Articles | Volume 15, issue 19
https://doi.org/10.5194/gmd-15-7287-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-7287-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Water balance model (WBM) v.1.0.0: a scalable gridded global hydrologic model with water-tracking functionality
Danielle S. Grogan
CORRESPONDING AUTHOR
Earth Systems Research Center, Institute for the Study of Earth,
Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA
Earth Systems Research Center, Institute for the Study of Earth,
Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA
Alex Prusevich
Earth Systems Research Center, Institute for the Study of Earth,
Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA
Wilfred M. Wollheim
Earth Systems Research Center, Institute for the Study of Earth,
Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA
Department of Natural Resources and the Environment, University of New
Hampshire, NH 03824, USA
Stanley Glidden
Earth Systems Research Center, Institute for the Study of Earth,
Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA
Richard B. Lammers
Earth Systems Research Center, Institute for the Study of Earth,
Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA
Related authors
Robert Reinecke, Annemarie Bäthge, Ricarda Dietrich, Sebastian Gnann, Simon N. Gosling, Danielle Grogan, Andreas Hartmann, Stefan Kollet, Rohini Kumar, Richard Lammers, Sida Liu, Yan Liu, Nils Moosdorf, Bibi Naz, Sara Nazari, Chibuike Orazulike, Yadu Pokhrel, Jacob Schewe, Mikhail Smilovic, Maryna Strokal, Yoshihide Wada, Shan Zuidema, and Inge de Graaf
EGUsphere, https://doi.org/10.5194/egusphere-2025-1181, https://doi.org/10.5194/egusphere-2025-1181, 2025
Short summary
Short summary
Here we describe a collaborative effort to improve predictions of how climate change will affect groundwater. The ISIMIP groundwater sector combines multiple global groundwater models to capture a range of possible outcomes and reduce uncertainty. Initial comparisons reveal significant differences between models in key metrics like water table depth and recharge rates, highlighting the need for structured model intercomparisons.
Charles Rougé, Patrick M. Reed, Danielle S. Grogan, Shan Zuidema, Alexander Prusevich, Stanley Glidden, Jonathan R. Lamontagne, and Richard B. Lammers
Hydrol. Earth Syst. Sci., 25, 1365–1388, https://doi.org/10.5194/hess-25-1365-2021, https://doi.org/10.5194/hess-25-1365-2021, 2021
Short summary
Short summary
Amid growing interest in using large-scale hydrological models for flood and drought monitoring and forecasting, it is important to evaluate common assumptions these models make. We investigated the representation of reservoirs as separate (non-coordinated) infrastructure. We found that not appropriately representing coordination and control processes can lead a hydrological model to simulate flood and drought events that would not occur given the coordinated emergency response in the basin.
Iman Haqiqi, Danielle S. Grogan, Thomas W. Hertel, and Wolfram Schlenker
Hydrol. Earth Syst. Sci., 25, 551–564, https://doi.org/10.5194/hess-25-551-2021, https://doi.org/10.5194/hess-25-551-2021, 2021
Short summary
Short summary
This study combines a fine-scale weather product with outputs of a hydrological model to construct functional metrics of individual and compound hydroclimatic extremes for agriculture. Then, a yield response function is estimated with individual and compound metrics focusing on corn in the United States during the 1981–2015 period. The findings suggest that metrics of compound hydroclimatic extremes are better predictors of corn yield variations than metrics of individual extremes.
Robert Reinecke, Annemarie Bäthge, Ricarda Dietrich, Sebastian Gnann, Simon N. Gosling, Danielle Grogan, Andreas Hartmann, Stefan Kollet, Rohini Kumar, Richard Lammers, Sida Liu, Yan Liu, Nils Moosdorf, Bibi Naz, Sara Nazari, Chibuike Orazulike, Yadu Pokhrel, Jacob Schewe, Mikhail Smilovic, Maryna Strokal, Yoshihide Wada, Shan Zuidema, and Inge de Graaf
EGUsphere, https://doi.org/10.5194/egusphere-2025-1181, https://doi.org/10.5194/egusphere-2025-1181, 2025
Short summary
Short summary
Here we describe a collaborative effort to improve predictions of how climate change will affect groundwater. The ISIMIP groundwater sector combines multiple global groundwater models to capture a range of possible outcomes and reduce uncertainty. Initial comparisons reveal significant differences between models in key metrics like water table depth and recharge rates, highlighting the need for structured model intercomparisons.
Charles Rougé, Patrick M. Reed, Danielle S. Grogan, Shan Zuidema, Alexander Prusevich, Stanley Glidden, Jonathan R. Lamontagne, and Richard B. Lammers
Hydrol. Earth Syst. Sci., 25, 1365–1388, https://doi.org/10.5194/hess-25-1365-2021, https://doi.org/10.5194/hess-25-1365-2021, 2021
Short summary
Short summary
Amid growing interest in using large-scale hydrological models for flood and drought monitoring and forecasting, it is important to evaluate common assumptions these models make. We investigated the representation of reservoirs as separate (non-coordinated) infrastructure. We found that not appropriately representing coordination and control processes can lead a hydrological model to simulate flood and drought events that would not occur given the coordinated emergency response in the basin.
Iman Haqiqi, Danielle S. Grogan, Thomas W. Hertel, and Wolfram Schlenker
Hydrol. Earth Syst. Sci., 25, 551–564, https://doi.org/10.5194/hess-25-551-2021, https://doi.org/10.5194/hess-25-551-2021, 2021
Short summary
Short summary
This study combines a fine-scale weather product with outputs of a hydrological model to construct functional metrics of individual and compound hydroclimatic extremes for agriculture. Then, a yield response function is estimated with individual and compound metrics focusing on corn in the United States during the 1981–2015 period. The findings suggest that metrics of compound hydroclimatic extremes are better predictors of corn yield variations than metrics of individual extremes.
Cited articles
Aber, J. D., Ollinger, S. V., and Driscoll, C. T.: Modeling nitrogen
saturation in forest ecosystems in response to land use and atmospheric
deposition, Ecol. Model., 101, 61–78,
https://doi.org/10.1016/S0304-3800(97)01953-4, 1997.
Alexander, R. B., Boyer, E. W., Smith, R. A., Schwarz, G. E., and Moore, R.
B.: The Role of Headwater Streams in Downstream Water Quality1: The Role of
Headwater Streams in Downstream Water Quality, J. Am.
Water Resour. As., 43, 41–59,
https://doi.org/10.1111/j.1752-1688.2007.00005.x, 2007.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: FAO Irrigation and drainage paper No. 56, Food and Agriculture Organization of the United Nations, Rome, 56, e156, http://www.climasouth.eu/sites/default/files/FAO%2056.pdf (last access: 20 June 2018), 1998.
Alley, W. M. and Veenhuis, J. E.: Effective Impervious Area in Urban Runoff
Modeling, J. Hydraul. Eng., 109, 313–319,
https://doi.org/10.1061/(ASCE)0733-9429(1983)109:2(313), 1983.
Biemans, H. and Siderius, C.: Advances in global hydrology – crop modelling
to support the UN's Sustainable Development Goals in South Asia, Curr.
Opin. Env. Sust., 40, 108–116,
https://doi.org/10.1016/j.cosust.2019.10.005, 2019.
Blunden, J. and Arndt, D. S.: State of the Climate in 2019, B. Am. Meteorol. Soc., 101, S1–S429,
https://doi.org/10.1175/2020BAMSStateoftheClimate.1, 2020.
