Supplement of Water balance model (WBM) v.1.0.0: a scalable gridded global hydrologic model with water-tracking functionality

Danielle S. Grogan et al.

Correspondence to: Danielle S. Grogan (danielle.grogan@unh.edu) and Shan Zuidema (shan.zuidema@unh.edu)

The copyright of individual parts of the supplement might differ from the article licence.
Table of Contents

S1. WBM overview

Core water balance functions

S2. Potential evapotranspiration (PET)
 S2.1 Hamon PET
 S2.2 Penman-Montieth
 S2.3 FAO-Drainage Paper No. 56 Penman-Monteith

S3. Actual evapotranspiration (AET)
 S3.1 Vegetation AET
 S3.2 Open water evaporation

S4. Snow
 S4.1 Snowpack and snow water equivalent
 S4.2 Excess snowpack accumulations

S5. Canopy interception of precipitation

S6. Soil moisture

S7. Runoff
 S7.1 Surface runoff
 S7.2 Irrigation runoff
 S7.3 HBV Direct Recharge
 S7.4 Baseflow
 S7.5 Storm runoff
 S7.6 Total runoff

S8. River routing
 S8.1 Hydraulic Geometry
 S8.2 Flow accumulation
 S8.3 Muskingum
 S8.4 Linear reservoir routing

S9. Groundwater
 S9.1 Low resolution: unparameterized aquifers

S10. Glacier melt water

S11. Hydro infrastructure
 S11.1 Reservoirs
 S11.1.1 Water Release from Controlled Large reservoirs
 S11.1.2 Parameterization of controlled reservoirs by dam purpose
 S11.1.3 Water Release from Uncontrolled Small reservoirs
 S11.2 Inter-basin Transfers

Water extractions
S12. Irrigation
 S12.1 Irrigation water demand
 S12.2 Irrigation water extraction
 S12.2.1 Irrigation efficiency method
 S12.2.2 Irrigation technology method
S13. Livestock water demand and extraction
S14. Domestic and industrial water demand and extraction

S15. Tracking

Water quality
S16. Water temperature
S17. Nitrogen routing
S1. WBM overview

Overall goal of WBM (Mission Statement, Research Priorities)

To simulate all the world’s water.

We achieve this by developing a tool to help us explore and understand drainage basin-scale hydrological and material transport processes both historically and in the future.

WBM Overview and key publications

The University of New Hampshire Water Balance Model (WBM) is a process-based, modular, gridded hydrologic model that simulates spatially and temporally varying water volume and material transport across a wide range of spatial domains. WBM represents all major land surface components of the hydrological cycle, and tracks fluxes and balances between the atmosphere, aboveground water storages (e.g. snowpack, glaciers), soil, vegetation, groundwater, and runoff (Figure S1-1). A digitized river network connects grid cells, enabling simulation of flow through the river and groundwater systems. Direct human influences include domestic, industrial, and agricultural (irrigation and livestock) water demand and use, the impacts of impervious surfaces, and hydro-infrastructure (dams, reservoirs, canals, inter-basin transfers).

The model is also the hydrological core of the Framework for Aquatic Modeling of the Earth System (FrAMES), which predicts water temperature, nutrient fluxes (Stewart et al. 2011, 2013; Samal et al. 2017, Wollheim et al. 2008), and chloride fluxes (Zuidema et al, 2018). The model has an embedded water routing scheme, including constituent transport.

WBM is modular and can operate at a wide range of spatial scales from local watersheds at 120 m grid cells (e.g. Stewart et al. 2011) to global freshwater systems at ½ degree grid cells (e.g. Grogan et al. 2017; Wisser et al. 2010). WBM accepts hydrologic, land use/land cover, water management, and water demand inputs from other models and data sources, such as glacier melt models (Huss and Hock 2015; Rounce et al. 2020) and econometric models (Zaveri et al. 2016) and has provided boundary conditions for the SIMPLE economic model (Liu et al. 2017).

WBM accounts for the operation of dams and reservoirs (Wisser et al. 2010), inter-basin hydrological transfers (Zaveri et al. 2016), and agricultural water use from irrigation (Grogan et al. 2015, 2017; Grogan 2016; Wisser et al. 2010, Zaveri et al. 2016). Additionally, WBM modules have been developed recently, and include the use of sub-grid elevation band distributions derived from a high-resolution elevation dataset to improve handling of snowpack in mountainous regions.

The model has been applied to address a variety of hydrologic questions over many different regions across the globe including:

Asia Zaveri et al. 2016; Grogan et al. 2015; Douglas et al. 2006; Groisman et al. 2018.
South America Vörösmarty et al. 1989.

Figure S1-1: Major elements of the Water Balance Model

References

Core water balance functions

S2. Potential evapotranspiration (PET)

S2.1 Hamon PET

Potential evapotranspiration, PET, is the maximum amount of water that can be lost from soil through combined evaporation and transpiration, assuming no shortage of soil water. It provides an upper bound on non-irrigated actual evapotranspiration and is used as a baseline reference for calculating irrigated evapotranspiration.

WBM can use the Hamon method (Hamon, 1963) to calculate PET [mm]. This is the least data-intensive method, and it was found to estimate global average PET as well as other, more data-intensive methods. Additionally, Vorosmarty (1998) found that amongst the reference-surface PET methods, the Hamon method produced both the lowest mean annual error and the smallest bias when compared to observation data.

\[PET = 330.2 \Lambda \rho_{sat} \] (S2.1-1)

where

\(\Lambda = \) day length, expressed as a fraction of a 12-hour period

\[\rho_{sat} = 2.167 \frac{P_{sat}}{T+273.15} \text{ [g m}^{-3}\text{]} \] (S2.1-2)

\(T = \) daily mean temperature [°C]

\[P_{sat} = \begin{cases} 0.61078 e^{\frac{T}{T+237.3}} & \text{if } 0 \leq T \\ 0.61078 e^{\frac{T}{T+265.5}} & \text{if } T > 0 \end{cases} \text{ [kg m}^{-1}\text{s}^{-2}\text{]} \] (S2.1-3)

References:
S2.2 Penman-Monteith PET

WBM can calculate potential evapotranspiration (ET_p [mm d$^{-1}$]) using derivatives of the combination equations pioneered by Penman (1948) and Monteith (1965) as described in Dingman (2002). Penman-Monteith potential evapotranspiration (ET_p) is given by equation S2.2-1 below, and is calculated for soil area of each pixel at a daily time-step.

$$ET_p = \frac{\Delta \cdot (K - G - L_o) + \rho_a \cdot c_a \cdot C_{at} \cdot e_a^* \cdot (1 - h_a)}{\rho_w \cdot \lambda_v \left[\Delta + \gamma \cdot (1 + C_{at}/C_{can})\right]}$$ \hspace{1cm} S2.2-1

Variables in the above equation are defined along with methods of derivation in Table S1.

S2.3 FAO Drainge Paper No. 56 Penman-Monteith

An alternative implementation of potential evapotranspiration that utilizes the Penman-Monteith formulation of Allen et al. (1998) is also implemented in WBM. The model solves potential evapotranspiration using the form presented by Zotarelli et al. (2018) in equation S2.2-2 below.

$$ET_p = DT \cdot (K - G - L_o) + PT \cdot TT \cdot (e_a^* - e_a)$$ \hspace{1cm} S2.3-2

Variables in the above equation along with methods of derivation are provided in Table S2-1.
Table S2-1: Definitions of terms used in evapotranspiration calculation. Compiled by Dingman [2002] unless stated otherwise.

<table>
<thead>
<tr>
<th>Term</th>
<th>Units</th>
<th>Description</th>
<th>Formulation</th>
</tr>
</thead>
</table>
| Δ | kPa K$^{-1}$ | slope of the ratio between saturation vapor pressure and air temperature (in K) | \[
\frac{2508.3}{[T_a + 237.3]^2} \exp \left(\frac{17.3 \cdot T_a}{T_a + 237.3} \right)
\] Input |
| T_a | °C | Mean air temperature in degrees centigrade | $K_{CS} \left(0.803 - 0.34 \cdot k_{cld} - 0.458 \cdot k_{cld}^2 \right)(1 - a)$ Estimated from extraterrestrial solar radiation | |
| K | MJ m$^{-2}$ h$^{-1}$ | Net incoming solar radiation (From ?) | $(0.9 \cdot f_{cloud})^3$ Input |
| K_{cs} | MJ m$^{-2}$ h$^{-1}$ | Clear sky radiation | Input (if available otherwise 0) |
| k_{cld} | - | Cloud/shielding factor | $4.903e^{-9} \times (T_a + 273.15)^4 \times (0.34 - 0.14 \sqrt{e_a^* h_a})$ \[\times \left(1.35 \times \frac{K + 0.1}{K_{CS} + 0.1} - 0.35 \right)\) |
| α | - | Albedo | $0.6108 \cdot \exp \left(\frac{17.27T_a}{T_a + 237.3} \right)$ at $T_a \geq 0$ | $0.6108 \cdot \exp \left(\frac{21.87T_a}{T_a + 265.5} \right)$ at $T_a < 0$ |
| G | MJ m$^{-2}$ h$^{-1}$ | Ground heat flux | $h_s \frac{P_a}{0.378 h_s + 0.622}$ Relative humidity / 100 | $h_s \frac{P_a}{0.378 h_s + 0.622}$ Relative humidity / 100 |
| L_0 | MJ m$^{-2}$ h$^{-1}$ | Net out-going long-wave radiation (From Allen et al. 1998) | \[\frac{h_s P_a}{0.378 h_s + 0.622}\] Relative humidity / 100 | \[\frac{h_s P_a}{0.378 h_s + 0.622}\] Relative humidity / 100 |
| e_a^* | kPa | Saturation water vapor pressure | $0.6108 \cdot \exp \left(\frac{17.27T_a}{T_a + 237.3} \right)$ at $T_a \geq 0$ | $0.6108 \cdot \exp \left(\frac{21.87T_a}{T_a + 265.5} \right)$ at $T_a < 0$ |
| e_a | kPa | Water vapor pressure | $h_s \frac{P_a}{0.378 h_s + 0.622}$ Relative humidity / 100 | \[\frac{h_s P_a}{0.378 h_s + 0.622}\] Relative humidity / 100 |
| h_a | - | Relative air humidity (fraction) | \[\frac{h_s P_a}{0.378 h_s + 0.622}\] Relative humidity / 100 | \[\frac{h_s P_a}{0.378 h_s + 0.622}\] Relative humidity / 100 |
| h_s | kg kg$^{-1}$ | Specific air humidity | \[\frac{h_s P_a}{0.378 h_s + 0.622}\] Relative humidity / 100 | \[\frac{h_s P_a}{0.378 h_s + 0.622}\] Relative humidity / 100 |
| e_s | kPa | Actual water vapor pressure | $0.6108 \cdot \exp \left(\frac{21.87T_a}{T_a + 265.5} \right)$ at $T_a < 0$ | $h_s \frac{P_a}{0.378 h_s + 0.622}$ Relative humidity / 100 |
Table S2-1 (Continued): Definitions of terms used in evapotranspiration calculation. Compiled by Dingman [2002] unless stated otherwise.

