Articles | Volume 16, issue 11
https://doi.org/10.5194/gmd-16-3137-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-3137-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
How is a global sensitivity analysis of a catchment-scale, distributed pesticide transfer model performed? Application to the PESHMELBA model
INRAE, RiverLy, Lyon-Villeurbanne, 69625 Villeurbanne CEDEX, France
Claire Lauvernet
INRAE, RiverLy, Lyon-Villeurbanne, 69625 Villeurbanne CEDEX, France
Bruno Sudret
Chair of Risk, Safety and Uncertainty Quantification, ETH Zurich, Stefano-Franscini-Platz 5, 8093 Zurich, Switzerland
Arthur Vidard
Inria, CNRS, Univ. Grenoble-Alpes, Grenoble-INP, LJK, 38000 Grenoble, France
Related authors
Emilie Rouzies, Claire Lauvernet, and Arthur Vidard
Hydrol. Earth Syst. Sci., 30, 1–21, https://doi.org/10.5194/hess-30-1-2026, https://doi.org/10.5194/hess-30-1-2026, 2026
Short summary
Short summary
Hydrological models are useful for assessing the impact of landscape organization for effective mitigation strategies. However, using these models requires reducing uncertainties in their results, which can be achieved through model–data fusion. We integrate satellite surface moisture images into a water and pesticide transfer model. We compare three methods, studying their performance and exploring various scenarios. This study helps improve decision support in water quality management.
Emilie Rouzies, Claire Lauvernet, and Arthur Vidard
Hydrol. Earth Syst. Sci., 30, 1–21, https://doi.org/10.5194/hess-30-1-2026, https://doi.org/10.5194/hess-30-1-2026, 2026
Short summary
Short summary
Hydrological models are useful for assessing the impact of landscape organization for effective mitigation strategies. However, using these models requires reducing uncertainties in their results, which can be achieved through model–data fusion. We integrate satellite surface moisture images into a water and pesticide transfer model. We compare three methods, studying their performance and exploring various scenarios. This study helps improve decision support in water quality management.
Louise Mimeau, Annika Künne, Alexandre Devers, Flora Branger, Sven Kralisch, Claire Lauvernet, Jean-Philippe Vidal, Núria Bonada, Zoltán Csabai, Heikki Mykrä, Petr Pařil, Luka Polović, and Thibault Datry
Hydrol. Earth Syst. Sci., 29, 1615–1636, https://doi.org/10.5194/hess-29-1615-2025, https://doi.org/10.5194/hess-29-1615-2025, 2025
Short summary
Short summary
Our study projects how climate change will affect the drying of river segments and stream networks in Europe, using advanced modelling techniques to assess changes in six river networks across diverse ecoregions. We found that drying events will become more frequent and intense and will start earlier or last longer, potentially turning some river sections from perennial to intermittent. The results are valuable for river ecologists for evaluating the ecological health of river ecosystem.
Alexandre Devers, Jean-Philippe Vidal, Claire Lauvernet, Olivier Vannier, and Laurie Caillouet
Hydrol. Earth Syst. Sci., 28, 3457–3474, https://doi.org/10.5194/hess-28-3457-2024, https://doi.org/10.5194/hess-28-3457-2024, 2024
Short summary
Short summary
Daily streamflow series for 661 near-natural French catchments are reconstructed over 1871–2012 using two ensemble datasets: HydRE and HydREM. They include uncertainties coming from climate forcings, streamflow measurement, and hydrological model error (for HydrREM). Comparisons with other hydrological reconstructions and independent/dependent observations show the added value of the two reconstructions in terms of quality, uncertainty estimation, and representation of extremes.