Bosmans, J. H. C., van Beek, L. P. H., Sutanudjaja, E. H., and Bierkens, M. F. P.: Hydrological impacts of global land cover change and human water use, Hydrol. Earth Syst. Sci., 21, 5603–5626, https://doi.org/10.5194/hess-21-5603-2017, 2017.
Bring, A., Shiklomanov, A., and Lammers, R. B.: Pan-Arctic river discharge:
Prioritizing monitoring of future climate change hot spots: PAN-ARCTIC RIVER
DISCHARGE MONITORING, Earth's Future, 5, 72–92,
https://doi.org/10.1002/2016EF000434, 2017.
Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Freer, J. E., Gutmann, E. D., Wood, A. W., Brekke, L. D., and Arnold, J. R.: A unified approach for process-based hydrologic
modeling: 1. Modeling concept, Water Resour. Res., 51, 2498–2514,
https://doi.org/10.1002/2015WR017198, 2015.
Cohen, S., Kettner, A. J., Syvitski, J. P. M., and Fekete, B. M.: WBMsed, a
distributed global-scale riverine sediment flux model: Model description and
validation, Comput. Geosci., 53, 80–93,
https://doi.org/10.1016/j.cageo.2011.08.011, 2013.
Cohen, S., Kettner, A. J., and Syvitski, J. P. M.: Global suspended sediment
and water discharge dynamics between 1960 and 2010: Continental trends and
intra-basin sensitivity, Global Planet. Change, 115, 44–58,
https://doi.org/10.1016/j.gloplacha.2014.01.011, 2014.
Cohen, S., Praskievicz, S., and Maidment, D. R.: Featured Collection
Introduction: National Water Model, J. Am. Water
Resour. As., 54, 767–769,
https://doi.org/10.1111/1752-1688.12664, 2018.
Dai, A. and Trenberth, K. E.: Estimates of freshwater discharge from continents: Latitudinal and seasonal variations, J. Hydrometeorol., 3, 660–687, https://doi.org/10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2, 2002.
Dalin, C., Wada, Y., Kastner, T., and Puma, M. J.: Groundwater depletion
embedded in international food trade, Nature, 543, 700–704,
https://doi.org/10.1038/nature21403, 2017.
D'Almeida, C., Vörösmarty, C. J., Marengo, J. A., Hurtt, G. C.,
Dingman, S. L., and Keim, B. D.: A water balance model to study the
hydrological response to different scenarios of deforestation in Amazonia,
J. Hydrol., 331, 125–136,
https://doi.org/10.1016/j.jhydrol.2006.05.027, 2006.
Deardorff, J. W.: Efficient prediction of ground surface temperature and
moisture, with inclusion of a layer of vegetation, J. Geophys.
Res., 83, 1889, https://doi.org/10.1029/JC083iC04p01889, 1978.
de Wit, M. J. M.: Nutrient fluxes at the river basin scale. I: the PolFlow
model, Hydrol. Process., 15, 743–759,
https://doi.org/10.1002/hyp.175, 2001.
Dickinson, R. E.: Modeling evapotranspiration for three-dimensional global
climate models, in: Geophysical
Monograph Series, edited by: Hansen, J. E. and Takahashi, T., American
Geophysical Union, 29, 58–72, Washington, D.C., https://doi.org/10.1029/GM029p0058, 1984.
Dillon, P., Stuyfzand, P., Grischek, T., Lluria, M., Pyne, R. D. G., Jain, R. C., Bear, J., Schwarz, J., Wang, W., Fernandez, E., and Stefan, C.: Sixty years of global progress in managed aquifer recharge,
Hydrogeol. J., 27, 1–30,
https://doi.org/10.1007/s10040-018-1841-z, 2019.
Dingman, S. L.: Equilibrium temperatures of water surfaces as related to air
temperature and solar radiation, Water Resour. Res., 8, 42–49,
https://doi.org/10.1029/WR008i001p00042, 1972.
Dingman, S. L.: Physical hydrology, 2nd edn., Upper Saddle River, N.J,
Prentice Hall, 2002.
Dingman, S. L.: Fluvial Hydraulics, Oxford University Press, New York, NY,
2009.
Döll, P. and Siebert, S.: Global modeling of irrigation water
requirements: GLOBAL MODELING OF IRRIGATION WATER REQUIREMENTS, Water
Resour. Res., 38, 8-1–8-10, https://doi.org/10.1029/2001WR000355,
2002.
Döll, P., Kaspar, F., and Lehner, B.: A global hydrological model for deriving water availability indicators: model testing and validation, J. Hydrol., 270, 105–134, https://doi.org/10.1016/S0022-1694(02)00283-4, 2003.
Döll, P., Hoffmann-Dobrev, H., Portmann, F. T., Siebert, S., Eicker, A., Rodell, M., Strassberg, G., and Scanlon, B. R.: Impact of water withdrawals from groundwater and surface
water on continental water storage variations, J. Geodynam.,
59–60, 143–156, https://doi.org/10.1016/j.jog.2011.05.001, 2012.
Döll, P., Müller Schmied, H., Schuh, C., Portmann, F. T., and
Eicker, A.: Global-scale assessment of groundwater depletion and related
groundwater abstractions: Combining hydrological modeling with information
from well observations and GRACE satellites, Water Resour. Res.,
50, 5698–5720, https://doi.org/10.1002/2014WR015595, 2014.
Dottori, F., Szewczyk, W., Ciscar, J. C., Zhao, F., Alfieri, L., Hirabayashi, Y., Bianchi, A., Mongelli, I., Frieler, K., Betts, R. A., and Feyen, L.: Increased human and economic losses from river
flooding with anthropogenic warming, Nat. Clim. Change, 8, 781–786,
https://doi.org/10.1038/s41558-018-0257-z, 2018.
Douglas, E. M., Chomitz, K. M., Sebastian, K., Vorosmarty, C. J., and Wood,
S.: The Role Of Tropical Forests In Supporting Biodiversity And Hydrological
Integrity: A Synoptic Overview, The World Bank,
https://doi.org/10.1596/1813-9450-3635, 2005.
Douglas, E. M., Niyogi, D., Frolking, S., Yeluripati, J. B., Pielke Sr., R. A., Niyogi, N., Vörösmarty, C. J., and Mohanty, U. C.: Changes in moisture and energy fluxes due to
agricultural land use and irrigation in the Indian Monsoon Belt, Geophys.
Res. Lett., 33, L14403, https://doi.org/10.1029/2006GL026550,
2006a.
Douglas, E. M., Wood, S., Sebastian, K., Vörösmarty, C. J., Chomitz,
K. M., and Tomich, T. P.: Policy implications of a pan-tropic assessment of
the simultaneous hydrological and biodiversity impacts of deforestation,
Water Resour. Manag., 21, 211–232,
https://doi.org/10.1007/s11269-006-9050-2, 2006b.
Dunn, F. E., Darby, S. E., Nicholls, R. J., Cohen, S., Zarfl, C., and
Fekete, B. M.: Projections of declining fluvial sediment delivery to major
deltas worldwide in response to climate change and anthropogenic stress,
Environ. Res. Lett., 14, 084034,
https://doi.org/10.1088/1748-9326/ab304e, 2019.
Eilander, D., van Verseveld, W., Yamazaki, D., Weerts, A., Winsemius, H. C., and Ward, P. J.: A hydrography upscaling method for scale-invariant parametrization of distributed hydrological models, Hydrol. Earth Syst. Sci., 25, 5287–5313, https://doi.org/10.5194/hess-25-5287-2021, 2021.