<table>
<thead>
<tr>
<th>Term</th>
<th>Units</th>
<th>Description</th>
<th>Formulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma)</td>
<td>kPa K(^{-1})</td>
<td>Psychrometric constant</td>
<td>(\frac{c_a \cdot P_a}{0.622 \cdot \lambda_v})</td>
</tr>
<tr>
<td>(\rho_a)</td>
<td>kg m(^{-3})</td>
<td>Density of air</td>
<td>(\frac{P_a}{T_a R_a})</td>
</tr>
<tr>
<td>(c_a)</td>
<td>MJ kg(^{-1}) K(^{-1})</td>
<td>Heat capacity of air</td>
<td>(1.00 \times 10^{-3}) MJ kg(^{-1}) K(^{-1})</td>
</tr>
<tr>
<td>(P_a)</td>
<td>kPa</td>
<td>Barometric air pressure</td>
<td>Input or (\frac{100}{0.288 \cdot (T_a + 273.15)})</td>
</tr>
<tr>
<td>(\lambda_v)</td>
<td>MJ kg(^{-1})</td>
<td>Latent heat of vaporization of water</td>
<td>(2.50 - 2.36 \times 10^{-3} \cdot T_a)</td>
</tr>
<tr>
<td>(C_{at})</td>
<td>m h(^{-1})</td>
<td>Atmospheric conductance</td>
<td>(\frac{v_a}{6.25 \left[\ln \left(\frac{Z_h}{Z_0} + \frac{1 - z_d}{z_0} \right) \right]^2})</td>
</tr>
<tr>
<td>(\rho_w)</td>
<td>kg m(^{-3})</td>
<td>Density of water</td>
<td>(1000) kg m(^{-3})</td>
</tr>
<tr>
<td>(k)</td>
<td>-</td>
<td>Von Karman’s constant</td>
<td>(0.4)</td>
</tr>
<tr>
<td>(z_{[x]})</td>
<td>m</td>
<td>m: height of (v_a) measurement, d: zero-plane displacement, 0: roughness height</td>
<td>(z_d = 0.7 \cdot) height of vegetation ((z_{veg})), (z_0 = 0.1 \cdot z_{veg}) measured</td>
</tr>
<tr>
<td>(v_a)</td>
<td>M hr(^{-1})</td>
<td>Average wind speed (at (z_m))</td>
<td></td>
</tr>
</tbody>
</table>
Table S2-1 (Continued): Definitions of terms used in evapotranspiration calculation. Compiled by Dingman [2002] unless stated otherwise.

<table>
<thead>
<tr>
<th>Term</th>
<th>Units</th>
<th>Description</th>
<th>Formulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{can}</td>
<td>m h$^{-1}$</td>
<td>canopy conductance</td>
<td>$0.5 \cdot C_{leaf}$</td>
</tr>
<tr>
<td>LAI</td>
<td>-</td>
<td>leaf area index</td>
<td>Input</td>
</tr>
<tr>
<td>C_{leaf}</td>
<td>m h$^{-1}$</td>
<td>Stewart’s [1988] estimate of stomatal leaf conductance</td>
<td>$C_{leaf}^* \cdot f_K(K_{in}) \cdot f_\rho(\Delta \rho_v) \cdot f_T(T_a)$</td>
</tr>
<tr>
<td>C_{leaf}^*</td>
<td>m h$^{-1}$</td>
<td>Maximum stomatal conductance</td>
<td>Input</td>
</tr>
<tr>
<td>f_K</td>
<td>-</td>
<td>Stewart’s [1988] stomatal conductance dependance on incoming solar radiation</td>
<td>$\frac{12.78 \cdot K_{in}}{11.57 \cdot K_{in} + 104.4}$</td>
</tr>
<tr>
<td>f_ρ</td>
<td>-</td>
<td>Stewart’s [1988] stomatal conductance dependance on vapor pressure deficit</td>
<td>$\max(1 - 66.6 \Delta \rho_v, 0.2328)$</td>
</tr>
<tr>
<td>f_T</td>
<td>-</td>
<td>Stewart’s [1988] stomatal conductance dependance on temperature</td>
<td>$\frac{T_a \cdot (40 - T_a)^{1.18}}{691}$</td>
</tr>
<tr>
<td>$\Delta \rho_v$</td>
<td>kg m$^{-3}$</td>
<td>Vapor pressure deficit</td>
<td>$\frac{e}{T_a R_a} - \frac{e^*}{T_a R_a}$</td>
</tr>
<tr>
<td>DT</td>
<td>-</td>
<td>Zotarelli delta term</td>
<td>$\Delta + \gamma(1 + 0.34 v_a)$</td>
</tr>
<tr>
<td>PT</td>
<td>-</td>
<td>Zotarelli psi term</td>
<td>$\Delta + \gamma(1 + 0.34 v_a)$</td>
</tr>
<tr>
<td>TT</td>
<td>-</td>
<td>Zotarelli temperature term</td>
<td>$\frac{900}{(T_a + 273.15)} v_a$</td>
</tr>
</tbody>
</table>
References:

S3. Actual evapotranspiration (AET)

S3.1 Vegetation AET

Actual evapotranspiration (AET) from vegetated land areas is a function of the potential evapotranspiration (PET, see Section 2), soil moisture, and soil properties. If soil moisture is sufficient, then \(\text{AET} = \text{PET} \). Otherwise, PET is modified by a soil drying function, \(g(W_s) \). The amount of water that can be drawn out of the soil moisture pool depends on the current soil moisture, and the available water capacity (soil water between wilting point and field capacity).

Available water capacity, \(W_{\text{cap}} \) [mm], indicates the portion of the soil moisture storage pool within the grid cell that is held against gravity drainage. Available water capacity is determined by taking the difference between the field capacity, \(F_{\text{cap}} \) [-], and the wilting point, \(W_{\text{pt}} \) [-], each expressed as fractions of the total depth. This difference is then scaled by the total rooting depth, \(R_d \) [mm], to determine the depth in mm of water the grid cell can accommodate before gravity drainage (equation S3.1-1).

\[
W_{\text{cap}} = R_d (F_{\text{cap}} - W_{\text{pt}}) \quad \text{[mm]}
\]

Field capacity, wilting point, and rooting depth are all input from global datasets based on soil and vegetation type. Alternatively, available water capacity \(W_{\text{cap}} \) can be input directly into the model instead of calculated.

The drying function \(g(W_s) \) estimates AET as a fraction of PET based on the present soil moisture content \(W_s \) [mm] relative to \(W_{\text{cap}} \) through an empirical constant \(\alpha [-] \) and is given by equation S3.1-2. The default value of 5.0 provides a match to the drying curve of Pierce (1958); however the coefficient \(\alpha \) can be adjusted to calibrate the model based on regionally unique combinations of soil properties, vegetation, and climate.

\[
g(W_s) = \frac{1-e^{\frac{-\alpha W_s}{W_{\text{cap}}}}}{1-e^{-\alpha}}
\]

A plot of the drying function for three values of \(\alpha \) is given in Figure S3.1.

AET is calculated wherever soil water capacity is defined according to equation S3.1-3.

\[
\text{AET} = \begin{cases}
0 & \text{if } W_{\text{cap}} = 0 \\
g(W_s)(\text{PET} - P_t - M) & \text{if } P_t + M < \text{PET}
\end{cases} \quad \text{[mm]}
\]

where \(P_t \) is throughfall and \(M \) is snowmelt discussed in Sections S5 and S4, respectively. Equation S3.1-3 assumes any available latent energy first evaporates incident precipitation prior to being withdrawn from soils.

\[
P_a = P + M_s - I_c \quad \text{[mm]}
\]
Figure S3-1: Example soil moisture drying function \(g(W_s) \) relating actual evapotranspiration to potential evapotranspiration for a soil with 450 mm available water capacity and three values of the empirical soil drying parameter \(\alpha \).

S3.2 Open water evaporation

Open-water evaporation rate \(E_{ow} \) [mm d\(^{-1}\)] can either be input to WBM as a separate data input, which is widely available in global reanalysis meteorological data such as MERRA-2 (Gelaro et al. 2017), or can be scaled relative to calculated PET. The WBM default for is to simulate open water evaporation as 100% of PET. Open water ET applies to water stored on wet canopy surfaces (see interception Section S5), the free water surface of rivers calculated by hydraulic geometry relations (Section 0), the surfaces of reservoirs defined for any dams input to WBM (Section 0), and any additional open water surface input as a continuous landcover, limited to ensure that the sum of the above surface and any open-water surface input does not exceed 97.5% of pixel surface area.

The Hamon (1963) equation is described above (Section 2.1), and compares favorably to the Bowen-Ratio Energy Balance method for open water surfaces, even when measurements are potentially impacted by limited fetch (Rosenberry et al., 2007).

References:

S4. Snow

S4.1 Snowpack and snow water equivalent

WBM models precipitation, \(P\), as snowfall \(P_s\) [mm], and tracks snowpack, \(S_p\) [mm], and snowmelt, \(M\) [mm]. When mean daily temperature, \(T\) [°C], is below the snowfall threshold \(T_s\) [°C], precipitation is treated as snow. When mean daily air temperature, \(T\) [°C], is above the snowmelt threshold, \(T_m\) [°C], a portion of the snow is melted.

For regions with large orographic gradients, the elevation distribution of each model grid cell is calculated from a 30-meter DEM, resulting in binned elevation categories of \(\Delta H\) vertical bands which are also called elevation or snow bands. The range and size of the snow bands can be chosen by a user, and the default range is from 0 to 5000 m elevation with band size of 250 m. A temperature lapse rate, \(L\) [°C/km], is applied to the mean daily temperature, \(T\) [°C] at the reference elevation, \(H_{ref}\), for each binned elevation category (band), resulting in an adjusted mean temperature, \(T_e\) [°C], for the portion of each grid cell in elevation band category \(e\).

\[
T_e = T + \frac{L}{1000} (H_e - H_{ref})
\]

(S4.1-1)

The reference elevation for each temperature dataset is usually provided through Geopotential data layer which can be converted to the elevation by dividing it by gravity constant \(g = 9.80665\) m/sec\(^2\). Alternatively it can be calculated from the aforementioned 30-meter DEM dataset as an average elevation in the spatial extent of each pixel of the temperature dataset. Keep in mind that temperature dataset pixel sizes are specific to that dataset and depend on its resolution and projection.

Precipitation rates are assumed to be equal across all elevation bands \(e\), such that \(P_e = P\) [mm/day]. If sub-grid elevation snow processes are not used, the same snow processes apply to the entire grid cell.

Snow water equivalent (SWE) is updated through timesteps of length \(dt\) in elevation bin \(e\) as:

\[
\frac{dS^e}{dt} = P^e - M^e \quad [\text{mm d}^{-1}]
\]

(S4.1-2)

\[
P^e = \begin{cases} P & \text{if } T^e < T_s \\ 0 & \text{if } T_s \leq T^e \quad [\text{mm d}^{-1}] \end{cases}
\]

(S4.1-3)

\[
M^e = \begin{cases} 2.63 + 2.55 T^e + 0.0912 T^e P & \text{if } T_m < T^e \\ 0 & \text{if } T^e \leq T_m \quad [\text{mm d}^{-1}] \end{cases}
\]

(S4.1-4)

Total SWE in snowpack \(S_p\), [mm/d] in the grid cell at each time-step is the sum of all SWE values at each elevation band \(e\) multiplied by the corresponding fraction of grid cell area represented by elevation bin \(e\), \(f^e\):

\[
S_p = \sum_{e=1}^n S^e f^e
\]

(S4.1-5)
Variables controlling SWE accumulation include the snowfall threshold T_s, with a default value of -1 °C; the snow melt threshold T_m, with a default value of 1 °C; and L is the lapse rate, with a default value of -6.4 °C/km. Both T^e and L can be constants for the whole simulation domain, or they can be a spatially variable gridded input layer.

S4.2 Excess snowpack accumulations
At high elevations and cold climates it is a common case that annual snowfall exceeds annual snowmelt volume. In the natural systems the excess snowpack converts to ice and triggers glacial dynamics (growth, flow, and melt at lower elevations). WBM accounts for glacier areas in a separate module, but pixels with partial glacier areas are still processes through its snowpack/snowmelt module (see previous section). That causes the problem of infinite snow accumulation. To address this problem WBM combines the following sequence of steps:

1. Glacier area is placed to the highest elevation bands within each pixel (grid cell).
2. At the date of annual snowpack minimum the snowbands are shifted downward. The date of annual snowpack minimum is assumed to be August 15 in the Northern hemisphere and February 15 in the Southern hemisphere.
3. The snowpack in excess of threshold (e.g. 5000 mm of snow water equivalent, SWE) is shifted downstream by the flow direction network to the next pixel at the dates of snowpack minimum.