Alexandre Devers, Jean-Philippe Vidal, Claire Lauvernet, Olivier Vannier, and Laurie Caillouet
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-78, https://doi.org/10.5194/hess-2023-78, 2023
Publication in HESS not foreseen
Short summary
Short summary
The recent development of the a new meteorological dataset providing precipitation and temperature over France – FYRE Climate – has been transformed to streamflow time series over 1871–2012 through the used of a hydrological model. This led to the creation of the daily hydrological reconstructions called HyDRE and HyDRE. These two reconstructions are evaluated allow to better understand the variability of past hydrology over France.
Alexandre Devers, Jean-Philippe Vidal, Claire Lauvernet, and Olivier Vannier
Clim. Past, 17, 1857–1879, https://doi.org/10.5194/cp-17-1857-2021, https://doi.org/10.5194/cp-17-1857-2021, 2021
Short summary
Short summary
This article presents FYRE Climate, a dataset providing daily precipitation and temperature spanning the 1871–2012 period at 8 km resolution over France. FYRE Climate has been obtained through the combination of daily and yearly observations and a gridded reconstruction already available through a statistical technique called data assimilation. Results highlight the quality of FYRE Climate in terms of both long-term variations and reproduction of extreme events.
Cited articles
Alipour, A., Jafarzadegan, K., and Moradkhani, H.: Global sensitivity analysis
in hydrodynamic modeling and flood inundation mapping, 152, 105398,
https://doi.org/10.1016/j.envsoft.2022.105398, 2022. a
Alletto, L., Pot, V., Giuliano, S., Costes, M., Perdrieux, F., and Justes, E.:
Temporal variation in soil physical properties improves the water dynamics
modeling in a conventionally-tilled soil, Geoderma, 243–244, 18–28,
https://doi.org/10.1016/j.geoderma.2014.12.006, 2015. a, b
Antoniadis, A., Lambert-Lacroix, S., and Poggi, J.-M.: Random forests for
global sensitivity analysis: A selective review,
Reliab. Eng. Syst. Safe., 206, 107312, https://doi.org/10.1016/j.ress.2020.107312, 2021. a
Archer, G. E. B., Saltelli, A., and Sobol, I. M.: Sensitivity measures,
ANOVA-like Techniques and the use of bootstrap,
J. Stat. Comput. Sim., 58, 99–120, https://doi.org/10.1080/00949659708811825,
1997. a
Aulia, A., Jeong, D., Mohd Saaid, I., Kania, D., Taleb Shuker, M., and
El-Khatib, N. A.: A Random Forests-based sensitivity analysis framework for
assisted history matching, J. Petrol. Sci. Eng., 181,
106237, https://doi.org/10.1016/j.petrol.2019.106237, 2019. a
Balasubramanian, K., Sriperumbudur, B. K., and Lebanon, G.:
Ultrahigh Dimensional Feature Screening via RKHS Embeddings,
International Conference on Artificial Intelligence and Statistics,
2013. a
Becker, W. E., Tarantola, S., and Deman, G.: Sensitivity analysis approaches to
high-dimensional screening problems at low sample size, J. Stat. Comput. Sim., 88, 2089–2110,
https://doi.org/10.1080/00949655.2018.1450876, 2018. a
Bénard, C., Da Veiga, S., and Scornet, E.: Mean decrease accuracy for random forests: inconsistency, and a practical solution via the Sobol-MDA, Biometrika, 109, 881–900, https://doi.org/10.1093/biomet/asac017, 2022. a, b
Blatman, G. and Sudret, B.: Adaptive sparse polynomial chaos expansion based on