Elliott, J., Deryng, D., Müller, C., Frieler, K., Konzmann, M., Gerten, D., Glotter, M., Flörke, M., Wada, Y., Best, N., and Eisner, S.: Constraints and potentials of future irrigation water
availability on agricultural production under climate change, P.
Natl. Acad. Sci. USA, 111, 3239–3244,
https://doi.org/10.1073/pnas.1222474110, 2014.
Falkenmark, M. and Rockström, J.: The New Blue and Green Water
Paradigm: Breaking New Ground for Water Resources Planning and Management,
J. Water Resour. Plann. Manage., 132, 129–132,
https://doi.org/10.1061/(ASCE)0733-9496(2006)132:3(129), 2006.
Fan, Y., Chen, Y., He, Q., Li, W., and Wang, Y.: Isotopic Characterization
of River Waters and Water Source Identification in an Inland River, Central
Asia, Water, 8, 286, https://doi.org/10.3390/w8070286, 2016.
FAO: AQUASTAT Core Database, Food and Agricultural Organization of the United Nations [data set], https://www.fao.org/aquastat/statistics/query/index.html;jsessionid=71F6F6340C470CFBE92D71489546AA39, last access: 1 July 2015.
FAO: AQUASTAT Core Database. Food and Agricultural Organization of the United Nations [data set], https://www.fao.org/aquastat/en/databases/maindatabase, last access: 1 January 2016.
FAO/UNESCO: Digital soil map of the world and derived soil properties, https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/ (last access: 15 July 2015), FAO, Rome, Italy, 2003.
Federer, C. A., Vörösmarty, C., and Fekete, B.: Sensitivity of annual evaporation to soil and root properties in two models of contrasting complexity, J. Hydrometeorol., 4, 1276–1290, https://doi.org/10.1175/1525-7541(2003)004<1276:SOAETS>2.0.CO;2, 2003.
Fekete, B. M., Vörösmarty, C. J., and Grabs, W.: Global Composite Runoff
Fields on Observed River Discharge and Simulated Water Balances, Technical
Report No. 22, Global Runoff Data Center, Koblenz, Germany, 2000.
Fekete, B. M., Vörösmarty, C. J., and Grabs, W.: High-resolution
fields of global runoff combining observed river discharge and simulated
water balances: HIGH-RESOLUTION COMPOSITE RUNOFF FIELDS, Global
Biogeochem. Cycles, 16, 15-1–15-10.
https://doi.org/10.1029/1999GB001254, 2002.
Fekete, B. M., Gibson, J. J., Aggarwal, P., and Vörösmarty, C. J.:
Application of isotope tracers in continental scale hydrological modeling,
J. Hydrol., 330, 444–456,
https://doi.org/10.1016/j.jhydrol.2006.04.029, 2006.
Fischer, G., Nachtergaele, F., Prieler, S., van Velthuizen, H. T., Verelst,
L., and Wiberg, D.: Global Agro-ecological Zones Assessment for Agriculture
(GAEZ 2008), IIASA, Laxenburg, Austria and FAO, Rome, Italy, 2008.
Frenken, K. (Ed.).: Irrigation in Southern and Eastern Asia in figures:
Aquastat survey, 2011, Food and Agriculture of the United Nations, Rome,
2012.
The Global Runoff Data Centre: GRDC Reference Dataset, The Global Runoff Data Centre, 56068 Koblenz, Germany [data set], https://www.bafg.de/GRDC/EN/04_spcldtbss/43_GRfN/refDataset_node.html (last access: 4 October 2016), 2015.
The Global Runoff Data Centre: GRDC Reference Dataset, The Global Runoff Data Centre, 56068 Koblenz, Germany [data set], https://www.bafg.de/GRDC/EN/04_spcldtbss/43_GRfN/refDataset_node.html, 2020.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., and Wargan, K.: The Modern-Era Retrospective Analysis for Research and
Applications, Version 2 (MERRA-2), J. Climate, 30, 5419–5454,
https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Gerten, D., Schlaphoff, S., Haberlandt, U., Lucht, W., and Sitch, S.:
Terresterial vegetation and water balance – hydrological evaluation of a
dynamic global vegetation model,
https://doi.org/10.1016/j.jhydrol.2003.09.029, 2004.
Ghassemi, F. and White, I.: Inter-basin water transfer: case studies from
Australia, United States, Canada, China, and India, Cambridge University Press, Cambridge, UK, New
York, 2007.
Gleeson, T., Wada, Y., Bierkens, M. F. P., and van Beek, L. P. H.: Water
balance of global aquifers revealed by groundwater footprint, Nature,
488, 197–200. https://doi.org/10.1038/nature11295, 2012.
Gleick, P. H., Pacific Institute for Studies in Development, Environment,
and Security, and Stockholm Environment Institute (Eds.): Water in crisis:
a guide to the world's fresh water resources, Oxford University
Press, New York, ISBN-13 978-0195076288, 1993.
Gochis, D. J., Barlage, M., Cabell, R., Casali, M., Dugger, A., FitzGerald,
K., McAllister, M., McCreight, J., RafieeiNasab, A., Read, L., Sampson, D.,
Yates, D., and Zhang, Y.: The WRF-Hydro modeling system technical
description, Version 5.1.1, NCAR Technial Note, 107 pp., Zenodo, https://doi.org/10.5281/zenodo.3625238, 2020.
Grafton, R. Q., Williams, J., Perry, C. J., Molle, F., Ringler, C., Steduto, P., Udall, B., Wheeler, S. A., Wang, Y., Garrick, D., and Allen, R. G.: The paradox of irrigation efficiency, Science, 361,
748–750, https://doi.org/10.1126/science.aat9314, 2018.
Grogan, D. S.: Global and Regaional assessments of unsustainable groundwater
use in irrigated agriculture, PhD Thesis, University of New Hampshire, USA,
221 pp., 2016.
Grogan, D. S. and Zuidema, S.: wsag/WBM: v1.0.0 (v1.0.0), Zenodo [code],
https://doi.org/10.5281/zenodo.6263097, 2022.
Grogan, D. S., Zhang, F., Prusevich, A., Lammers, R. B., Wisser, D., Glidden, S., Li, C., and Frolking, S.: Quantifying the link between crop production and mined
groundwater irrigation in China, Sci. Total Environ., 511,
161–175, https://doi.org/10.1016/j.scitotenv.2014.11.076, 2015.
Grogan, D. S., Wisser, D., Prusevich, A., Lammers, R. B., and Frolking, S.:
The use and re-use of unsustainable groundwater for irrigation: a global
budget, Environ. Res. Lett., 12, 034017,
https://doi.org/10.1088/1748-9326/aa5fb2, 2017.
Grogan, D. S., Burakowski, E. A., and Contosta, A. R.: Snowmelt control on
spring hydrology declines as the vernal window lengthens, Environ.
Res. Lett., 15, 114040, https://doi.org/10.1088/1748-9326/abbd00,
2020.
Grogan, D. S., Zuidema, S., Prusevich, A., Wollheim, W.M., Glidden, S., and
Lammers, R. B.: University of New Hampshire Water Balance Model Ancillary
Data for use with the WBM Open Source Release Version 1.0.0, University of New Hampshire [data set],
https://doi.org/10.34051/d/2022.2, 2022.