The above steps are executed in order until the snow accumulation problem gets eliminated. I.e. some pixels (grid cells) need to use step (1) only, some steps (1)-(2), and some all three steps to solve excess snowpack accumulation problem.
S5. Canopy interception of precipitation

Rainfall interception by vegetation can be significant for many land covers such as all forest types and some others. Intercept water on the vegetation canopy does not reach soil, evaporates and makes an additional contribution to the total evapotranspiration flux. The canopy intercept does not apply to snow which is assumed to be part of the total snowpack that shares common snow sublimation process.

WBM uses canopy rain interception formulations similar to those adopted in VIC model following monograph of [Dickinson, 1984]. The canopy water balance is given as following

\[
\frac{dW_i}{dt} = (P - P_t) - E_c, \quad \text{where } W_i \leq W_i^{\text{max}}
\]

(S5-1)

where \(W_i \) is intercept canopy water storage (mm), \(t \) is time (d), \(P \) and \(P_t \) are rain precipitation and throughfall respectively (mm/d), \(E_c \) is evaporation of the intercept canopy water (mm/d). Note that the quantity in the round brackets of the RHS of eq. (S5-1) is the rainfall the canopy intercepts before reaching the ground. The canopy water storage is limited by its capacity \(W_i^{\text{max}} \) which is found to be proportional to the Leaf Area Index (LAI)-

\[
W_i^{\text{max}} = C_{LAI} \cdot \text{LAI}
\]

(S5-2)

where \(C_{LAI} \) is canopy interception coefficient (mm) which can vary from 0.15 by the BROOK90 [Dingman, 2002] to 0.25 in VIC model or a value of 0.2 mm as suggested in [Dickinson, 1984].

The canopy water evaporation rate \(E_c \) (mm/d) is defined as a simplification of the form presented by [Deardorff, 1978; Dickinson, 1984]

\[
E_c = E_{ow} \cdot \left(\frac{W_i}{W_i^{\text{max}}} \right)^{\frac{2}{3}}
\]

(S5-3)

WBM simplifies eq. (S5-3) by neglecting aerodynamic resistance, and assuming open water evaporation rates instead of a specific evaporation rate calculated for fully wet leaf surfaces. Furthermore, WBM uses a Eulerian approximation of \(W_i \) from the previous timestep to estimate canopy evapotranspiration.

Throughfall \((P_t) \) is calculated as rainfall that exceeds storage capacity and canopy evapotranspiration according to equation 5-4.

\[
P_t = \begin{cases}
(Pdt + W_i - E_c dt - W_i^{\text{max}})/dt & \text{if } W_i^{\text{max}} < Pdt + W_i - E_c dt \\
0 & \text{if } W_i^{\text{max}} > Pdt + W_i - E_c dt
\end{cases}
\]

(S5-4)

Canopy interception storage \((W_i) \) is then updated according to equation S5-1.
References

S6. Soil moisture

Soil moisture balance, W_s [mm], is calculated with an accounting system that tracks a grid cell’s water inputs, water outputs, and soil moisture pool holding capacity. The soil moisture pool depth is determined by the rooting depth. Inputs come in the form of precipitation as throughfall, P_t [mm d$^{-1}$], and as snow melt, M_s [mm d$^{-1}$]. Water intercepted by the canopy and ultimately evaporated, E_c, reduces how much precipitation reaches the soil (Section S5). Output is via actual evapotranspiration, AET [mm d$^{-1}$] (Section 0) and gravity drainage called soil surplus S [mm d$^{-1}$]. Soil moisture can be calculated for individual sub-pixel scale units defined by land-cover or crop type. The calculations presented below are repeated for each crop type being simulated. WBM uses perl Data Language slicing to improve performance of the set of equations. Fluxes leaving the root zone (S and AET) are summed according to pixel fraction for each land-cover type.

Change in soil moisture [mm d$^{-1}$] is calculated by equation S6-1.

$$\frac{dW_s}{dt} = P_t + M - AET - S \quad \text{(S6-1)}$$

Throughfall (P_t) is discussed in Section S5, snow melt in Section S4, and actual evapotranspiration in Section S3. Soil surplus water S equals any water infiltrating soil in excess of available water capacity (equation S6-2).

$$S = \begin{cases}
(W_s^{k-1} + P_t \ dt + M \ dt - AET \ dt - W_{cap}) & \text{if } W_{cap} < W_s^{k-1} + P_t \ dt + M \ dt - AET \ dt \\
0 & \text{if } W_{cap} > W_s^{k-1} + P_t \ dt + M \ dt - AET \ dt
\end{cases} \quad \text{(S6-2)}$$

S7. Runoff

Runoff in WBM consists of storm runoff, surface runoff, baseflow, and irrigation runoff. The combined surface runoff and baseflow exit the terrestrial portion of each pixel, and are collected in a river network that allows the water to be transported downstream, the details of which will be discussed in Section 8.

S7.1 Surface Runoff

When water inputs to a grid cell exceed the daily evapotranspiration and available water capacity then gravity drainage is initiated, defined in WBM as surplus water S [mm d$^{-1}$] leaving the root zone (Section S6). A fraction $(1 - \gamma [-])$ of this surplus becomes quickflow, interpreted as representing flow through shallow soils and near stream surface runoff, R_s [mm d$^{-1}$]. Note The remaining fraction ($\gamma [-]$) of the surplus percolates to groundwater (I_p [mm d$^{-1}$]), either the shallow groundwater storage pool, W_g [mm d$^{-1}$] or to aquifers W_{Aqf} [m d$^{-1}$]. The groundwater percolation fraction (γ) defaults to 0.5, and is generally robust in the range of 0.4 to 0.6 (Zuidema et al. 2018, Stewart et al. 2011), but may vary beyond these ranges in specific contexts (Zuidema et al. 2020).1

1 γ is a percolation fraction, setting how much of the surplus enters the groundwater pool. In Vörösmarty et al. (1998), γ indicates a surface runoff fraction, setting how much of the surplus becomes surface runoff.
Surface runoff is retained in a surface runoff retention pool (W_{SRP} [mm]) (called rainfall runoff detention pool in Wisser et al. (2010)) prior to draining to the stream network. Drainage from the surface runoff retention pool (R_{SRP} [mm d$^{-1}$]) follows a tank drain formulation:

$$R_{SRP} = C_{SRP} \sqrt{2G W_{SRP}}$$ \hspace{1cm} (S7.1-1)

Where C_{SRP} is a unitless discharge coefficient of the surface runoff retention pool and includes unit conversions, and G is gravitational acceleration. A plot illustrating how R_{SRP} varies with W_{SRP} is provided as Figure S7.1.

![Figure S7.1](image)

Figure S7.1: Calculated runoff from the surface retention pool across a range of values of storage within the pool for three reasonable values of the drain parameter C_{SRP}.

There is an upper limit, T_{SRP} [mm], imposed on the storage volume in the surface runoff retention pool. This limit captures the response of over-filled surface topographic depressions. When the volume of the surface runoff retention pool exceeds this limit, then the over-flow water, R_{EXC} [mm d$^{-1}$], is immediately moved to the river. This helps to capture flashy hydrodynamic responses more accurately during extreme events (Zuidema et al., 2020).

The balance of the surface runoff retention pool W_{SRP} is expressed as:
\[
\frac{dW_{SRP}}{dt} = R_s - R_{SRP} - \delta(t - t_E) R_{Exc}
\]

where \(t_E \) are times when the surface runoff pool exceeds the limit, and \(\delta \) represents the Dirac delta, the integral of which over one timestep equals unity. The balance of the surface runoff retention pool is calculated as a split operator in three stages that introduce inputs (1), calculate runoff (2), and then remove any remaining storage within the pool via over-flow water (3):

1. \(W^1_{SRP} = W^k_{SRP} + R_s \) \(dt \) (S7.1-3)

2. \(W^2_{SRP} = W^1_{SRP} - R_{SRP} \) \(dt \) (\(R_{SRP} \) is calculated using \(W^1_{SRP} \)) (S7.1-4)

\[
R_{Exc} = \begin{cases}
(T_{SRP} - W^2_{SRP})/dt & \text{if } W^2_{SRP} > T_{SRP} \\
0 & \text{if } W^2_{SRP} \leq T_{SRP}
\end{cases}
\]

3. \(W^{k+1}_{SRP} = W^2_{SRP} - R_{Exc} \) \(dt \) (S7.1-5)

Where \(W^k_{SRP} \) and \(W^{k+1}_{SRP} \) are the storage in the surface retention storage pool at the previous and present time-step, respectively. The threshold for storage in the surface runoff retention pool is set to 1,000 mm by default, meaning that unless otherwise specified as a non-default value, the storage in the surface retention pool is highly unlikely to be limited anywhere on the Earth’s surface.

S7.2 Irrigation Runoff

For irrigated croplands, a separate surface storage pool \(W_{IRR} \) is maintained to separate differing water inputs for irrigated and non-irrigated portions of pixels. The balance of this pool and runoff from irrigated portions of pixels (\(R_{IRR} \)) is calculated identically to surface runoff retention pool; however, the upper limit to surface retention does not apply, and there is no excess surface runoff (e.g. \(R_{Exc} \)) calculated for irrigated areas; the balance of \(W_{IRR} \) is calculated in only stages 1 and 2 above.

S7.3 HBV Direct Recharge

WBM has the option to also introduce direct recharge (\(I_D \)), following the method of Hydrologiska Byråns Vattenbalansavdelning (HBV - Bergström and Lindström, 2015). Direct recharge simulates immediate recharge of slow response groundwater pools during precipitation events, likely through direct connections to groundwater via macro-pore flow, and is calculated prior to soil balance calculation as:

\[
I_D = (P_t + M) * \left(\frac{W_s}{AWC} \right)^{\beta_D}
\]

where \(P_t + M \) [mm d\(^{-1}\)] is effective precipitation incident to the soil surface (following canopy interception), \(W_s \) [mm] is water storage in the soil or root zone, \(AWC \) [mm] is available water capacity of the soil, and \(\beta_D \) is the HBV direct recharge shape parameter (Bergström and
Lindström, 2015). If direct recharge is calculated by WBM, effective precipitation infiltrating to soil \((I_S \ [\text{mm d}^{-1}]) \) is calculated as:

\[
I_S = I - I_D
\]
\[\text{(S7.3-2)}\]

Otherwise, if direct recharge is not calculated, then:

\[
I_S = I
\]
\[\text{(S7.3-3)}\]

Direct recharge is added to soil percolation \((I_P) \) to calculate total groundwater recharge \((I_G) \):

\[
I_G = I_S + I_D
\]
\[\text{(S7.3-4)}\]

However, if direct recharge is not calculated, then total groundwater recharge consists soil of soil percolation:

\[
I_G = I_S
\]
\[\text{(S7.3-5)}\]

S7.4 Baseflow

Groundwater recharge \((I_G) \) is the sum of soil percolation and direct recharge. Groundwater is represented as both a shallow groundwater pool, and optionally as aquifers which can be represented in three different ways.\(^2\) We refer to the shallow groundwater pool, and interpret this pool as representing the hydrodynamic response of subsurface water responding to recharge events and generating baseflow conceptualized as residing in shallow alluvial aquifers proximal to streams. Aquifer representations are described in Section 9. Where aquifers are represented (they are optionally represented in none, in part of, or over the entire model domain), soil percolation is partitioned to a fraction recharging shallow groundwater \((I_{SGW}) \), and a fraction recharging aquifers \((I_{Aqf}) \) by:

\[
I_{Aqf} = \gamma_{Aqf} I_G
\]
\[\text{(S7.4-1)}\]

\[
I_{SGW} = (1 - \gamma_{Aqf}) I_G
\]
\[\text{(S7.4-2)}\]

where \(\gamma_{Aqf} [-] \) is the aquifer percolation fraction, and defaults to zero when aquifers are not defined. \(I_{Aqf} \) is directed to aquifers (Section S9), and \(I_{SGW} \) represents recharge to the shallow groundwater represented as a simple retention pool.