least angle regression, J. Comput. Phys., 230, 2345–2367,
https://doi.org/10.1016/j.jcp.2010.12.021, 2011. a, b
Branger, F. and McMillan, H. K.: Deriving hydrological signatures from soil
moisture data, Hydrol. Process., 34, 1410–1427,
https://doi.org/10.1002/hyp.13645, 2020. a
Branger, F., Braud, I., Debionne, S., Viallet, P., Dehotin, J., Henine, H.,
Nedelec, Y., and Anquetin, S.: Towards multi-scale integrated hydrological
models using the LIQUID® framework. Overview of the concepts and first
application examples, Environ. Modell. Softw., 25, 1672–1681,
https://doi.org/10.1016/j.envsoft.2010.06.005, 2010. a
Breiman, L.: Bagging predictors, Mach. Learn., 24, 123–140, 1996. a
Brown, C., Alix, A., Alonso-Prados, J.-L., Auteri, D., Gril, J.-J., Hiederer,
R., Holmes, C., Huber, A., de Jong, F., M. Liess, S., Loutseti, Mackay, N.,
Maier, W.-M., Maund, S., Pais, C., Reinert, W., Russell, M., Schad, T.,
Stadler, R., Streloke, M., Styczen, M., and van de Zande, J.: Landscape and
mitigation factors in aquatic risk assessment. Volume 2: detailed technic,
Tech. rep., European Commission, SANCO/10422/2005 v2.0, 2007. a, b, c
Buis, S., Piacentini, A., and Déclat, D.: PALM: a computational framework
for assembling high-performance computing applications,
Concurr. Comp.-Pract. E., 18, 231–245, https://doi.org/10.1002/cpe.914,
2006. a
Caisson, A.: Prise en main et application d’un modèle spatialisé
à base physique (CATHY) sur un versant expérimental pour la mise en
place d'un système d’assimilation de données, Master's thesis,
ENGEES, 2019. a
Catalogne, C., Lauvernet, C., and Carluer, N.: Guide d’utilisation de
l’outil BUVARD pour le dimensionnement des bandes tampons
végétalisées destinées à limiter les transferts de
pesticides par ruissellement, Tech. rep., Agence française pour la
biodiversité, 2018. a
Coutadeur, C., Coquet, Y., and Roger-Estrade, J.: Variation of hydraulic
conductivity in a tilled soil, Eur. J. Soil Sci., 53,
619–628, https://doi.org/10.1046/j.1365-2389.2002.00473.x, 2002. a
Da Veiga, S.: Global sensitivity analysis with dependence measures,
J. Stat. Comput. Sim., 85, 1283–1305,
https://doi.org/10.1080/00949655.2014.945932, 2015. a, b, c, d
Da Veiga, S., Gamboa, F., Iooss, B., and Prieur, C.: Basics and Trends in
Sensitivity Analysis, Society for Industrial and Applied Mathematics, https://doi.org/10.1137/1.9781611976694, 2021. a, b
D'Andrea, M. F., Letourneau, G., Rousseau, A. N., and Brodeur, J. C.:
Sensitivity analysis of the Pesticide in Water Calculator model for
applications in the Pampa region of Argentina, Sci. Total Environ., 698, 134232,
https://doi.org/10.1016/j.scitotenv.2019.134232, 2020. a, b
Darcy, H.: Recherches expérimentales relatives au mouvement de l'eau dans
les tuyaux, Impr. Impériale, 1857. a
De Lozzo, M. and Marrel, A.: New improvements in the use of dependence measures
for sensitivity analysis and screening, J. Stat. Comput. Sim.,
86, 3038–3058, https://doi.org/10.1080/00949655.2016.1149854, 2014. a, b
Dehotin, J., Braud, I., Vazquez, R., Debionne, S., and Viallet, P.: Prise en
compte de l'hétérogénéité des surfaces continentales dans la
modélisation couplées zone non saturé-zone saturée, Bulletin du GFHN, 54,
57–62, 2008. a
Dosskey, M. G., Helmers, M. J., and Eisenhauer, D. E.: A design aid for sizing