Groisman, P. Y., Bulygina, O. N., Henebry, G. M., Speranskaya, N. A., Shiklomanov, A. I., Chen, Y., Tchebakova, N. M., Parfenova, E. I., Tilinina, N. D., Zolina, O. G., and Dufour, A.: Dry Land Belt of Northern Eurasia:
Contemporary Environmental Changes, in: Gutman, G., Chen, J., Henebry, G. M.,
and Kappas, M., Landscape Dynamics of Drylands across Greater Central
Asia: People, Societies and Ecosystems, 17, 11–23, Springer
International Publishing, Cham,
https://doi.org/10.1007/978-3-030-30742-4_2, 2020.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Flörke, M., Hanasaki, N., Konzmann, M., Ludwig, F., Masaki, Y., Schewe, J., and Stacke, T.: Global water resources affected by human interventions
and climate change, P. Natl. Acad. Sci. USA, 111,
3251–3256, https://doi.org/10.1073/pnas.1222475110, 2014.
Haie, N. and Keller, A. A.: Effective Efficiency as a Tool for Sustainable
Water Resources Management, J. Am. Water
Resour. As., 44, 961–968,
https://doi.org/10.1111/j.1752-1688.2008.00194.x, 2008.
Håkanson, L.: The importance of lake morphometry and catchment
characteristics in limnology – ranking based on statistical analyses,
Hydrobiologia, 541, 117–137, https://doi.org/10.1007/s10750-004-5032-7,
2005.
Hamon, W. R.: Computation of direct runoff amount from storm rainfall, Int. Assoc. Sci. Hydrol. Pub., 63, 52–62, 1963.
Hanasaki, N., Kanae, S., Oki, T., Masuda, K., Motoya, K., Shirakawa, N., Shen, Y., and Tanaka, K.: An integrated model for the assessment of global water resources – Part 1: Model description and input meteorological forcing, Hydrol. Earth Syst. Sci., 12, 1007–1025, https://doi.org/10.5194/hess-12-1007-2008, 2008a.
Hanasaki, N., Kanae, S., Oki, T., Masuda, K., Motoya, K., Shirakawa, N., Shen, Y., and Tanaka, K.: An integrated model for the assessment of global water resources – Part 2: Applications and assessments, Hydrol. Earth Syst. Sci., 12, 1027–1037, https://doi.org/10.5194/hess-12-1027-2008, 2008b.
Hanasaki, N., Yoshikawa, S., Pokhrel, Y., and Kanae, S.: A global hydrological simulation to specify the sources of water used by humans, Hydrol. Earth Syst. Sci., 22, 789–817, https://doi.org/10.5194/hess-22-789-2018, 2018.
Haqiqi, I., Grogan, D. S., Hertel, T. W., and Schlenker, W.: Quantifying the impacts of compound extremes on agriculture, Hydrol. Earth Syst. Sci., 25, 551–564, https://doi.org/10.5194/hess-25-551-2021, 2021.
Harrigan, S., Zsoter, E., Alfieri, L., Prudhomme, C., Salamon, P., Wetterhall, F., Barnard, C., Cloke, H., and Pappenberger, F.: GloFAS-ERA5 operational global river discharge reanalysis 1979–present, Earth Syst. Sci. Data, 12, 2043–2060, https://doi.org/10.5194/essd-12-2043-2020, 2020.
Hrachowitz, M., Savenije, H., Bogaard, T. A., Tetzlaff, D., and Soulsby, C.: What can flux tracking teach us about water age distribution patterns and their temporal dynamics?, Hydrol. Earth Syst. Sci., 17, 533–564, https://doi.org/10.5194/hess-17-533-2013, 2013.
Huang, T., Wollheim, W. M., and Jones, S. H.: Removal of Fecal Indicator
Bacteria by River Networks, Water, 14, 617,
https://doi.org/10.3390/w14040617, 2022.
Huss, M. and Hock, R.: A new model for global glacier change and sea-level
rise, Front. Earth Sci., 3, 54,
https://doi.org/10.3389/feart.2015.00054, 2015.
Jägermeyr, J., Gerten, D., Heinke, J., Schaphoff, S., Kummu, M., and Lucht, W.: Water savings potentials of irrigation systems: global simulation of processes and linkages, Hydrol. Earth Syst. Sci., 19, 3073–3091, https://doi.org/10.5194/hess-19-3073-2015, 2015.
Jägermeyr, J., Gerten, D., Schaphoff, S., Heinke, J., Lucht, W., and
Rockström, J.: Integrated crop water management might sustainably halve
the global food gap, Environ. Res. Lett., 11, 025002,
https://doi.org/10.1088/1748-9326/11/2/025002, 2016.
Jasechko, S., Perrone, D., Befus, K. M., Bayani Cardenas, M., Ferguson, G.,
Gleeson, T., Luijendijk, E., McDonnell, J. J., Taylor, R. G., Wada, Y., and
Kirchner, J. W.: Global aquifers dominated by fossil groundwaters but wells
vulnerable to modern contamination, Nat. Geosci., 10, 425–429, https://doi.org/10.1038/ngeo2943, 2017.
Kadiresan, K. and Khanal, P. R.: Rethinking Irrigation for Global Food
Security: Irrigation and food security, Irrig. Drain., 67,
8–11, https://doi.org/10.1002/ird.2219, 2018.
Konar, M., Hussein, Z., Hanasaki, N., Mauzerall, D. L., and Rodriguez-Iturbe, I.: Virtual water trade flows and savings under climate change, Hydrol. Earth Syst. Sci., 17, 3219–3234, https://doi.org/10.5194/hess-17-3219-2013, 2013.
Konikow, L. F.: Contribution of global groundwater depletion since 1900 to sea-level rise, Geophys. Res. Lett., 38, L17401, doi:10.1029/2011GL048604, 2011.
Kumar, S. V., Peters-Lidard, C. D., Tian, Y., Houser, P. R., Geiger, J., Olden, S., Lighty, L., Eastman, J. L., Doty, B., Dirmeyer, P., and Adams, J.: Land information system: An interoperable framework for high resolution
land surface modeling, Environ. Model. Softw., 21,
1402–1415, https://doi.org/10.1016/j.envsoft.2005.07.004, 2006.
Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., Collier, N., Ghimire, B., van Kampenhout, L., Kennedy, D., and Kluzek, E.: The Community Land Model Version 5: Description of New
Features, Benchmarking, and Impact of Forcing Uncertainty, J.
Adv. Model. Earth Sy., 11, 4245–4287,
https://doi.org/10.1029/2018MS001583, 2019.
Lehner, B., Verdin, K., and Jarvis, A.: New Global Hydrography Derived From
Spaceborne Elevation Data, Eos, Transactions American Geophysical Union,
89, 93–94, https://doi.org/10.1029/2008EO100001, 2008.
Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Döll, P., Endejan, M., Frenken, K., Magome, J., and Nilsson, C.: High-resolution mapping of the world's reservoirs
and dams for sustainable river-flow management, Front. Ecol.
Environ., 9, 494–502, https://doi.org/10.1890/100125, 2011.
Leopold, L. B. and Maddock, T.: The Hydraulic Geometry of Stream Channels
and Some Physiographic Implications, United States Geological Survey,
Professional Paper 252, 57 pp., https://doi.org/10.3133/pp252, 1953.
Liang, S. and Greene, R.: A high-resolution global runoff estimate based on
GIS and an empirical runoff coefficient, Hydrol. Res., 51,
1238–1260, https://doi.org/10.2166/nh.2020.132, 2020.