Water drains from the groundwater storage pool \((W_{SGW} \ [\text{mm}]) \) to streams through baseflow \((R_{SGW} \ [\text{mm d}^{-1}]) \), at a rate defined by the hydrodynamic groundwater response constant \((\beta \ [\text{d}^{-1}]) \).

\(^2\) Drainage from aquifers add additional runoff above the runoff generated by the mechanisms described here. Types of drainage vary by the form of aquifer representation, and are described in Section 9.
\[R_{SGW} = \beta W_{SGW} \ [\text{mm d}^{-1}] \]

(S7.4-3)

The total change in groundwater is then the percolation from surplus, (i.e., recharge), minus the loss to baseflow.

\[\frac{dW_{SGW}}{dt} = I_{SGW} - \beta W_{SGW} \]

(S7.4-4)

\[\beta \ [\text{d}^{-1}] \] is an empirical constant that defaults to 0.0167 [d^{-1}] meaning that typical baseflow recession has a time-scale of 60 days by default.

S7.5 Storm runoff

Storm runoff directs water to streams immediately with no lag in time. Storm runoff is generated as melt and precipitation on impervious or open water surfaces, as well as runoff that exceeds the surface runoff retention pool limit \((R_{Exc})\).

All precipitation and melt on open-water surfaces is considered open-water storm runoff \((R_{ow} \ [\text{mm d}^{-1}])\).

\[R_{ow} = f_{ow} (P + M_s) \]

(S7.5-1)

where \(f_{ow}\) is the fraction of pixel area covered by open water. Impervious areas prevent water from entering soils and increases overland runoff. If provided with an impervious area map, WBM calculates overland runoff in impervious areas, \(R_{imp} \ [\text{mm d}^{-1}]\) as:

\[R_{imp} = C_{imp} f_{imp} (P_t + M_s) \]

(S7.5-2)

where \(C_{imp} \ [-]\) is the hydrologically connected impervious fraction, a unitless scalar for impervious surfaces that determines the fraction of precipitation over impervious areas that is directly routed to streams, \(f_{imp}\) is the pixel area fraction covered by impervious surfaces. Precipitation incident to impervious surfaces include calculation of canopy interception to account for vegetation co-located with imperviousness. WBM assumes a relationship for directly connected imperviousness from Alley and Veehuis (1983) that assumes that degree of impervious connectedness scales non-linearly with the fraction of impervious cover \((f_{imp})\) in each pixel:

\[C_{imp} = f_{imp}^{0.4} \]

(S7.5-3)

Total storm runoff is the sum of storm, and open-water runoff and excess surface runoff \([\text{mm d}^{-1}]\):

\[R_{storm} = R_{ow} + R_{imp} + R_{Exc} \]

(S7.5-4)
S7.6 Total Runoff

The total amount of water that exits the terrestrial portion of the pixel and enters the stream network (total runoff, \(R_t \) [mm d\(^{-1}\)]) is the sum of the surface retention pool release, irrigation retention pool release, baseflow, and storm runoff:

\[
R_t = R_{SRP} + R_{Irr} + R_{SGW} + R_{storm}
\]

(S7.6-1)

References

S8. River routing

WBM has three options for calculating hydrologic routing of water through a river network. The river network is represented as a 1-dimensional cell-table (directed graph) where each subsequent entry is guaranteed to be on a separate flow-path or is downstream of all preceding entries. WBM checks for circularity in the river network and is prevented from running if found.

S8.1 Hydraulic geometry

Related to routing are a series of properties that describe the hydraulic geometry of stream channels. WBM incorporates both downstream and at-a-station stream geometry relationship assumptions to calculate river width, depth, and velocity from discharge. WBM assumes that each grid cell has a single representative stream reach and calculates a rolling average of annual mean discharge for each reach in a simulation over the previous five-years of a simulation. The long-term mean discharge, \(\bar{Q} \), [m\(^3\)/s] is then used to estimate the long-term mean depth, \(\bar{z} \), [m], width, \(\bar{y} \), [m], and velocity, \(\bar{u} \), [m/s] using down-stream hydraulic geometry relations and scalers from (Park, 1977):
\[\tilde{z} = \eta \tilde{Q}^\nu \quad \text{(S8.1-1)} \]
\[\tilde{y} = \tau \tilde{Q}^\phi \quad \text{(S8.1-2)} \]
\[\tilde{u} = \delta \tilde{Q}^\epsilon \quad \text{(S8.1-3)} \]

Instantaneous estimates of the three variables \(z \) [m], \(y \) [m], and \(u \) [m/s] for depth, width and velocity, respectively) are given as functions of instantaneous \(Q \) [m\(^3\)/s] and mean discharge \(\bar{Q} \) [m\(^3\)/s], scaled by appropriate at-a-station hydraulic geometry exponents (Dingman, 2009).

\[z = \tilde{z} \left(\frac{Q}{\bar{Q}} \right)^f \quad \text{(S8.1-4)} \]
\[y = \tilde{y} \left(\frac{Q}{\bar{Q}} \right)^b \quad \text{(S8.1-5)} \]
\[u = \tilde{u} \left(\frac{Q}{\bar{Q}} \right)^m \quad \text{(S8.1-6)} \]

In the above equations, parameters \(\eta, \nu, \tau, \phi, \delta, \epsilon, f, b \) and \(m \) are all user defined variables set to defaults found in (Leopold & Maddock, 1953; Park, 1977).

S8.2 Flow accumulation

The simplest routing routine employed by WBM is flow accumulation, where all incoming runoff and upstream discharge is immediately moved to the next downstream pixel.

S8.3 Muskingum

In the case where simulations use a coarse spatial resolution (e.g., half a degree of latitude and longitude) such that river flow likely remains within the grid cell on a daily time step, WBM can use the Muskingum flow routing option. Unfortunately, Muskingum routing does not account for residual in-stream water storage and other anthropogenic or natural water abstractions from streamflows, and WBM will exit if there is this identified mismatch in routines. Muskingum routing has limitations on pixel size and time steps requiring cell's Courant number (i.e. fraction of cell size travelled by the flood wave during time step \(\Delta t \)) to be much less than 1. These limitations prohibit use of Muskingum routing in many WBM model settings. In cases where necessary conditions for using Muskingum routing are met, this method is preferred over Linear Reservoir Routing (LRR) because it is derived from a simplification of hydraulics accounting for non-uniform flow across the reach during changes in flow. LRR assumes uniform instream storage and flow within a grid cell.

WBM’s Muskingum flow routing option estimates the flow rate and water level in each grid cell’s stream segment using a distributed flow routing model based on the Saint-Venant partial
differential equations for one-dimensional flow. Specifically, this is the Muskingum-Cunge
kinematic wave model that approximates the solution to the Saint-Venant partial differential
equations (Maidment, 1992). These equations require six assumptions:

1. Flow from grid j to grid j + 1 is one-dimensional,
2. The stream length through the grid cell is significantly larger than the flow depth,
3. Vertical acceleration and vertical changes in pressure are negligible,
4. Water density is constant,
5. Channel bed and banks are immobile, and
6. Channel bottom slope is small, less than 15%.

Additionally, WBM assumes a rectangular channel bed and no loss of water from the channel to
groundwater.

The Muskingum-Cunge solution estimates the outflow, \(Q_{j+1}^{t+1} \) \([m^3 s^{-1}]\), at time \(t+1 \) and
grid cell \(j+1 \), as a linear combination of three known inflows and outflows. These are:
1) the inflow of the current time step and previous grid cell, \(Q_j^{t+1} \) \([m^3 s^{-1}]\),
2) outflow of the previous time step and current grid cell, \(Q_{j+1}^t \) \([m^3 s^{-1}]\), and
3) inflow from the previous time step and adjacent upstream grid cell, \(Q_j^t \) \([m^3 s^{-1}]\):

\[
Q_{j+1}^{t+1} = C_0 Q_j^{t+1} + C_1 Q_{j+1}^t + C_2 Q_j^t \tag{S8.3-1}
\]

The coefficients \(C_0 \) [-], \(C_1 \) [-], and \(C_2 \) [-], are defined such that:
\[
C_0 + C_1 + C_2 = 1 \tag{S8.3-2}
\]

and if any of these three coefficients are less than 0, they are reset to 1, 0, and 0, respectively.
The coefficients are unitless functions of the Courant number, \(C \), and Reynolds number, \(D \):

\[
C_0 = \frac{-1+C+D}{1+C+D} \tag{S8.3-3}
\]

\[
C_1 = \frac{1+C-D}{1+C+D} \tag{S8.3-4}
\]

\[
C_2 = \frac{1-C+D}{1+C+D} \tag{S8.3-5}
\]

Both \(C \) and \(D \) depend on riverbed geometry, and are defined as:

\[
C = U_w V_m \frac{\partial t}{L} \tag{S8.3-6}
\]

\[
D = \frac{V_m}{S_0 U_w L} \tag{S8.3-7}
\]
where $U_w \text{[m s}^{-1}\text{]}$ is the speed of wave propagation (also referred to as the wave celerity), V_m is the mean fluid velocity $\text{[m s}^{-1}\text{]}$ defined below, L is the river length in the grid cell [m], $dt \text{[s]}$ is the time step length (daily), Y_m is the mean flow depth [m], and S_0 is the riverbed slope $\text{[m km}^{-1}\text{]}$. These variables are defined as:

$$U_w = \left(1 + \frac{\frac{2}{\sigma}}{\sigma+1}\right)V_m$$ \hspace{1cm} (S8.3-8)

where the shape parameter $\sigma = 2 \text{[-]}$,

$$V_m = \frac{Q_m}{Y_mW_m}$$ \hspace{1cm} (S8.3-9)

where Q_m is the mean annual discharge in the river segment $\text{[m}^3\text{s}^{-1}\text{]}$, and W_m is the corresponding mean annual channel width [m]:

$$W_m = \tau Q_m^\phi$$ \hspace{1cm} (S8.3-10)

where $\tau \text{[-]}$ and $\phi \text{[-]}$ are constants 8.0 and 0.58, respectively (Knighton, 1998). Parameter Y_m is calculated as:

$$Y_m = \eta Q_m^\nu$$ \hspace{1cm} (S8.3-11)

Where η and ν are empirical constants of 0.25 and 0.4, respectively (Knighton, 1998), and S_0 is an input to the model that defaults to 0.1.

River length L is calculated as (Fekete et al. 2001):

$$L = \frac{N\sqrt{A_c}}{1-0.077 \log(A_c)}$$ \hspace{1cm} (S8.3-12)

Where $A_c \text{[m}^2\text{]}$ is the area of the grid cell and N is direction factor that depends on whether flow crosses the pixel in cardinal or ordinal directions.

$$N = \begin{cases}
1 & \text{if pixel drains to N, S, E, or W} \\
\frac{1}{\sin(\frac{\pi}{4})} & \text{if pixel drains to NE, SE, NW, SW}
\end{cases}$$ \hspace{1cm} (S8.3-13)

As the discharge is calculated for each time step within a grid cell, the discharge value is stored so that it can be used to determine the mean annual discharge in future calculations. Mean annual discharge reflects a rolling average of the previous five years of mean annual discharge. Grid cells which are defined as open water (e.g., lakes) use the flow accumulation routing scheme, in which water is transported immediately between the grid cell and the open water outlet point. In
this case, the coefficients C_0, C_1, and C_2 are redefined to equal 1, 0, and 0, respectively. Routing delays on open water bodies are simulated by WBM’s reservoir operations (Section 0).

S8.4 Linear reservoir routing

The linear reservoir routing (LRR) method implemented by WBM reflects a common approach for simple routing schemes (Dingman, 2002, p429). LRR provides a dampened routing response like Muskingum; however, does not provide any delay in the onset of the flood wave propagation.