filter strips using buffer area ratio,
J. Soil Water Conserv., 66, 29–39, https://doi.org/10.2489/jswc.66.1.29, 2011. a
Dubus, I. G. and Brown, C. D.: Sensitivity and First-Step Uncertainty Analyses
for the Preferential Flow Model MACRO, J. Environ. Qual., 31,
227–240, https://doi.org/10.2134/jeq2002.2270, 2002. a
Dubus, I. G., Brown, C. D., and Beulke, S.: Sensitivity analyses for four
pesticide leaching models, Pest Manag. Sci., 59, 962–982,
https://doi.org/10.1002/ps.723, 2003. a, b, c
Durand, C.: Modélisation du transfert de pesticides à l'échelle de
la parcelle. Application au bassin versant de la Morcille (Nord Beaujolais,
69) et analyse de sensibilité du modèle, Master's thesis, ENGEES,
2014. a
Fajraoui, N., Ramasomanana, F., Younes, A., Mara, T., Ackerer, P., and
Guadagnini, A.: Use of global sensitivity analysis and polynomial chaos
expansion for interpretation of nonreactive transport experiments in
laboratory-scale porous media, Water Resour. Res., 47, W02521,
https://doi.org/10.1029/2010WR009639, 2011. a
Faúndez Urbina, C. A., van den Berg, F., van Dam, J. C., Tang, D. W. S., and
Ritsema, C. J.: Parameter sensitivity of SWAP-PEARL models for
pesticide leaching in macroporous soils, Vadose Zone J., 19, e20075,
https://doi.org/10.1002/vzj2.20075, 2020. a, b
FOCUS: FOCUS surface water scenarios in the EU evaluation process under
91/414/EEC, European commission, report of the FOCUS Working Group on Surface
Water Scenarios, EC Document Reference SANCO/4802/2001, 2001. a
Fouilloux, A. and Piacentini, A.: The PALM Project: MPMD paradigm for an
oceanic data assimilation software, in: Euro-Par'99 Parallel Processing:
5th International Euro-Par Conference Toulouse, France, 31August–3 September 1999, Proceedings, 1423–1430, Springer Berlin Heidelberg, Berlin,
Heidelberg, https://doi.org/10.1007/3-540-48311-X_200, 1999 (data available at: http://www.cerfacs.fr/globc/PALM_WEB/user.html#download, last access: 15 June 2020). a, b
Fox, G. A., Muñoz-Carpena, R., and Sabbagh, G. J.: Influence of flow
concentration on parameter importance and prediction uncertainty of pesticide
trapping by vegetative filter strips, J. Hydrol., 384, 164–173,
https://doi.org/10.1016/j.jhydrol.2010.01.020, 2010. a, b, c
Frésard, F.: Cartographie des sols d’un petit bassin versant en
Beaujolais viticole, en appui à l’évaluation du risque de
contamination des eaux par les pesticides, Master's thesis, Université de
Franche Comté, 2010. a
Fukumizu, K., Gretton, A., Xiaohai, S., and Schölkopf, B.:
Kernel Measures of Conditional Dependence,
in: Advances in Neural Information Processing Systems 20,
edited by: Platt, J. C., Koller, D., Singer, Y., and Roweis, S. T.,
Curran Associates, Inc.,
489–496,
2008. a
Gamboa, F., Janon, A., Klein, T., and Lagnoux, T.: Sensitivity indices for
multivariate outputs, C. R. Math., 351, 307–310,
https://doi.org/10.1016/j.crma.2013.04.016, 2013. a, b, c, d
Gao, B., Walter, M., Steenhuis, T., Hogarth, W., and Parlange, J.: Rainfall
induced chemical transport from soil to runoff: theory and experiments,
J. Hydrol., 295, 291–304, https://doi.org/10.1016/j.jhydrol.2004.03.026,
2004. a
Garcia, D., Arostegui, I., and Prellezo, R.: Robust combination of the Morris
and Sobol methods in complex multidimensional models, Environ. Modell.
