2

+ 4ηβ5h

+ 4η5βh− 7β5
− 4η5

+ 8β5 exp(−ηh)

−β5 exp(−2ηh)− 2hη3β3 exp(−ηh)

− 12η2β3 exp(−ηh)+ 2hηβ5 exp(−ηh)

+ 4η5 exp(−βh),

g(ηi,βi,h)=12η5β exp(−βh)+ 9η4β2 (A15)

+ 12ηβ5 exp(−ηh)+ 9η2β4

+ 12η3β3 exp(−(η+β)h)

− η2β4 exp(−2ηh)

− 12η3β3 exp(−βh)− 9η5β − 9ηβ5

− 3ηβ5 exp(−2ηh)− η4β2 exp(−2βh)

− 12η3β3 exp(−ηh)

+ 6η5β2h− 10β4η3h+ 6β5η2h

− 10β3η4h+ 4β6ηh− 8β2η4 exp(−βh)

+ 4βη6h+ 12β3η3

− 8β4η2 exp(−ηh)− 6η6
− 6β6

− 2η6 exp(−2βh)− 2β6 exp(−2ηh)

+ 8η6 exp(−βh)

+ 8β6 exp(−ηh)− 3βη5 exp(−2βh).

For each storm, the number of cells ν that overlap a point
inR2 is a Poisson random variable with a mean (Cowpertwait
et al., 2002, their Eq. 3):

νC = νφ
2
c /(2π), (A16)

where νC denotes the 2D Poisson process (cells per km2).
The probability that a cell overlaps a point x given that it

overlapped a point y a distance d from x (Cowpertwait et al.,
2002, their Eq. 9) is

P(φ,d)≈
1
30

4∑
i=1

{
2f
(

2πi
20

)
+ 4f

(
2πi+π

20

)}
−

1
30
f (0),

(A17)

where

f (y)=

(
φd

2cosy
+ 1

)
exp

(
−φd

2cosy

)
,0≤ y < π/2,f (π/2). (A18)

Cross-correlation (Cowpertwait et al., 2002, their Eq. 6) is

γ (x,y, l,h)=

n∑
i=1

Cov{Y hij (x),Y
h
i,j+l(y)}

=

n∑
i=1
[γi(x,x, l,h)− 2λi

×{1−P(φi,d)}νCiE(X2)Ai(h, l)/η
3
i ]. (A19)

Code and data availability. The NEOPRENE Python library
code is available on GitHub (https://github.com/IHCantabria/
NEOPRENE, last access: 29 August 2023) and Zenodo
(https://doi.org/10.5281/zenodo.6349377, Diez-Sierra et al.,
2021b) under the GNU General Public License version 3.0. Data
used in this work are also available from the same sources.
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