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A simple hydrologically based model of land surface water and energy fluxes for general circulation models, J. Geophys. Res., 99, 14415–14428, https://doi.org/10.1029/94JD00483, 1994.
Lin, P., Pan, M., Beck, H. E., Yang, Y., Yamazaki, D., Frasson, R., David,
C. H., Durand, M., Pavelsky, T. M., Allen, G. H., Gleason, C. J., and Wood,
E. F.: Global Reconstruction of Naturalized River Flows at 2.94 Million
Reaches, Water Resour. Res., 55, 6499–6516, https://doi.org/10.1029/2019WR025287, 2019.
Liu, J., Hertel, T. W., Lammers, R. B., Prusevich, A., Baldos, U. L. C.,
Grogan, D. S., and Frolking, S.: Achieving sustainable irrigation water
withdrawals: global impacts on food security and land use, Environ.
Res. Lett., 12, 104009, https://doi.org/10.1088/1748-9326/aa88db,
2017.
Maidment, D. R. (Ed.): Handbook of hydrology, McGraw-Hill, New York, ISBN-13 978-0070397323 , 1993.
Miara, A. and Vörösmarty, C. J.: A dynamic model to assess tradeoffs in power production and riverine ecosystem protection, Environ. Sci.-Process. Impacts, 15, 1113–1126, https://doi.org/10.1039/C3EM00196B, 2013.
Miara, A., Macknick, J. E., Vörösmarty, C. J., Tidwell, V. C., Newmark, R., and Fekete, B.: Climate and water resource change impacts and adaptation potential for US power supply, Nat. Clim. Change, 7, 793–798, https://doi.org/10.1038/nclimate3417, 2017.
Mineau, M. M., Wollheim, W. M., and Stewart, R. J.: An index to characterize
the spatial distribution of land use within watersheds and implications for
river network nutrient removal and export, Geophys. Res. Lett.,
42, 6688–6695, https://doi.org/10.1002/2015GL064965, 2015.
Mishra, S. K., Veselka, T. D., Prusevich, A. A., Grogan, D. S., Lammers, R. B., Rounce, D. R., Ali, S. H., and Christian, M. H.: Differential Impact of Climate Change on the
Hydropower Economics of Two River Basins in High Mountain Asia, Front.
Environ. Sci., 8, 26, https://doi.org/10.3389/fenvs.2020.00026,
2020.
Monteith, J. L.: Evaporation and environment, Symposia of the Society for Experimental Biology, 19, 205–234, 1965.
Mulholland, P. J., Helton, A. M., Poole, G. C., Hall, R. O., Hamilton, S. K., Peterson, B. J., Tank, J. L., Ashkenas, L. R., Cooper, L. W., Dahm, C. N., and Dodds, W. K.: Stream denitrification across biomes and its
response to anthropogenic nitrate loading, Nature, 452, 202–205,
https://doi.org/10.1038/nature06686, 2008.
Müller Schmied, H., Eisner, S., Franz, D., Wattenbach, M., Portmann, F. T., Flörke, M., and Döll, P.: Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration, Hydrol. Earth Syst. Sci., 18, 3511–3538, https://doi.org/10.5194/hess-18-3511-2014, 2014.
Nash, J. E. and Sutcliffe, J. V:. River flow forecasting through conceptual models part I–A discussion of principles, J. Hydrol., 10, 282–290, 1970.
Nijssen, B., O'Donnell, G. M., Lettenmaier, D. P., Lohmann, D., and Wood, E. F.: Predicting the discharge of global rivers, J. Climate, 14, 3307–3323, https://doi.org/10.1175/1520-0442(2001)014<3307:PTDOGR>2.0.CO;2, 2001.
Niswonger, R. G., Morway, E. D., Triana, E., and Huntington, J. L.: Managed
aquifer recharge through off-season irrigation in agricultural regions, Water Resour. Res., 53, 6970–6992,
https://doi.org/10.1002/2017WR020458, 2017.
Oki, T., Agata, Y., Kanae, S., Saruhashi, T., Yang, D., and Musiake, K.: Global assessment of current water resources using total runoff integrating pathways, Hydrol. Sci. J., 46, 983–995, https://doi.org/10.1080/02626660109492890, 2001.
Park, C. C.: World-wide variations in hydraulic geometry exponents of stream
channels: An analysis and some observations, J. Hydrol., 33,
133–146, https://doi.org/10.1016/0022-1694(77)90103-2, 1977.
Penman, H. L.: Natural evaporation from open water, bare soil and grass,
P. R. Soc. Lond. A, 193, 120–145, 1948.
Plummer, L. N., Rupert, M. G., Busenberg, E., and Schlosser, P.: Age of
Irrigation Water in Ground Water from the Eastern Snake River Plain Aquifer,
South-Central Idaho, Ground Water, 38, 264–283,
https://doi.org/10.1111/j.1745-6584.2000.tb00338.x, 2000.
Pokhrel, Y., Hanasaki, N., Koirala, S., Cho, J., Yeh, P. J. F., Kim, H., Kanae, S., and Oki, T.: Incorporating Anthropogenic Water Regulation Modules into a Land
Surface Model, J. Hydrometeorol., 13, 255–269,
https://doi.org/10.1175/JHM-D-11-013.1, 2012.
Portmann, F. T., Siebert, S., and Döll, P.: MIRCA2000-Global monthly
irrigated and rainfed crop areas around the year 2000: A new high-resolution
data set for agricultural and hydrological modeling: MONTHLY IRRIGATED AND
RAINFED CROP AREAS, Global Biogeochem. Cycles, 24, 1,
https://doi.org/10.1029/2008GB003435, 2010.
Prusevich, A., Lammers, R., and Grogan, D.: High Mountain Asia Rasterized
PyGEM Glacier Projections with RCP Scenarios, NASA National Snow
and Ice Data Center DAAC [data set], https://doi.org/10.5067/H118TCMSUH3Q, 2021.
Rajib, A., Golden, H. E., Lane, C. R., and Wu, Q.: Surface Depression and
Water Storage Improves Major River Basin Hydrologic Predictions, Water Resour. Res., 56, 7, https://doi.org/10.1029/2019WR026561, 2020.
Rawlins, M. A.: Increasing freshwater and dissolved organic carbon flows to
Northwest Alaska's Elson lagoon, Environ. Res. Lett., 16, 105014, https://doi.org/10.1088/1748-9326/ac2288, 2021.
Rawlins, M. A., Lammers, R. B., Frolking, S., Fekete, B. M., and Vorosmarty,
C. J.: Simulating pan-Arctic runoff with a macro-scale terrestrial water
balance model, Hydrol. Process., 17, 2521–2539,
https://doi.org/10.1002/hyp.1271, 2003.
Rawlins, M. A., McDonald, K. C., Frolking, S., Lammers, R. B., Fahnestock,
M., Kimball, J. S., and Vörösmarty, C. J.: Remote sensing of snow
thaw at the pan-Arctic scale using the SeaWinds scatterometer, J.
Hydrol., 312, 294–311,
https://doi.org/10.1016/j.jhydrol.2004.12.018, 2005.
Rawlins, M. A., Frolking, S., Lammers, R. B., and Vörösmarty, C. J.:
Effects of Uncertainty in Climate Inputs on Simulated Evapotranspiration and
Runoff in the Western Arctic, Earth Interactions, 10, 1–18,
https://doi.org/10.1175/EI182.1, 2006a.