Softw., 122, 104517, https://doi.org/10.1016/j.envsoft.2019.104517, 2019. a, b
Gouy, V., Liger, L., Carluer, N., and Margoum, C.: Site Atelier Ardières
Morcille, Irstea, BDOH, https://doi.org/10.17180/obs.saam, 2015. a, b
Gregorutti, B., Michel, B., and Saint-Pierre, P.: Correlation and variable
importance in random forests, Stat. Comput., 27, 659–678,
https://doi.org/10.1007/s11222-016-9646-1, 2017. a, b
Gretton, A., Bousquet, O., Smola, A., and Schölkopf, B.: Measuring
statistical dependence with Hilbert-Schmidt norms, in: International
conference on algorithmic learning theory, 63–77, Springer, https://doi.org/10.1007/11564089_7,
2005a. a
Gretton, A., Herbrich, R., Smola, A., Bousquet, O., and Schölkopf, B.:
Kernel Methods for Measuring Independence, J. Mach. Learn. Res., 6,
2075–2129, 2005b. a
Gupta, H. V., Wagener, T., and Liu, Y.: Reconciling theory with observations:
elements of a diagnostic approach to model evaluation, Hydrol.
Process., 22, 3802–3813, https://doi.org/10.1002/hyp.6989, 2008. a
Hamby, D. M.: A review of techniques for parameter sensitivity analysis of
environmental models, Environ. Monit. Assess., 32, 135–154, https://doi.org/10.1007/BF00547132, 1994. a
Harper, E. B., Stella, J. C., and Fremier, A. K.: Global sensitivity analysis
for complex ecological models: a case study of riparian cottonwood population
dynamics, Ecol. Appl., 21, 1225–1240, https://doi.org/10.1890/10-0506.1,
2011. a
Holvoet, K., van Griensven, A., Seuntjens, P., and Vanrolleghem, P. A.:
Sensitivity analysis for hydrology and pesticide supply towards the river in
SWAT, Phys. Chem. Earth, 30, 518–526, https://doi.org/10.1016/j.pce.2005.07.006, 2005. a, b
Hong, T. and Purucker, S. T.: Spatiotemporal sensitivity analysis of vertical
transport of pesticides in soil, Environ. Modell. Softw., 105,
24–38, https://doi.org/10.1016/j.envsoft.2018.03.018, 2018. a, b
Horner, I.: Design and evaluation of hydrological signatures for the diagnostic
and improvement of a process-based distributed hydrological model, PhD
thesis, Université Grenoble Alpes,
thèse de doctorat
dirigée par Branger, Flora Océan, Atmosphère, Hydrologie Université
Grenoble Alpes 2020, http://www.theses.fr/2020GRALU014 (last access: 15 March 2022), 2020. a
Ishwaran, H. and Kogalur, U.: Fast Unified Random Forests for Survival,
Regression, and Classification (RF-SRC), R package version 2.9.3., 2020. a
Ishwaran, H. and Lu, M.: Standard errors and confidence intervals for variable
importance in random forest regression, classification, and survival,
Stat. Med., 38, 558–582, https://doi.org/10.1002/sim.7803, 2019. a
Lauvernet, C. and Muñoz-Carpena, R.: Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips – Part 2: model coupling, application, factor importance, and uncertainty, Hydrol. Earth Syst. Sci., 22, 71–87, https://doi.org/10.5194/hess-22-71-2018, 2018. a, b, c, d, e, f
Lewis, K.-A., Tzilivakis, J., Warner, D., and Green, A.: An international
database for pesticide risk assessments and management,
Hum. Ecol.