Let us consider continuity (mass conservation) for surface water storage (river) as a partial differential equation

$$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = 0$$ \hspace{1cm} (S8.4-1)

where the first term is rate of rise of flow cross sectional area (for an assumed rectangular channel), A, the second term is flow, Q, gradient through the grid cell. Its differential form with introduction of (reservoir) storage, S, inflow, Q_{in}, and outflow, Q_{out}, it can be transformed to a full differential form

$$\frac{ds}{dt} = Q_{in} - Q_{out}$$ \hspace{1cm} (S8.4-2)

If cell surface water is considered to be an ideal reservoir then the change in storage is a function of outflow only, i.e.

$$S = f(Q_{out})$$ \hspace{1cm} (S8.4-3)

which has a common form of (e.g. hydrograph)-

$$S = KQ_{out}^n$$ \hspace{1cm} (S8.4-4)

LRR is a special case when the power term is equal to 1 and the equation (S8.4-4) becomes a linear relation between storage and outflow.

The next step in formulation of LRR is finding the scaling coefficient K in the equation (S8.4-4). Let us assume constant velocity and uniform water volume distribution within its travel time reach which leads to the following system of equations

$$\begin{cases}
S_{total} = S_{out} + S_{in} \\
S_{out} = Q_{out} \Delta t \\
S_{in} = Q_{out} \frac{\Delta t}{v_w}
\end{cases}$$ \hspace{1cm} (S8.4-5)
where S_{total} is total storage (volume) of water, i.e. S in equations (S8.4-1 through S8.4-4), that has to be distributed between this pixel, S_{in}, and outflow volume to the downstream pixel, S_{out}; Q_{out} is outflow rate (discharge) from the given cell, Δt is time step, Δl is this cell river reach, and U_w is wave celerity. Note that term $\Delta l / U_w$ is time for the flood wave to propagate along the cell river reach. The total storage is usually composed of the following terms

$$S_{total} = S_{in}^0 + (Q_{in} + R + Q_{abs} - w\Delta l E_{ow} + D_{RIV}) \Delta t$$

where S_{in}^0 is instream water storage in the cell from the previous time step, Q_{in} is inflow, R is runoff rate (converted to volumetric flow in $m^3 \cdot s^{-1}$), and Q_{abs} is collective water abstraction within a pixel that may include human water use withdrawals and returns. Open water evaporation and exchange with local aquifers (if simulated) also affect storage within the reach. Solving equation (S8.4-5) for Q_{out} in regard to variables that are known or can be evaluated in the model, i.e. S_{total} and U_w, yields-

$$Q_{out} = \frac{S_{total}}{\Delta t + \frac{\Delta l}{u}} = \frac{1}{1 + \frac{\Delta l}{u \Delta t}} S_{total} = \frac{C}{1 + C} S_{total} \frac{\Delta t}{\Delta t}$$

where C is cell's Courant number $C = U_w \frac{\Delta t}{\Delta l}$ which is a fraction of river reach within cell travelled by the flood wave during time step Δt. Equation (S8.4-7) represents a linear relation of storage with outflow indicating a linear ($n=1$) solution for equation (S8.4-4) above.

References:

S9. Groundwater
All WBM simulations utilize the shallow groundwater pool to simulate hydrodynamic response of baseflow. We conceptualize the shallow groundwater pool (Section 7.4), as representing groundwater flowpaths that are entirely contained within the pixel. To simulate the effects of regional aquifers, WBM has one additional option that may be used.

S9.1 Unsustainable groundwater
WBM can simulate water extractions from an unlimited unsustainable groundwater pool, in addition to the shallow groundwater pool that is explicitly represented. The state of the unsustainable pool is not simulated directly within WBM, i.e., there is no accounting of the volume of water in this imaginary pool. Rather, when water extractions are needed, water can be withdrawn and added to the soil or other WBM water stock subject to irrigation demand parameter values (Section 0).

For the purposes of calculating total water storage (TWS), the amount of water taken from this pool is accumulated daily, providing an estimate of water extracted from unsustainable groundwater sources. Total water storage is an output of WBM that sums all water stores in a pixel.

Other than water extractions, there is no interaction between unsustainable groundwater and other water pools within WBM; there is no recharge to and no baseflow from unsustainable groundwater.

References

S10. Glacier melt water

WBM can use output from a glacier dynamics model (e.g., Huss and Hock, 2015; Rounce et al., 2020) as an input to WBM. The glacier dynamics model simulates glacier mass balance for all glaciers in the global Randolph Glacier Inventory (RGI Consortium, 2014), and estimates liquid water discharge from each glacier outlet on a monthly basis. We assume daily glacier discharge is constant through each month.

To avoid double-counting precipitation and runoff over the glacier area, each WBM grid cell is assigned a glaciated fraction (0 for non-glacial regions). Precipitation is reduced linearly by this fraction, thereby reducing runoff and effectively removing the glaciated area from the hydrological simulation. We assume the glacier occupies the highest elevation bands within each grid cell. Each glacier has a single designated outlet location; it is from this location that glacial discharge enters the WBM river system. While a single glacial area may intersect multiple river basins, each glacier discharged to only one basin. Glacier melt water, either as a single runoff unit or as multiple components (runoff as ice melt vs precipitation) can be tracked in WBM; see section Primary Component Tracking below.

If the glacier simulations provide a time series of glaciated area, WBM has a pre-processing tool that rasterizes this changing glacier area, allowing WBM to allocate land within each grid cell to glaciated vs non-glaciated fractions dynamically over time.

References

S11 Hydro-infrastructure

S11.1 Controlled Reservoirs

S11.1.1 Water Release from Controlled Large Reservoirs

Dams and reservoirs are an integral part of simulated river networks. It is a challenge to develop generic mathematical functions for dam operating rules because water release from large reservoirs is controlled by people based on the primary use of water stored with the reservoir. Furthermore, many hydrological factors, such as seasonal variance of water inflow, forecasts of extreme floods or droughts, upstream snow storage, interact with the timing and needs for reservoir storage. Normal operation of individual dams is generally unknown, so models must rely on limited available outflow data, dam locations, and limited physical characteristics of the reservoir’s hydro-infrastructures [Lehner et al., 2011]. The goal for WBM is to develop a simple, but still realistic model for dam operating rules through mathematical functions which are based on the minimum possible set of input parameters.

In order to design a mathematical model for managed reservoirs we incorporate critical principles in dam operations. First, dams are constructed for specific use purposes and accordingly optimized for an operational regime that normally corresponds to an average annual flow at the given location. The key considerations in such a design are bathymetry of the reservoir and its potential water storage, average annual river flow over a historical time period, and inflow hydrograph. For water balance modeling of such large managed dams, we assume that optimal operating rule parameters are based on long-term averages of stream flow and maximum capacity of the reservoir. We assume that the optimal water storage must be below its maximum capacity and water release should be maintained at an average annual discharge level as much as water storage allows. On the other hand in cases of high-flow time periods when storage approaches its maximum capacity, the discharge is likely to exponentially increase to prevent overtopping the dam. Two fundamental principles of controlling water release from large dams are considered in our model:

1. **Dam operation at and below optimal capacity** By design, reservoir storage targets maintenance of an average annual flow as long as possible, but should never be below some minimal regulatory flow as effective storage becomes critically depleted. We found that a logarithmic function can reasonably address such a behavior by maintaining average annual flow within a wide range of available water volumes in the reservoir at and below its optimal storage.

2. **Dam operation above optimal capacity** At water levels above optimal reservoir storage, rapidly increasing rates of release are needed to prevent overtopping of the dam. We find that an exponential increase in the water release prevents dam overflow.

Based on these two logical considerations we combine logarithmic and exponential dam operating functions that are quasi-continuously spliced at the optimal designed reservoir storage.
level (Figures S11.1-1 through S11.1-5). Parameterization of this bi-functional reservoir operating model makes use of the following quantities.

1. **Equilibrium reservoir storage** depends mainly on dam purpose and use. We assume that this storage, S_e, corresponds to designed optimal water level and, thus, the reservoir water release corresponding to this equilibrium level is equal to an average annual discharge for most dams, i.e. $Q = Q_e = Q_{av}$ at $S = S_e$. Considering continuity of water release functions and the assumption that discharge is continuously, and positively related to storage ($\frac{\partial Q}{\partial S} > 0$), the value of optimal reservoir storage can be used as a splicing point for logarithmic and exponential sections of this bi-functional water release model, i.e. $[S_e, Q_e] = F_{log} \cap F_{exp}$.

2. **Minimum allowed reservoir release** is mandated to maintain some flow within a river.

3. **Logarithmic water release function for medium and low storage levels** is parameterized by two scaling parameters to control the curvature and slope of the logarithmic water release function (at $S < S_e$).

4. **Exponential water release function for high storage levels** is also parameterized by two scaling parameters to control the exponential rate at which discharge gets increased as reservoir storage approaches its maximum capacity (at $S \geq S_e$).

Values for the above parameters are selected to simulate operating rules for human-controlled dams specific to each dam’s, or each purpose. WBM recognizes 5 purposes for dam operations (Table S11.1-1). Average annual discharge Q_{av} and reservoir maximum storage capacity S_{max} are used in the formulation as reference values for nondimensionalization. The value for Q_{av} in WBM is calculated over past 5 full years of the simulation to alleviate a problem of long-term discharge trends due to climate change in the catchment area and temporary changes in annual flows due to construction of hydro-infrastructure upstream such as new dams, or changes in human water use.

Using the described above assumptions, the model for water release from controlled reservoirs is described by the following transversal function for $Y = \frac{Q}{Q_{av}}$ as a function of $X = \frac{S}{S_{max}}$:

$$
\begin{align*}
 F_{log} & \Rightarrow Y = Y_0 + a \ln(1 + c \ X) \quad \text{at } X < X_e \\
 F_{exp} & \Rightarrow Y = B + b \ (X - X_b)^p \quad \text{at } X \geq X_e
\end{align*}
$$

(S11.1-1)

where variables and constants are all dimensionless, i.e. Y and Y_0 are reservoir release and minimum allowed release normalized by average annual discharge, X and X_e are present and equilibrium water storage normalized by maximum reservoir storage capacity. Coefficients c and p are independent parameters, and a, b, b, and X_b are derived coefficients and an offset parameter to match curve slopes (first derivative) and the F_{log} and F_{exp} meeting (equilibrium) point. The latter should be calculated from condition of $(X_e, Y_e) = F_{log} \cap F_{exp}$, i.e. both segments of the model must meet at this point with the same first derivative. Using substitutions $d = X_e - X_b$
and \(q = a \frac{c}{(1+cX_e)} \) and matching first derivatives at \((X_e, Y_e)\) point we have implicit equation for \(d \):

\[
\frac{d^{p-1}}{d^p - (1-X_e+d)^p} + \frac{q}{p} \frac{1}{Y_1-Y_e} = 0
\]

(S11.1-2)

where \(Y_1 \) is a hypothetical discharge when the reservoir is full \((Y = 1)\). After a value for \(d \) is found from solving implicit equation (S11.1-2) the values for \(B \) and \(b \) follows:

\[
a = \frac{Y_e-Y_0}{\ln(1+cX_e)}
\]

(S11.1-3)

\[
b = \frac{Y_1-Y_e}{(1-X_e+d)^p - d^p}
\]

(S11.1-4)

\[
B = X_e - b \cdot d^p
\]

(S11.1-5)

Reservoirs with low regulatory capacity \((R_c)\), the ratio between annual mean flow and the reservoir maximum capacity, below 0.1, which equates to a capacity of about 1 month of average annual flow, cannot be adequately replicated by this model. For dams with \(R_c \) less than 0.1, variance in seasonal hydrology results in water release to similar to inflow during most of the year, meaning reservoir effective storage is low during dry periods or completely full during high discharge seasons. Models for water release from uncontrolled dams (Section 11.2) can be used instead for reservoirs with low \(R_c \).