Rawlins, M. A., Willmott, C. J., Shiklomanov, A., Linder, E., Frolking, S.,
Lammers, R. B., and Vörösmarty, C. J.: Evaluation of trends in
derived snowfall and rainfall across Eurasia and linkages with discharge to
the Arctic Ocean, Geophys. Res. Lett., 33, L07403,
https://doi.org/10.1029/2005GL025231, 2006b.
Rawlins, M. A., Cai, L., Stuefer, S. L., and Nicolsky, D.: Changing characteristics of runoff and freshwater export from watersheds draining northern Alaska, The Cryosphere, 13, 3337–3352, https://doi.org/10.5194/tc-13-3337-2019, 2019.
Rawlins, M. A., Connolly, C. T., and McClelland, J. W.: Modeling Terrestrial
Dissolved Organic Carbon Loading to Western Arctic Rivers, J.
Geophys. Res.-Biogeo., 126, e2021JG006420, https://doi.org/10.1029/2021JG006420, 2021.
Rimsaite, R., Fisher-Vanden, K., Olmstead, S., and Grogan, D. S.: How Well Do
U.S. Western Water Markets Convey Economic Information?, Land Economics,
97, 1–16, https://doi.org/10.3368/wple.97.1.050719-0061R, 2021.
Rosegrant, M. W. and Cai, X.: Global Water Demand and Supply Projections:
Part 2. Results and Prospects to 2025, Water Int., 27, 170–182,
https://doi.org/10.1080/02508060208686990, 2002.
Rost, S., Gerten, D., Bondeau, A., Lucht, W., Rohwer, J., and Schaphoff, S.:
Agricultural green and blue water consumption and its influence on the
global water system: GLOBAL WATER USE IN AGRICULTURE, Water Resour. Res., 44, 9, https://doi.org/10.1029/2007WR006331, 2008.
Rougé, C., Reed, P. M., Grogan, D. S., Zuidema, S., Prusevich, A., Glidden, S., Lamontagne, J. R., and Lammers, R. B.: Coordination and control – limits in standard representations of multi-reservoir operations in hydrological modeling, Hydrol. Earth Syst. Sci., 25, 1365–1388, https://doi.org/10.5194/hess-25-1365-2021, 2021.
Rounce, D. R., Hock, R., and Shean, D. E.: Glacier Mass Change in High
Mountain Asia Through 2100 Using the Open-Source Python Glacier Evolution
Model (PyGEM), Front. Earth Sci., 7, 331,
https://doi.org/10.3389/feart.2019.00331, 2020a.
Rounce, D. R., Khurana, T., Short, M. B., Hock, R., Shean, D. E., and
Brinkerhoff, D. J.: Quantifying parameter uncertainty in a large-scale
glacier evolution model using Bayesian inference: application to High
Mountain Asia, J. Glaciol., 66, 175–187,
https://doi.org/10.1017/jog.2019.91, 2020b.
Sadegh, M. and Vrugt, J. A.: Bridging the gap between GLUE and formal statistical approaches: approximate Bayesian computation, Hydrol. Earth Syst. Sci., 17, 4831–4850, https://doi.org/10.5194/hess-17-4831-2013, 2013.
Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y. T., Chuang, H. Y., Iredell, M., and Ek, M.: The
NCEP Climate Forecast System Version 2, J. Climate, 27,
2185–2208, https://doi.org/10.1175/JCLI-D-12-00823.1, 2014.
Samal, N. R., Wollheim, W. M., Zuidema, S., Stewart, R. J., Zhou, Z., Mineau, M. M., Borsuk, M. E., Gardner, K. H., Glidden, S., Huang, T., and Lutz, D. A.: A coupled terrestrial and aquatic biogeophysical
model of the Upper Merrimack River watershed, New Hampshire, to inform
ecosystem services evaluation and management under climate and land-cover
change, Ecol. Soc., 22, 18,
https://doi.org/10.5751/ES-09662-220418, 2017.
Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D. B., Dankers, R., Eisner, S., Fekete, B. M., Colón-González, F. J., and Gosling, S. N.: Multimodel assessment of water scarcity under climate change,
P. Natl. Acad. Sci. USA, 111, 3245–3250,
https://doi.org/10.1073/pnas.1222460110, 2014.
Shiklomanov, A. I., Lammers, R. B., Lettenmaier, D. P., Polischuk, Y. M.,
Savichev, O. G., Smith, L. C., and Chernokulsky, A. V.: Hydrological
Changes: Historical Analysis, Contemporary Status, and Future Projections,
in: Regional Environmental Changes in
Siberia and Their Global Consequences, edited by: Groisman, P. Ya. and Gutman, G., Springer
Netherlands, Dordrecht, 111–154, https://doi.org/10.1007/978-94-007-4569-8_4,
2013.
Siebert, S. and Döll, P.: Quantifying blue and green virtual water
contents in global crop production as well as potential production losses
without irrigation, J. Hydrol., 384, 198–217,
https://doi.org/10.1016/j.jhydrol.2009.07.031, 2010.
Simon, D.: The Impact of Dams on Floods and Nitrogen Flux in the Lamprey
River Watershed, NH, MS thesis, University of New Hampshire, United
States, 222 pp., 2018.
Stahl, K., Weiler, M., Freudiger, D., Kohn, I., Seibert, J., Vis, M., Gerlinger, K., and Böhm, M.: Final report to the International Commission for the Hydrology of the Rhine basin (CHR), International Commission for the Hydrology of the Rhine Basin (KHR/CHR), Germany, 22 pp., ISBN 978-90-70980-38-2, 2017.
St Amour, N. A., Gibson, J. J., Edwards, T. W. D., Prowse, T. D., and
Pietroniro, A.: Isotopic time-series partitioning of streamflow components
in wetland-dominated catchments, lower Liard River basin, Northwest
Territories, Canada, Hydrol. Process., 19, 3357–3381,
https://doi.org/10.1002/hyp.5975, 2005.
Steinfeld, H., Gerber, P., Wassenaar, T.D., Castel, V., Rosales, M., Rosales, M., and de Haan, C.: Livestock's long shadow: environmental issues and options, Food & Agriculture Org., https://www.fao.org/3/a0701e/a0701e00.htm (last access: 15 March 2021), 2006.
Stewart, R. J., Wollheim, W. M., Gooseff, M. N., Briggs, M. A., Jacobs, J.
M., Peterson, B. J., and Hopkinson, C. S.: Separation of river
network–scale nitrogen removal among the main channel and two transient
storage compartments, Water Resour. Res., 47, 10,
https://doi.org/10.1029/2010WR009896, 2011.
Stewart, R. J., Wollheim, W. M., Miara, A., Vörösmarty, C. J.,
Fekete, B., Lammers, R. B., and Rosenzweig, B.: Horizontal cooling towers:
riverine ecosystem services and the fate of thermoelectric heat in the
contemporary Northeast US, Environ. Res. Lett., 8, 025010,
https://doi.org/10.1088/1748-9326/8/2/025010, 2013.
Sulser, T. B., Ringler, C., Zhu, T., Msangi, S., Bryan, E., and Rosegrant,
M. W.: Green and blue water accounting in the Ganges and Nile basins:
Implications for food and agricultural policy, J. Hydrol.,
384, 276–291, https://doi.org/10.1016/j.jhydrol.2009.10.003, 2010.