Risk Assess., 22, 1050–1064,
https://doi.org/10.1080/10807039.2015.1133242, 2016. a, b
Li, K., De Jong, R., and Boisvert, J.: An exponential root-water-uptake model
with water stress compensation, J. Hydrol., 252, 189–204,
https://doi.org/10.1016/S0022-1694(01)00456-5, 2001. a
Lighthill, M. J. and Whitham, G. B.: On kinematic waves I. Flood movement in
long rivers, P. Roy. Soc. Lond. A, 229, 281–316,
https://doi.org/10.1098/rspa.1955.0088, 1955. a
Marelli, S. and Sudret, B.: UQLab: A framework for uncertainty quantification
in Matlab, in: Proc. 2nd Int. Conf. on Vulnerability, Risk Analysis and
Management (ICVRAM2014), https://doi.org/10.1061/9780784413609.257, 2014 (data available at: https://www.uqlab.com, last access: 11 January 2022). a, b
Marelli, S. and Sudret, B.: An active-learning algorithm that combines sparse
polynomial chaos expansions and bootstrap for structural reliability
analysis, Struct. Saf., 75, 67–74,
https://doi.org/10.1016/j.strusafe.2018.06.003, 2018. a, b
Marrel, A., Marie, N., and De Lozzo, M.: Advanced surrogate model and
sensitivity analysis methods for sodium fast reactor accident assessment,
Reliab. Eng. Syst. Safe., 138, 232–241,
https://doi.org/10.1016/j.ress.2015.01.019, 2015. a
McKay, M. D., Beckman, R. J., and Conover, W. J.: A comparison of three methods
for selecting values of input variables in the analysis of output from a
computer code, Technometrics, 21, 239–245, https://doi.org/10.2307/1268522, 1979. a
MeteoFrance: Evapotranspiration potentielle MONTHEIH, [data set], 2008. a
Meynaoui, A., Marrel, A., and Laurent-Bonneau, B.: Méthodologie basée
sur les mesures de dépendance HSIC pour l'analyse de sensibilité de
second niveau, in: 50èmes Journées de Statistique (JdS2018),
Palaiseau, France, cea-02339273, 2018. a
Nossent, J. and Bauwens, W.: Multi-variable sensitivity and identifiability
analysis for a complex environmental model in view of integrated water
quantity and water quality modeling, Water Sci. Technol., 65,
539–549, https://doi.org/10.2166/wst.2012.884, 2012. a
Nossent, J., Elsen, P., and Bauwens, W.: Sobol’ sensitivity analysis of a
complex environmental model, Environ. Modell. Softw., 26, 1515–1525,
https://doi.org/10.1016/j.envsoft.2011.08.010, 2011. a, b
Peyrard, X., Liger, L., Guillemain, C., and Gouy, V.: A trench study to assess
transfer of pesticides in subsurface lateral flow for a soil with contrasting
texture on a sloping vineyard in Beaujolais, Environ. Sci.
Pollut. Res., 13, https://doi.org/10.1007/s11356-015-4917-5, 2016. a
Pianosi, F., Beven, K., Freer, J., Hall, J., Rougier, J., Stephenson, D., and
Wagener, T.: Sensitivity analysis of environmental models: A systematic
review with practical workflow, Environ. Modell. Softw., 79, 214–232, https://doi.org/10.1016/j.envsoft.2016.02.008, 2016. a
R Core Team:
R: A Language and Environment for Statistical Computing,
R Foundation for Statistical Computing,
Vienna, Austria, https://www.R-project.org/ (last access: 1 November 2022),
2017. a
Reichenberger, S., Bach, M., Skitschak, A., and Frede, H.-G.: Mitigation
strategies to reduce pesticide inputs into ground- and surface water and
their effectiveness; A review, Sci. Total Environ., 384,
1–35, https://doi.org/10.1016/j.scitotenv.2007.04.046, 2007. a
Rodriguez-Galiano, V., Mendes, M., Garcia-Soldado, M., Chica-Olmo, M., and
Ribeiro, L.: Predictive modeling of groundwater nitrate pollution using
Random Forest and multisource variables related to intrinsic and specific
vulnerability: A case study in an agricultural setting (Southern Spain),