S11.1.2 Parameterization of controlled reservoirs by dam purpose

The formulation for large, controlled reservoirs permits unique parameterizations that follow common flow and supply regimes. Most of large dams are built to serve one or more purposes in using and controlling water resources [Lehner et al., 2011]. Selection of 6 parameters controls the operational behavior of controlled dams in WBM. Each dam input to WBM is identified with a specific purpose (if no purpose is given, it is simulated as an uncontrolled dam). Parameters controlling dam operation are specified by purpose, and/or by individual dams allowing the user to select typical operational parameters for entire classes of dams, or specifying unique parameterizations for dams where more detailed data is available. Default values for each of the major classes of operation recognized by WBM are presented in Table S11-1, and discussed in the following paragraphs.
Table S11-1. Suggested parameters for reservoir operating model by dam use

<table>
<thead>
<tr>
<th>Dam Purpose</th>
<th>Y_0</th>
<th>Y_1</th>
<th>X_e</th>
<th>Y_e</th>
<th>C</th>
<th>p</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generic</td>
<td>0.2</td>
<td>5</td>
<td>0.80</td>
<td>1.0</td>
<td>4</td>
<td>6</td>
<td>Works for most of dams</td>
</tr>
<tr>
<td>Flood control</td>
<td>0.2</td>
<td>5</td>
<td>0.20</td>
<td>1.0</td>
<td>100</td>
<td>170</td>
<td>Low optimal storage</td>
</tr>
<tr>
<td>Hydroelectric</td>
<td>0.2</td>
<td>5</td>
<td>0.85</td>
<td>1.0</td>
<td>200</td>
<td>6</td>
<td>High storage, uniform discharge</td>
</tr>
<tr>
<td>Irrigation(LRO)*</td>
<td>0.1</td>
<td>5</td>
<td>0.70</td>
<td>0.1</td>
<td>1</td>
<td>3</td>
<td>Filling operations, off-season</td>
</tr>
<tr>
<td>Irrigation(HRO)*</td>
<td>0.2</td>
<td>5</td>
<td>0.85</td>
<td>1.0</td>
<td>200</td>
<td>6</td>
<td>Release operations, irrigation season</td>
</tr>
<tr>
<td>Water supply</td>
<td>0.1</td>
<td>5</td>
<td>0.70</td>
<td>0.1</td>
<td>1</td>
<td>6</td>
<td>High storage, min discharge</td>
</tr>
</tbody>
</table>

* Irrigation dam parameters vary throughout the between low release operations (LRO) and high release operations (HRO). See “Irrigation” section below.

Generic- Many dams have multiple uses combining self-exclusive requirements or those are not reported in the available databases of dam inventories [Lehner et al., 2011]. For instance hydropower generation and flood control may conflict in the optimal water level in the reservoir storage. In these cases we can suggest using a “generic” type of dam use with some average values for the model parameters (Figure S11-1).
Figure S11-1. Relation between reservoir water release and storage for a generic dams use.
Flood control - These reservoirs are supposed to maintain low water storage so that a reserve of their capacity would be available to accommodate as much water as possible during upstream flood events. The behavior of flood control dams is simulated with a very low optimal storage level (20 %) and increased water release when accumulation of water exceeds it. X_e parameter has to be low in this case (Figure S11-2).

![Flood Control Diagram](image)

Figure S11-2. Reservoir release curve for flood control dams. See parameters in Table S11-1.
Hydroelectric - Gravitational potential energy of released water needs to be maximized. A high optimal level of water storage (e.g. 90 %) with minimal margin for the cases of seasonal high inflow into the reservoir (e.g. spring snow melt or monsoon season). At the same time during low reservoir refill periods (e.g. dry season) the outflow discharge needs to be maintained at a uniform value to continue production of electricity. This can be modeled by high values for c parameter (Figure S11-3).

Figure S11-3. Reservoir release curve for hydroelectric dam use. See parameters in Table S11-1.
Irrigation - These reservoirs maximize utilization of the reservoir storage for irrigation by maintaining high water storage in the reservoir outside of the irrigation season and high water release when during the irrigation season (assumes provisioning to downstream irrigation). This is achieved by adapting the water release curve to local irrigation demand (Figure 11-4). Long term daily averages of irrigation demand frequency is input to WBM as the daily probability density function of annual irrigation demand. We use linear interpolation of water release curves between low release operations (LRO) during days with no irrigation demand to high release operation (HRO) during days with maximum irrigation demand. The linear interpolation is done as following:

\[
[M] = [M]^{LRO} + ([M]^{HRO} - [M]^{LRO}) \frac{F_{irr}}{F_{irr}^{max}}
\]

(S11.1-6)

where vector \([M]\) = \([Y_0, Y_1, X_e, Y_e, c, p]\) with superscripts LRO and HRO referring to low and high release operation water release curve/regime, \(F_{irr}\) and \(F_{irr}^{max}\) are daily irrigation frequency and its typical maximum value correspondingly. We suggest using value of 0.05 for \(F_{irr}^{max}\), but it should not be higher than 0.075 for stability reasons.

Figure S11-4. Reservoir release curve for irrigation dam purposes. See parameters in Table S11-1 and eq. (S11.1-6).
Water supply - These reservoirs are built with intent to maximize utilization of inflow water by minimizing outflow. This would result in high water storage in the reservoir which can be withdrawn agricultural/irrigation, industrial, and domestic use directly from the reservoir. Low values for Y_e parameter can simulate such type of dam use (Figure S11-5).

![Water Supply Diagram](image)

Figure S11-5. Reservoir release curve for water supply dam purposes. See parameters in Table S11-1.

Reservoir capacity input into WBM is assumed to be effective maximum storage that excludes non-effective (dead) storage. Initialization of reservoir storages is done to 100% of their reported capacity. Each class of dam is input with a minimum and maximum capacity. If a dam is input with a specific purpose, but is less than the minimum capacity, it is represented as an uncontrolled small reservoir. Similarly, if a dam is identified as an uncontrolled reservoir, but exceeds the maximum capacity for small uncontrolled reservoirs, it is simulated as a generic large, controlled reservoir. The default for simulating reservoirs as small, uncontrolled reservoirs is 1 km3 of capacity (1000 mcm).
S11.1.2 Water Release from Uncontrolled Small Reservoirs

Small reservoirs are usually uncontrolled or rarely (seasonally) controlled by operating personnel. By design those are mostly spillway overflow flood control and small volume storage dams where effective length of crest (gate width) often matches or close to natural river stream width during its average annual flow [United States. Bureau of Reclamation., 1987]. The crest of spillways is commonly ogee shaped and a discharge over them is given by the Rehbock equation [Khatsuria, 2005]:

\[Q = C_D \frac{2}{3} L \sqrt{2g H_e^3} \] \hspace{1cm} (S11.1.2-1)

where \(Q \) is reservoir release (discharge), \(L \) is effective length of dam crest, \(g \) is gravity acceleration, and \(H_e \) is water head on the crest. Coefficient \(C_D \) depends on water approach velocity and head to dam weir (height) ratio. For relatively deep dams and slow water approach velocities it takes value of \(\pi / (\pi + 1) \approx 0.611 \) as derived from potential flow theory [Khatsuria, 2005]. So substitution of constants in metric units into equation (S11.2-1) yields a log-linear form:

\[\log Q = \frac{3}{2} \log H_e + \log(1.804 L) \] \hspace{1cm} (S11.1.2-2)

Head of the crest \(H_e = \frac{S_e}{A_r} \) is a function of reservoir area, \(A_r \), and effective storage above crest, \(S_e \). Considering very small regulatory capacity of small reservoirs, inflow discharge cannot be removed from daily time series calculations, and reservoir water balance takes form of first-order nonlinear ordinary differential equation:

\[\frac{ds}{dt} = Q_{in} - k S_e^{3/2} \] \hspace{1cm} (S11.1.2-3)

where dimensional constant \(k = C_D \frac{2}{3} L \frac{2g}{A_r^{3/2}} \). WBM utilizes a solution to equation S11.2-3 demonstrated by the US Army Corps of Engineers in a technical document HDC-111-3/3 [United States. US Army Corps of Engineers., 1987] where an empirical relation has been obtained from measurements over ten varying spillway design structures:

\[Q = Q_d \left(\frac{H_a}{H_d} \right)^{1.6} \] \hspace{1cm} (S11.1.2-4)

where subscript \(d \) refers to dam designed quantities which we assume is equivalent to long term annual averages from WBM. From (11.1-10) we can suggest that spillway dams have effective storage as a function of reservoir surface area and head height:
\[S_e = H_e A = H_e A_0 (1 + \alpha H_e) \]
\text{(S11.1.2-5)}

where \(\alpha \) is reservoir flood area rate (m\(^{-1}\)), and \(A_0 \) is the reservoir area at crest level. Equation (S11.2-4) and (S11.2-5) can be combined yielding:

\[
\begin{align*}
Q &= Q_d \left(\frac{\sqrt{1 + \beta S_e} - 1}{1 + \beta S_d} \right)^{1.6} \quad \text{for } \alpha \geq 0 \\
Q &= Q_d \left(\frac{S_e}{S_d} \right)^{1.6} \quad \text{for } \alpha = 0
\end{align*}
\]
\text{(S11.1.2-6)}

where \(\beta = \frac{4\alpha}{A_0} \). Equation (S11.2-6) is used in WBM. The flood area rate \(\alpha \) depends on the reservoir size and geographic properties of the watershed. For small reservoirs with spillway dams it is likely to be in the range of 0.2 to 0.4 m\(^{-1}\), e.g., the reservoir area increases by about 1/3 with 1 m of its stage rise. But the flood area rate is likely to be very small \((\alpha \approx 0) \) for any reservoirs with an artificial abutment (e.g., concrete, earth, stone, etc.). A value of 0.3 is assumed as a default in WBM.
Figure S11-6. Discharge from spillway dams by equation (S11.2-6).

References

S11.2 Inter-basin Transfers

A global database of inter-basin transfers has been developed and used in Zaveri et al (2016) and Liu et al (2017):

WBM simulates transfers of water between hydrologic basins by moving water across basin divides from one river location to another. We simulate both existing inter-basin transfers - transfers with infrastructure that was completed prior to 2006 – and future potential transfers. Future potential transfers were determined by literature review of government and NGO proposals. For all inter-basin transfers (completed and proposed), five parameters are used to simulate the transfer. These are: the donor/from latitude and longitude, the recipient/to latitude and longitude, a minimum allowed flow, a maximum allowed flow, and a rule for flow volumes between the minimum and. In some cases, maximum allowed flow is based on published reported annual transfer capacities. In addition to the reported latitudes and longitudes of the transfers, we grid cell based locations for each transfer, which in some cases are different than the reported location because they were adjusted to ensure they linked to the correct rivers within the STN-30p network version 6.02. The completed transfers are implemented in the year that construction was completed; proposed transfers are turned on at their proposed completion date, as there is no set date for completing construction of these transfers.

The volume of water transferred through each canal is calculated as:

\[D = \begin{cases} 0 & \text{if } Q_d \leq Q_{\min} \\ (Q_d - Q_{\min}) \cdot \frac{P}{100} & \text{if } Q_{\min} > Q_d \geq Q_{\max} \\ Q_{\max} & \text{if } Q_d > Q_{\max} \end{cases} \]

(S11.2-1)

where \(D \) [m\(^3\)s\(^{-1}\)] is the amount of water diverted through the canal, \(Q_d \) [m\(^3\)s\(^{-1}\)] is the donor river discharge, \(Q_{\min} \) [m\(^3\)s\(^{-1}\)] is the minimum flow parameter, \(Q_{\max} \) [m\(^3\)s\(^{-1}\)] is the maximum flow parameter, and \(P \) is the percent flow parameter.