Sutanudjaja, E. H., van Beek, R., Wanders, N., Wada, Y., Bosmans, J. H. C., Drost, N., van der Ent, R. J., de Graaf, I. E. M., Hoch, J. M., de Jong, K., Karssenberg, D., López López, P., Peßenteiner, S., Schmitz, O., Straatsma, M. W., Vannametee, E., Wisser, D., and Bierkens, M. F. P.: PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model, Geosci. Model Dev., 11, 2429–2453, https://doi.org/10.5194/gmd-11-2429-2018, 2018.
Telteu, C.-E., Müller Schmied, H., Thiery, W., Leng, G., Burek, P., Liu, X., Boulange, J. E. S., Andersen, L. S., Grillakis, M., Gosling, S. N., Satoh, Y., Rakovec, O., Stacke, T., Chang, J., Wanders, N., Shah, H. L., Trautmann, T., Mao, G., Hanasaki, N., Koutroulis, A., Pokhrel, Y., Samaniego, L., Wada, Y., Mishra, V., Liu, J., Döll, P., Zhao, F., Gädeke, A., Rabin, S. S., and Herz, F.: Understanding each other's models: an introduction and a standard representation of 16 global water models to support intercomparison, improvement, and communication, Geosci. Model Dev., 14, 3843–3878, https://doi.org/10.5194/gmd-14-3843-2021, 2021.
Tran, D., Kovacs, K., and Wallander, S.: Long run optimization of landscape
level irrigation through managed aquifer recharge or expanded surface
reservoirs, J. Hydrol., 579, 124220,
https://doi.org/10.1016/j.jhydrol.2019.124220, 2019.
Turner, S. W. D., Hejazi, M., Yonkofski, C., Kim, S. H., and Kyle, P.:
Influence of Groundwater Extraction Costs and Resource Depletion Limits on
Simulated Global Nonrenewable Water Withdrawals Over the Twenty-First
Century, Earth's Future, 7, 123–135,
https://doi.org/10.1029/2018EF001105, 2019.
United States Army Corps of Engineers: Hydraulic Design of Spillways,
100–111, Coastal and Hydraulics Laboratory, Vicksburg, Mississippi, 1987.
United States Bureau of Reclamation: Design of small dams, 3rd edn., xliii,
860 pp., U.S. Dept. of the Interior Washington, D.C., 1987.
van Beek, L. P. H., Wada, Y., and Bierkens, M. F.: Global monthly water stress: 1. Water balance and water availability, Water Resour. Res., 47, https://doi.org/10.1029/2010WR009791, 2011.
van Beek, L. P. H., Eikelboom, T., Vliet, M. T. H., and Bierkens, M. F. P.:
A physically based model of global freshwater surface temperature, Water
Resour. Res., 48, 2012WR011819,
https://doi.org/10.1029/2012WR011819, 2012.
Van Kirk, R. W., Contor, B. A., Morrisett, C. N., Null, S. E., and Loibman,
A. S.: Potential for Managed Aquifer Recharge to Enhance Fish Habitat in a
Regulated River, Water, 12, 673, https://doi.org/10.3390/w12030673, 2020.
Veldkamp, T. I. E., Zhao, F., Ward, P. J., de Moel, H., Aerts, J. C. J. H.,
Müller Schmied, H., Portmann, F. T., Masaki, Y., Pokhrel, Y., Liu, X.,
Satoh, Y., Gerten, D., Gosling, S. N., Zaherpour, J., and Wada, Y.: Human
impact parameterizations in global hydrological models improve estimates of
monthly discharges and hydrological extremes: a multi-model validation
study, Environ. Res. Lett., 13, 055008, https://doi.org/10.1088/1748-9326/aab96f, 2018.
Vörösmarty, C. J., Moore III, B., Grace, A. L., Gildea, M. P., Melillo, J. M., Peterson, B. J., Rastetter, E. B., and Steudler, P. A.: Continental scale models of water balance
and fluvial transport: An application to South America, Global
Biogeochem. Cycles, 3, 241–265,
https://doi.org/10.1029/GB003i003p00241, 1989.
Vörösmarty, C. J., Federer, C. A., and Schloss, A. L.: Potential
evaporation functions compared on US watersheds: Possible implications for
global-scale water balance and terrestrial ecosystem modeling, J.
Hydrol., 207, 147–169,
https://doi.org/10.1016/S0022-1694(98)00109-7, 1998.
Vörösmarty, C. J., Fekete, B. M., Meybeck, M., and Lammers, R. B.:
Geomorphometric attributes of the global system of rivers at 30-minute
spatial resolution, J. Hydrol., 237, 17–39,
https://doi.org/10.1016/S0022-1694(00)00282-1, 2000a.
Vörösmarty, C. J., Green, P., Salisbury, J., and Lammers, R. B.:
Global Water Resources: Vulnerability from Climate Change and Population
Growth, Science, 289, 284–288,
https://doi.org/10.1126/science.289.5477.284, 2000b.
Vörösmarty, C. J., Douglas, E. M., Green, P. A., and Revenga, C.:
Geospatial Indicators of Emerging Water Stress: An Application to Africa,
AMBIO: A Journal of the Human Environment, 34, 230–236,
https://doi.org/10.1579/0044-7447-34.3.230, 2005.
Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann, C. R., and Davies, P. M.: Global threats to human water security and
river biodiversity, Nature, 467, 555–561,
https://doi.org/10.1038/nature09440, 2010.
Wada, Y., van Beek, L. P. H., and Bierkens, M. F. P.: Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability, Hydrol. Earth Syst. Sci., 15, 3785–3808, https://doi.org/10.5194/hess-15-3785-2011, 2011.
Wada, Y., van Beek, L. P. H., and Bierkens, M. F. P.: Nonsustainable
groundwater sustaining irrigation: A global assessment: NONSUSTAINABLE
GROUNDWATER SUSTAINING IRRIGATION, Water Resour. Res., 48,
https://doi.org/10.1029/2011WR010562, 2012.
Wada, Y., Wisser, D., and Bierkens, M. F. P.: Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources, Earth Syst. Dynam., 5, 15–40, https://doi.org/10.5194/esd-5-15-2014, 2014.
Wada, Y., Lo, M.-H., Yeh, P. J.-F., Reager, J. T., Famiglietti, J.
S., Wu, R.-J., and Tseng, Y.-H.: Fate of water pumped from underground and
contributions to sea-level rise, Nat. Clim. Change, 6, 777–780,
https://doi.org/10.1038/nclimate3001, 2016.
Wada, Y., Bierkens, M. F. P., de Roo, A., Dirmeyer, P. A., Famiglietti, J. S., Hanasaki, N., Konar, M., Liu, J., Müller Schmied, H., Oki, T., Pokhrel, Y., Sivapalan, M., Troy, T. J., van Dijk, A. I. J. M., van Emmerik, T., Van Huijgevoort, M. H. J., Van Lanen, H. A. J., Vörösmarty, C. J., Wanders, N., and Wheater, H.: Human–water interface in hydrological modelling: current status and future directions, Hydrol. Earth Syst. Sci., 21, 4169–4193, https://doi.org/10.5194/hess-21-4169-2017, 2017.
Webster, M., Fisher-Vanden, K., Kumar, V., Lammers, R. B., and Perla, J.:
Integrated hydrological, power system and economic modelling of climate
impacts on electricity demand and cost, Nat. Energ., 7, 163–169,
https://doi.org/10.1038/s41560-021-00958-8, 2022.
Weiler, M., Seibert, J., and Stahl, K.: Magic components-why quantifying
rain, snowmelt, and icemelt in river discharge is not easy, Hydrol.