Sci. Total Environ., 476-477, 189–206,
https://doi.org/10.1016/j.scitotenv.2014.01.001, 2014. a, b
Ross, P. J.: Modeling soil water and solute transport – fast, simplified
numerical solutions, Agron. J., 95, 1352–1361,
https://doi.org/10.2134/agronj2003.1352, 2003. a
Ross, P. J.: Fast solution of Richards’ equation for flexible soil hydraulic
property descriptions, Tech. rep., CSIRO, https://doi.org/10.4225/08/5859741868a90, 2006. a
Roux, S., Buis, S., Lafolie, F., and Lamboni, M.: Cluster-based GSA: Global
sensitivity analysis of models with temporal or spatial outputs using
clustering, Environ. Modell. Softw., 140, 105046,
https://doi.org/10.1016/j.envsoft.2021.105046, 2021. a
Rouzies, E., Lauvernet, C., Barachet, C., Morel, T., Branger, F., Braud, I.,
and Carluer, N.: From agricultural catchment to management scenarios: A
modular tool to assess effects of landscape features on water and pesticide
behavior, Sci. Total Environ., 671, 1144–1160,
https://doi.org/10.1016/j.scitotenv.2019.03.060, 2019. a, b, c, d
Rouzies, E., Lauvernet, C., Sudret, B., and Vidard, A.: Software for: How to perform global sensitivity analysis of a catchment-scale, distributed pesticide transfer model? Application to the PESHMELBA model, Zenodo [software], https://doi.org/10.15454/2HAU8R, 2022a. a
Rouzies, E., Lauvernet, C., Sudret, B., and Vidard, A.: Code availability and data for: How to perform global sensitivity analysis of a catchment-scale, distributed pesticide transfer model? Application to the PESHMELBA model, Zenodo [code], https://doi.org/10.15454/2YVY4O, 2022b. a
Saint-Geours, N.: Analyse de sensibilité de modèles spatialisés :
application à l'analyse coût-bénéfice de projets de
prévention du risque d'inondation, PhD thesis, Université de
Montpellier 2, tel-00761032, 2012. a
Saltelli, A.: Sensitivity analysis for importance assessment, Risk Analysis, 22, 579–590,
https://doi.org/10.1111/0272-4332.00040, 2002. a
Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M.: Sensitivity
Analysis in Practice: A Guide to Assessing Scientific Models, Wiley,
https://doi.org/10.1002/0470870958, 2004. a
Saltelli, A., Jakeman, A., Razavi, S., and Wu, Q.: Sensitivity analysis: A
discipline coming of age, Environ. Modell. Softw., 146,
105226, https://doi.org/10.1016/j.envsoft.2021.105226, 2021. a
Sarrazin, F., Pianosi, F., and Wagener, T.: Global sensitivity analysis of
environmental models: convergence and validation, Environ. Modell.
Softw., 79, 135–152, https://doi.org/10.1016/j.envsoft.2016.02.005, 2016. a, b
Schwen, A., Bodner, G., Scholl, P., Buchan, G., and Loiskandl, W.: Temporal
dynamics of soil hydraulic properties and the water-conducting porosity under
different tillage, Soil Till. Res., 113, 89–98,
https://doi.org/10.1016/j.still.2011.02.005, 2011. a, b, c
Seki, K.: SWRC fit – a nonlinear fitting program with a water retention curve for soils having unimodal and bimodal pore structure, Hydrol. Earth Syst. Sci. Discuss., 4, 407–437, https://doi.org/10.5194/hessd-4-407-2007, 2007. a
Sheikholeslami, R., Razavi, S., Gupta, H. V., Becker, W., and Haghnegahdar, A.:
Global sensitivity analysis for high-dimensional problems: How to objectively
group factors and measure robustness and convergence while reducing
computational cost, Environ. Modell. Softw., 111, 282–299,
https://doi.org/10.1016/j.envsoft.2018.09.002, 2019. a
Sheikholeslami, R., Gharari, S., Papalexiou, S. M., and Clark, M. P.: VISCOUS:
A Variance-Based Sensitivity Analysis Using Copulas for Efficient
Identification of Dominant Hydrological Processes, Water Resour. Res.,