The transfer volume, \(D \), is corrected to \(D_{corr} \) for small transfer volumes:

\[D_{corr} = 0 \text{ if } D < 0.01 \]

(S11.2-2)

Evaporation from open water along the canals is removed from the transfer volume:

\[D_{corr_e} = \begin{cases} D_{corr} - E & \text{if } (D_{corr} - E) > 0.001 \\ 0 & \text{if } (D_{corr} - E) \leq 0.001 \end{cases} \]

(S11.2-3)

where \(D_{corr_e} \) [m\(^3\)s\(^{-1}\)] is the transfer volume corrected for evaporation, and \(E \) [m\(^3\)s\(^{-1}\)] is the evaporation volume:

\[E = L \cdot W \cdot FWE \]

(S11.2-4)

where \(L \) [m] is the length of the canal (listed in Table S8 where published data is available, or calculated based on a straight line between to/from points), \(FWE \) is free-water evaporation [mm/day] which can be calculated through various free-water evaporation models or by scaled...
calculated potential evapotranspiration by the Hamon method; and W [m] is the width of the canal:

$$W = \begin{cases} \tau \cdot D_\text{corr}^\varphi & \text{if } (\tau \cdot D_\text{corr}^\varphi) \geq 0.01 \\ 0 & \text{if } (\tau \cdot D_\text{corr}^\varphi) < 0.01 \end{cases}$$

where τ (8.0) and φ (0.58) are held constant (Park, 1977).

Water is transferred on a daily time step. Several of the lengthy inter-basin transfers were split into multiple transfer segments for the purpose of the simulation. This allowed for water to be released and/or stored along the canal route, from where it can be accessible for irrigation withdrawals.

References:
Park C 1977 World-wide variations in hydraulic geometry exponents of stream channels – Analysis and some observations *J Hydrol* 33 133-146

Water extractions

S12. Irrigation

S12.1 Irrigation water demand

Definitions:
Net irrigation water demand is the amount of water required by crops to achieve the crops’ potential evapotranspiration. In addition, net irrigation water demand includes the amount of water required to maintain flood levels within rice paddies. Inefficiencies in the water delivery and application systems are not included.

Gross irrigation water demand is the amount of water required to meet net irrigation demand, plus the water lost through inefficiencies in water delivery and application.

Net irrigation water is the amount of irrigation water used by crops, not including losses due to inefficiencies. This water volume is less than net irrigation water demand when the demand is not completely fulfilled.

Gross irrigation water is the amount of irrigation water used by crops, including losses due to inefficiencies. This water volume is less than gross irrigation water demand when the demand is not completely fulfilled.

In WBM, crops extract water from the soil moisture pool each day of the crop’s growing season. Given sufficient water in the soil moisture pool, the amount of water used by each crop is the crop potential evapotranspiration, \(PET_c \ [\text{mm}] \):

\[
PET_c = k_c \cdot PET_0
\]
(S12.1-1)

where \(PET_0 \ [\text{mm}] \) is a reference evapotranspiration, and \(k_c \ [-] \) is a crop-specific, time-varying scalar. This method follows the FAO-recommended crop-modeling methodology outlined in Allen et al (1998). Here, we use the Penman-Monteith method for estimating \(PET_0 \) (Allen et al, 1998).

If soil moisture levels fall below a crop-specific threshold, \(SMT_c \ [\text{mm}] \), then irrigation water is called for. Soil moisture threshold \(SMT_c \) for crop \(c \) is:

\[
SMT_c = CDF_c \cdot RD_c \cdot AW_{cap}
\]
(S12.1-2)

where \(CDF_c \ [-] \) is a crop depletion factor, \(RD_c \ [\text{mm}] \) is the crop’s root depth, and \(AW_{cap} \ [-] \) is the soil’s available water capacity.
When soil moisture is below SMT_c, then the time step’s net irrigation water demand, $I_{net,t}$, is the difference between the current soil moisture and field capacity:

$$I_{net,t} = \begin{cases}
F_{cap} - SM_t & \text{if } SM_t \leq SMT_c \\
0 & \text{if } SM_t > SMT_c
\end{cases}$$

(S12.1-3)

where F_{cap} [mm] is the soil’s field capacity, and SM_t [mm] is the soil moisture at time t. Annual net irrigation water demand is the sum of all daily net irrigation water demands through the year.

Alternative irrigation water demand method:

Instead of using the crop-specific soil moisture threshold, WBM can be set to a “daily irrigation” mode, in which irrigation water demand, $I_{net,t}$, is equal to the difference between soil moisture content and field capacity each day:

$$I_{net,t} = F_{cap} - SM_t$$

(S12.1-4)

This demand causes water to be extracted from water sources each day. However, this water is then stored in a “virtual” storage pool until the soil moisture reaches the crop-specific soil moisture threshold SMT_c; then water is moved from the virtual storage to the soil moisture pool. This option was developed to solve the problem of requiring large amounts of water on the same day. The daily method spreads the demand out.

For a given irrigation system efficiency, I_{eff} [-], gross irrigation water demand, I_{gross} [mm], is:

$$I_{gross} = \frac{I_{net}}{I_{eff}}$$

(S12.1-5)

where $I_{eff} \in (0, 1)$. (S12.1-6)

Gross irrigation water demand is calculated differently when process-based irrigation systems are represented. See the section Irrigation Technology Method for the explanation.

Default parameter values:

Default values for k_c, CDF, and RD for 26 different crop categories are from Siebert and Döll (2010).
S12.2 Irrigation water extraction

S12.2.1 Irrigation efficiency method

In the irrigation efficiency method, water is extracted for irrigation to meet the gross irrigation water requirement, I_{gross}, described in section Irrigation Water Demand. There are several options for (a) from where to take water, and (b) how much water to take.

Water sources:
There are 6 categories of water sources in WBM:
1. Surface water: this includes water stored in the river network and water in reservoirs. Surface water can be abstracted from the local pixel as well as neighboring pixels.
2. Small irrigation reservoirs (aka farm ponds): this is an optional parameterization for WBM.
3. Shallow groundwater: this is the water in the shallow groundwater pool; it is typically considered a “sustainable” water source.
4. Unsustainable groundwater: this is an unlimited source of water that is not simulated directly within WBM, i.e., there is no accounting of the volume of water in this imaginary pool. Rather, when water is needed in excess of surface and groundwater supplies, additional water can be drawn from this unlimited pool and added to the soil or other WBM water stock.
5. Aquifer water: this is water in the lumped aquifer pool, which replaces unsustainable groundwater in pixels where lumped aquifers are simulated.
6. MODFLOW aquifer water: this is water in the gridded aquifer field simulated by the MODFLOW WBM module, and is substituted for unsustainable groundwater where distributed aquifers are simulated.

For simulations using lumped (5) or distributed (6) aquifers underlying only part of the spatial domain, unsustainable groundwater (4) can be used outside of defined aquifers.

WBM implements a “search distance” for water when extraction is called for, allowing a given grid cell to search and access surface water from other grid cells within that distance representing canal networks common in regions with irrigated agriculture and dense anthropogenic uses. The default search distance is 100 km; this parameter can be adjusted in the input file and can be different for each water demand category (irrigation vs livestock, domestic, and industrial water demands).

If no priority order or target ratio between water sources is given, then by default WBM will extract water in this order:
1. Small irrigation reservoirs (if simulated)
2. Shallow groundwater within the grid cell
3. River storage within the grid cell
4. River storage from largest river within the search distance
5. Unsustainable groundwater, or aquifer water
The priority order between within-grid-cell shallow groundwater and river storage (steps 2 and 3) can be changed in the input file.

Alternatively, a target ratio of extraction between surface water and groundwater (sw:gw ratio) can be provided. In this case, the order of extraction is:

1. Small irrigation reservoirs (if simulated)
2. Shallow groundwater within the grid cell, with an upper limit of the target amount of groundwater to extract based on the input sw:gw ratio.
3. River storage within the grid cell, with an upper limit of the target amount of groundwater to extract based on the input sw:gw ratio.
4. If the irrigation water demand has not been fulfilled, take additional water from the within-grid-cell shallow groundwater pool (in excess of target sw:gw ratio).
5. River storage from largest river within the search distance
6. Unsustainable groundwater, or aquifer water

This order attempts to balance achieving the target sw:gw ratio while only resorting to unsustainable water sources once all sustainable sources have been exhausted.

Water extraction from rivers cannot exceed a specified fraction of the river storage + flow volume; this specified fraction is 80% of river storage + flow, and will be user defined in future versions of the model.

As an optional parameter, a limit can be placed on how much unsustainable groundwater to extract (range: 0 to 1). This parameter scales the unsustainable groundwater extraction by the value given; e.g., if 1 unit of unsustainable water is called for and the parameter is 0.5, then only 0.5 units are extracted.

A fraction \(R_{trr} \) of the water withdrawn each day for irrigation use is returned to the point of use, which may or may not be the point of abstraction.
S12.2.2 Irrigation technology method

Irrigation technology in the UNH Water Balance Model (WBM) is a process-based alternative to the prior conceptual formulation where non-beneficial fates were specified as a fraction of gross irrigation (Grogan et al., 2017; Wisser et al., 2010, 2008). The process-based formulation redistributes inefficient irrigation water via surface runoff flows, groundwater percolation, and evaporation during both delivery and application stages. The system explicitly represented non-consumptive losses using technology specific parameters applied to proportions of irrigated croplands operating each technology. Losses during delivery were calculated from conveyance surface area (as a fraction of irrigated cropland), daily open water evaporation, and percolation. Conveyance methods included pipes with no evaporation or percolation, and open conveyances such as canals and ditches that percolate at a fraction of local infiltration rates and evaporate from their surfaces. Incidental losses during application follow Jägermeyr et al. (2015) and use the distribution uniformity parameter that described excess water needed to satisfy net irrigation demand based on the type of technology, either drip, sprinkler, or flood. The distribution uniformity parameter defaults to values originally estimated for surface/flood, sprinkler, and direct/drip agriculture (Jägermeyr et al., 2015).

The process of calculating non-beneficial use (N) and non-consumptive returns (L) via application of irrigation water is performed throughout the WBM time-step cycle. Following calculation of net crop water demand (I_{net}), additional delivery and application requirements are calculated accounting for technology specific inefficiencies. Then, an initial estimate of delivered water is based on estimated water availability and if available water is determined to be insufficient to meet demand (plus inefficient use and loss), all associated irrigation fluxes are scaled downward linearly by the provisional irrigation supply factor (X_{irr}). At this stage, WBM performs the river routing calculation, and estimates of provided water are updated according to actual water availability. Finally, excess water introduced to irrigated crop fields is partitioned between non-beneficial evaporation, non-consumptive runoff, and non-consumptive percolation. What follows is a more detailed description of each of these steps. Unless specified otherwise, all calculations described in this section are distributed spatially across irrigated crop areas as grid operations.

WBM can run any number of individual technologies simultaneously using data of irrigated land fraction for which each of the technologies is used

\[
\begin{align*}
\sum_i f_i^{d,irr} &= 1 \\
\sum_i f_i^{a,irr} &= 1
\end{align*}
\]

(S12.2.2-1)

where $f_i^{d,irr}$ and $f_i^{a,irr}$ are fraction of land served by technology i within irrigated land, and superscripts d and a denotes delivery and application technology group, respectively.
Irrigation Delivery

Inefficient fluxes from conveyances rely on calculated daily open water evaporation rates (function of air temperature, humidity, and wind speed), and percolation rates of saturated soil. These rates are spatially and temporally distributed to the fraction of surface area of the irrigation delivery system \(f_l^{d_A} \) relative of the irrigated area \(A^{irr} \) for each \(i \) delivery technology. These non-beneficial fluxes are calculated at each pixel on each day crops demand irrigation water. Crop water demand functionality of WBM is described by Grogan et al. (2017). We assume that there is no surface runoff from any irrigation water delivery technology.