Process., 32, 160–166, https://doi.org/10.1002/hyp.11361, 2018.
Widén-Nilsson, E.: Global-Scale Modelling of the Land-Surface Water Balance: Development and Analysis of WASMOD-M, PhD Thesis, Acta Universitatis Upsaliensis, Uppsala, Sweden, 76 pp., 2007.
Willmott, C. J.: ON THE VALIDATION OF MODELS, Phys. Geogr., 2,
184–194, https://doi.org/10.1080/02723646.1981.10642213, 1981.
Willmott, C. J. and Matsuura, K.: Terrestrial Air Temperature and Precipitation: Monthly and Annual Time Series (1950–1999) (Version 2.01), Center for Climatic Research, Department of Geography, University of Delaware [data set], http://climate.geog.udel.edu/~climate/html_pages/download.html (last access: 6 February 2015), 2001.
Willmott, C. J., Rowe, C. M., and Mintz, Y.: Climatology of the terrestrial
seasonal water cycle, J. Climatol., 5, 589–606,
https://doi.org/10.1002/joc.3370050602, 1985.
Wisser, D., Frolking, S., Douglas, E. M., Fekete, B. M., Vörösmarty,
C. J., and Schumann, A. H.: Global irrigation water demand: Variability and
uncertainties arising from agricultural and climate data sets, Geophys.
Res. Lett., 35, L24408, https://doi.org/10.1029/2008GL035296,
2008.
Wisser, D., Fekete, B. M., Vörösmarty, C. J., and Schumann, A. H.: Reconstructing 20th century global hydrography: a contribution to the Global Terrestrial Network- Hydrology (GTN-H), Hydrol. Earth Syst. Sci., 14, 1–24, https://doi.org/10.5194/hess-14-1-2010, 2010a.
Wisser, D., Frolking, S., Douglas, E. M., Fekete, B. M., Schumann, A. H.,
and Vörösmarty, C. J.: The significance of local water resources
captured in small reservoirs for crop production – A global-scale analysis,
J. Hydrol., 384, 264–275,
https://doi.org/10.1016/j.jhydrol.2009.07.032, 2010b.
Wollheim, W., Peterson, B. J., Thomas, S. M., Hopkinson, C. H., and
Vörösmarty, C. J.: Dynamics of N removal over annual time periods in
a suburban river network, J. Geophys. Res., 113, G03038,
https://doi.org/10.1029/2007JG000660, 2008a.
Wollheim, W., Vörösmarty, C. J., Bouwman, A. F., Green, P.,
Harrison, J., Linder, E., Peterson, B. J., Seitzinger, S. P., and Syvitski,
J. P. M.: Global N removal by freshwater aquatic systems using a spatially
distributed, within-basin approach, Global Biogeochem. Cycles, 22, 2,
https://doi.org/10.1029/2007GB002963, 2008b.
Wollheim, W., Stewart, R. J., Aiken, G. R., Butler, K. D., Morse, N. B., and
Salisbury, J.: Removal of terrestrial DOC in aquatic ecosystems of a
temperate river network, Geophys. Res. Lett., 42, 6671–6679,
https://doi.org/10.1002/2015GL064647, 2015.
Wollheim, W. M., Harms, T. K., Peterson, B. J., Morkeski, K., Hopkinson, C. S., Stewart, R. J., Gooseff, M. N., and Briggs, M. A.: Nitrate uptake dynamics of surface transient storage
in stream channels and fluvial wetlands, Biogeochemistry, 120,
239–257, https://doi.org/10.1007/s10533-014-9993-y, 2014.
Yamazaki, D., Kanae, S., Kim, H., and Oki, T.: A physically based
description of floodplain inundation dynamics in a global river routing
model: FLOODPLAIN INUNDATION DYNAMICS, Water Resour. Res., 47, 4,
https://doi.org/10.1029/2010WR009726, 2011.
Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H., and
Pavelsky, T. M.: MERIT Hydro: A High-Resolution Global Hydrography Map Based
on Latest Topography Dataset, Water Resour. Res., 55, 5053–5073,
https://doi.org/10.1029/2019WR024873, 2019.
Yang, Y., Donohue, R. J., and McVicar, T. R.: Global estimation of effective
plant rooting depth: Implications for hydrological modeling: GLOBAL
HYDROLOGICAL EFFECTIVE ROOTING DEPTH, Water Resour. Res., 52,
8260–8276, https://doi.org/10.1002/2016WR019392, 2016.
Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N., and Kitoh, A.: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges, B. Am. Meteorol. Soc., 93, 1401–1415, https://doi.org/10.1175/BAMS-D-11-00122.1, 2012.
Zaherpour, J., Gosling, S. N., Mount, N., Müller Schmied, H., Veldkamp,
T. I. E., Dankers, R., Eisner, S., Gerten, D., Gudmundsson, L., Haddeland,
I., Hanasaki, N., Kim, H., Leng, G., Liu, J., Masaki, Y., Oki, T., Pokhrel,
Y., Satoh, Y., Schewe, J., and Wada, Y.: Worldwide evaluation of mean and
extreme runoff from six global-scale hydrological models that account for
human impacts, Environ. Res. Lett., 13, 065015,
https://doi.org/10.1088/1748-9326/aac547, 2018.
Zaveri, E., Grogan, D. S., Fisher-Vanden, K., Frolking, S., Lammers, R. B., Wrenn, D. H., Prusevich, A., and Nicholas, R. E.: Invisible water, visible impact: groundwater use and
Indian agriculture under climate change, Environ. Res. Lett.,
11, 084005, https://doi.org/10.1088/1748-9326/11/8/084005, 2016.
Zeitoun, M. and Mirumachi, N.: Transboundary water interaction I:
reconsidering conflict and cooperation, International Environmental
Agreements: Politics, Law and Economics, 8, 297–316,
https://doi.org/10.1007/s10784-008-9083-5, 2008.
Zeng, X., Troch, P., Pelletier, J., Niu, G., and Gochis, D.: Development of
hybrid 3-D hydrological modeling for the NCAR Community Earth System Model
(CESM), Univ. of Arizona Technical Report, United States,
https://doi.org/10.2172/1227980, 2015.
Zuidema, S. and Morrison, R.: Hydrologically Consistent Dams Database
(version 2.0), Harvard Dataverse [data set],
https://doi.org/10.7910/DVN/5YBWWI, 2020.
Zuidema, S., Wollheim, W. M., Mineau, M. M., Green, M. B., and Stewart, R.
J.: Controls of Chloride Loading and Impairment at the River Network Scale
in New England, J. Environ. Quality, 47, 839–847,
https://doi.org/10.2134/jeq2017.11.0418, 2018.
Zuidema, S., Grogan, D., Prusevich, A., Lammers, R., Gilmore, S., and Williams, P.: Interplay of changing irrigation technologies and water reuse: example from the upper Snake River basin, Idaho, USA, Hydrol. Earth Syst. Sci., 24, 5231–5249, https://doi.org/10.5194/hess-24-5231-2020, 2020.
Short summary
This paper describes the University of New Hampshire's water balance model (WBM). This model simulates the land surface components of the global water cycle and includes water extractions for use by humans for agricultural, domestic, and industrial purposes. A new feature is described that permits water source tracking through the water cycle, which has implications for water resource management. This paper was written to describe a long-used model and presents its first open-source version.
This paper describes the University of New Hampshire's water balance model (WBM). This model...