57, e2020WR028435, https://doi.org/10.1029/2020WR028435, 2021. a
Smart, D., Schwass, E., Lakso, A., and Morano, L.: Grapevine rooting patterns:
A comprehensive analysis and a review,
Am. J. Enol. Viticult., 57, 89–104, 2006. a
Soleimani, F.: Analytical seismic performance and sensitivity evaluation of
bridges based on random decision forest framework, Structures, 32, 329–341,
https://doi.org/10.1016/j.istruc.2021.02.049, 2021. a
Song, X., Zhang, J., Zhan, C., Xuan, Y., Ye, M., and Xu, C.: Global sensitivity
analysis in hydrological modeling: Review of concepts, methods, theoretical
framework, and applications, J. Hydrol., 523, 739–757,
https://doi.org/10.1016/j.jhydrol.2015.02.013, 2015. a
Sudret, B.: Global sensitivity analysis using polynomial chaos expansions,
Reliab. Eng. Syst. Safe., 93, 964–979,
https://doi.org/10.1016/j.ress.2007.04.002, 2008. a, b, c
Tang, Y., Reed, P., Wagener, T., and van Werkhoven, K.: Comparing sensitivity analysis methods to advance lumped watershed model identification and evaluation, Hydrol. Earth Syst. Sci., 11, 793–817, https://doi.org/10.5194/hess-11-793-2007, 2007. a, b
Tarantola, S., Giglioli, N., Jesinghaus, J., and Saltelli, A.: Can global
sensitivity analysis steer the implementation of models for environmental
assessments and decision-making?,
Stoch. Env. Res. Risk A., 16, 63–76, https://doi.org/10.1007/s00477-001-0085-x, 2002. a, b
Tissot, J.-Y. and Prieur, C.: A randomized orthogonal array-based procedure for
the estimation of first- and second-order Sobol' indices, J. Stat. Comput. Sim., 85, 1358–1381,
https://doi.org/10.1080/00949655.2014.971799, 2015. a
Touzani, S. and Busby, D.: Screening Method Using the Derivative-based Global
Sensitivity Indices with Application to Reservoir Simulator,
Oil Gas Sci. Technol., 69, 619–632, https://doi.org/10.2516/ogst/2013195, 2014. a
van Griensven, A., Meixner, T., Grunwald, S., Bishop, T., Diluzio, M., and
Srinivasan, R.: A global sensitivity analysis tool for the parameters of
multi-variable catchment models, J. Hydrol., 324, 10–23,
https://doi.org/10.1016/j.jhydrol.2005.09.008, 2006. a
Varado, N., Braud, I., and Ross, P.: Development and assessment of an efficient
vadose zone module solving the 1D Richards' equation and including root
extraction by plants, J. Hydrol., 323, 258–275,
https://doi.org/10.1016/j.jhydrol.2005.09.015, 2006. a, b
Walter, M., Gao, B., and Parlange, J.-Y.: Modeling soil solute release into
runoff with infiltration, J. Hydrol., 347, 430–437,
https://doi.org/10.1016/j.jhydrol.2007.09.033, 2007. a
Wang, S., Huang, G., Baetz, B., and Huang, W.: A polynomial chaos ensemble
hydrologic prediction system for efficient parameter inference and robust
uncertainty assessment, J. Hydrol., 530, 716–733,
https://doi.org/10.1016/j.jhydrol.2015.10.021, 2015. a
Yang, J.: Convergence and uncertainty analyses in Monte-Carlo based sensitivity
analysis, Environ. Modell. Softw., 26, 444–457,
https://doi.org/10.1016/j.envsoft.2010.10.007, 2011. a
Short summary
Water and pesticide transfer models are complex and should be simplified to be used in decision support. Indeed, these models simulate many spatial processes in interaction, involving a large number of parameters. Sensitivity analysis allows us to select the most influential input parameters, but it has to be adapted to spatial modelling. This study will identify relevant methods that can be transposed to any hydrological and water quality model and improve the fate of pesticide knowledge.
Water and pesticide transfer models are complex and should be simplified to be used in decision...