Evaporation of delivery water \(N_{evap}^d \) is calculated for days when irrigation demand is required as

\[
N_{evap}^d = A_{fw} E_{fw}
\]

(S12.2.2-2)

where \(E_{fw} \) is evaporation rate from free water surface (m/d), and \(A_{fw} \) is a weighted calculation of the pixel area undergoing free water evaporation through irrigation delivery systems:

\[
A_{fw} = A^{irr} \sum^n f_l^{d,irr} f_l^{d_A} \varepsilon_l^{evap}
\]

(S12.2.2-3)

where \(f_l^{d_A} \) (-) is the fraction of area relative to irrigated area that irrigation delivery systems occupy on the ground, and \(\varepsilon_l \) (-) is a parameter that describes the fraction of an irrigation delivery technology that experiences free-surface evaporation. For the \(\varepsilon_l^{evap} \) parameter we suggest using values approaching 1.0 for ditch and canals (because both have water surface exposed for evaporation), and approaching 0.0 for pipe delivery technology as the only water exposed to air for evaporation in pipes consists of pipe leakage. All parameters can be spatially explicit.

Percolation is calculated from unlined irrigation conveyance (canal or ditch) benthic surface in a method similar to the calculation for evaporation.

\[
L_{perc}^d = A_{perc} P_{perc}
\]

(S12.2.2-4)

where \(P_{perc} \) is percolation rate from the base of an irrigation delivery system to saturated soil, and \(A_{perc} \) is a weighted calculation of the pixel area undergoing saturated canal percolation under irrigation delivery systems:

\[
A_{perc} = A^{irr} \sum^n f_l^{d,irr} f_l^{d_A} \varepsilon_l^{perc}
\]

(S12.2.2-5)

where \(\varepsilon_l^{perc} \) fraction of canal area to which percolation is applied by technology \(i \). For the \(\varepsilon_l^{perc} \) parameter we suggest using 1.0 for ditch (no lining at the bottom of the ditch), a value representing the fraction of canal bottom areas in the domain that are un-lined (e.g. ~ 1 for canals
assuming 100 % of bottom area are exposed to percolation), and zero for pipe delivery technology as its water is isolation from percolation in pipes.

Both N^d_{evap} and I^d_{perc} are scaled by the actual supply factor (X_{irr}). It should be noted that I^d_{perc} is introduced to the model at the location of the irrigated fields and not explicitly at the locations of canals. Furthermore, water that percolates beneath canals is considered a non-consumptive loss associated with irrigated agriculture.

Irrigation Application

Process-based modelling of irrigation water losses by application technology is implemented following an approach similar to Jägermeyr et al. (2015). Differences between the two approaches reflect additional processes introduced here, as well as accommodating unique structures of the two hydrologic models.

The first stage of estimating inefficient fluxes during application of irrigation water is to estimate inefficient runoff from excess application, which follows calculation of crop irrigation requirement, and concurrent with estimation of inefficient delivery fluxes N^d_{evap} and I^d_{perc}. Excess irrigation supply (I^a), analogous to the Application Requirements (AR) parameter of Jägermeyr et al. (2015), is calculated for each crop group (k, which can be either specific crop functional groups or pre-processed average land-cover groups described below):

$$I^a = \sum_i \sum_k \left\{ \max\left(0.5S^k_{\text{AWC}} D\overline{U}_i - W_{\text{irr}} - L^\text{rice}_{\text{perc}}, 0.0\right) \right\} \text{ where } I^{\text{demand},k} > 0$$

$$= 0 \text{ where } I^{\text{demand},k} = 0$$

(S12.2.2-6)

where S^k_{AWC} is a grid of crop (k) specific available water capacity (mm) that accounts for soil properties, $D\overline{U}_i$ is the application technology specific distribution uniformity coefficient (Jägermeyr et al., 2015), W_{irr} is the storage in the irrigation runoff retention pool (whose balance is calculated like the surface retention surface runoff pool of WBM, but applies only to the irrigated pixel fraction), and $L^\text{rice}_{\text{perc}}$ is percolation associated with rice paddies, which is calculated separately (Grogan et al., 2017) and only applies over pixels with identified rice paddy, and $I^{\text{demand},k}$ is the crop group specific irrigation demand. Existing storage in the irrigation runoff retention is subtracted assuming that irrigation requirements are reduced by whatever volume exists in pixels above field capacity assuming that existing excess volume in the irrigation retention pool is shared by all crops at a given pixel. Soil porosity defining soil saturation above field capacity is not presently a parameter input to WBM; therefore, we estimate the volume of additional water above field capacity that saturates soil as $0.5S^k_{\text{AWC}}$. The distribution uniformity parameter ($D\overline{U}$) is a fraction of the crop field to which this soil saturation applies. $D\overline{U}$ for flood irrigation is close to 1 (all the soil in a crop area gets saturated) while for sprinkler irrigation about half of the possible saturation volume is actually applied. In the case of drip irrigation, a very small amount of water goes above W_{cap} and so $D\overline{U}$ is very low.
A fraction (ε_{mist}) of water delivered to irrigated crop fields can be lost non-beneficially above crop canopy from enhanced evaporation of, for instance, sprinkler mists. The flux of mist enhanced evaporation (N_{mist}^a) is calculated for each technology (i):

$$N_{mist}^a = (I^a + I^{demand,k})\varepsilon_{mist}$$ \hspace{1cm} (S12.2.2-7)

Parameterization of ε_{mist} depends on local climate and specifics of sprinkler technology such that they can vary widely from 0 to 40%, with most analyses estimating losses to be less than about 5% (Bavi et al., 2009; McLean et al., 2000; Uddin et al., 2010).

Application and delivery inefficiencies are summed to net irrigation demanded by crops to estimate a provisional gross irrigation flux (G^*):

$$G^* = I^{demand} + I^a + N_{mist}^a + N_{evap}^d + L_{perc}^d$$ \hspace{1cm} (S12.2.2-8)

A variety of functions are associated with sourcing available irrigation water in WBM, which yield a fraction of available water (X_{irr} where $X_{irr} = 1$ indicates complete availability) from the distribution of sources (Section 0). Where water supply is less than complete ($X_{irr} < 1$), all terms above are reduced linearly to utilize available supply via:

$$I^{demand} = X_{irr}$$ \hspace{1cm} (S12.2.2-9)

$$I^a = X_{irr}$$ \hspace{1cm} (S12.2.2-10)

$$N_{mist}^a = X_{irr}$$ \hspace{1cm} (S12.2.2-11)

$$N_{evap}^d = X_{irr}$$ \hspace{1cm} (S12.2.2-12)

$$L_{perc}^d = X_{irr}$$ \hspace{1cm} (S12.2.2-13)

Actual gross irrigation (G) is calculated following routing later in the time-step, and small deviations between estimated and actual water availability are accounted for in subsequent timesteps.

Following routing through the stream network, the water balance of irrigation retention pool (W_{ret}) is updated using a stable solution and follows a conceptual order of flux priorities. The change in volume of W_{ret} is governed by the differential equation:

$$\frac{dW_{ret}}{dt} = I^{atm} + I^a - N_{evap}^a - L_{perc}^d - L_{rnff}^a$$ \hspace{1cm} (S12.2.2-14)

where I^{atm} is water incident to irrigated crop fields from natural precipitation or melt, N_{evap}^a is non-beneficial evaporation from saturated soil surface, L_{perc}^d is percolation from saturated soils to groundwater, and L_{rnff}^a is surface runoff from saturated soil. The stock of W_{ret} at the end of the timestep is calculated in four independent steps (denoted by superscripts):

1) $W_{ret}^1 = W_{ret}^0 + I^{atm} + I^a$ \hspace{1cm} (S12.2.2-15)
2) \[N_{evap}^g = \min(A_{irr} \overline{D}U \times E_p, W_{ret}^1) \]
\[W_{ret}^2 = W_{ret}^1 - N_{evap}^g \]
3) \[I_{perc}^a = \min(A_{irr} \overline{D}U \times P_{perc}, W_{ret}^2) \]
\[W_{ret}^3 = W_{ret}^2 - I_{perc}^a \]
4) \[I_{rnf}^a = \min(A_{irr} \beta_{surf} \times \sqrt{2g} \times \frac{W_{ret}^3}{A_{irr}}, W_{ret}^3) \]
\[W_{ret} = W_{ret}^3 - I_{rnf}^a \]

where \(W_{ret}^0 \) is the stock of the water retention pool at the end of the previous timestep, \(E_p \) is the potential evapotranspiration (mm/d), \(\beta_{surf} \) is the parameter describing the rate of leakage from the irrigation (and surface) retention pools, and \(g \) is the constant of gravitational acceleration. The order of updating the irrigation retention pool gives first precedence to non-beneficial evaporation, and lowest precedence to surficial runoff. Therefore, we consider the irrigation water balance to be conservative with respect to non-beneficial losses, and we expect that non-consumptive losses may be marginally higher.
S13. Livestock water demand and extraction

Input data

Input data for livestock water use are: average daily temperature, livestock density for each livestock category, service water per head, and two growth parameters. All livestock data and methods are from FAO (2006) default parameters are listed in Table S13-1.

Method

Daily livestock water, L_w, for each livestock type is calculated each day as:

$$L_w = I_t + s_t \cdot T_m + SW_l \cdot D_t$$ \hspace{1cm} (S13-1)

where

I_t is an intercept parameter for livestock type l

s_t is a slope parameter for livestock type l [-]

T_m is the daily mean temperature, with a minimum value of 0 [$^\circ$C]

SW_l is the daily service water volume required per animal

D_t is the density of livestock type l in the grid cell

Additionally, a growth rate can be applied to each livestock category to represent increases in population over the default circa year 2005 density data.

Consumptive vs non-consumptive use

A fraction (R_{inc}) of the water withdrawn each day for livestock use is returned as runoff to the point of use, which may or may not be the point of abstraction.

Table S13-1. Default global livestock wateruse parameters

<table>
<thead>
<tr>
<th>Livestock</th>
<th>SlopeValue, s_l</th>
<th>InterceptValue, I_l</th>
<th>ServiceWater, SW_l</th>
<th>AnimalGrowthRate</th>
</tr>
</thead>
<tbody>
<tr>
<td>buffalo</td>
<td>0.345</td>
<td>16.542</td>
<td>5</td>
<td>0.001863</td>
</tr>
<tr>
<td>cattle</td>
<td>0.345</td>
<td>16.542</td>
<td>5</td>
<td>0.001863</td>
</tr>
<tr>
<td>goats</td>
<td>0.215</td>
<td>4.352</td>
<td>5</td>
<td>0.003731</td>
</tr>
<tr>
<td>pigs</td>
<td>1.4575</td>
<td>-6.14</td>
<td>25</td>
<td>0.000309</td>
</tr>
<tr>
<td>poultry</td>
<td>0.019</td>
<td>0.1823</td>
<td>0.09</td>
<td>0.13397</td>
</tr>
<tr>
<td>sheep</td>
<td>0.57</td>
<td>-0.35</td>
<td>5</td>
<td>0.003</td>
</tr>
</tbody>
</table>
References:
http://www.fao.org/3/a0701e/a0701e.pdf

S14. Domestic and industrial water demand and extraction

Input data
Data inputs for domestic and industrial water use are: domestic per capita water use, industrial per capita water use, and population density.

Method
In WBM, the domestic and industrial sectors use water each day. Domestic water use, \(Dw \ [\text{mm d}^{-1}] \), is:

\[
Dw = A \cdot DWpp \cdot D_{pop}
\]
(S14-1)

And industrial water use, \(Iw \ [\text{mm d}^{-1}] \) is:

\[
Iw = A \cdot IWpp \cdot D_{pop}
\]
(S14-2)

where
- \(A \ [\text{km}^2] \) is the area of the grid cell
- \(DWpp \ [\text{mm/d}] \) is the domestic water use per capita
- \(IWpp \ [\text{mm/d}] \) is the industrial water use per capita
- \(D_{pop} \ [\text{persons km}^{-2}] \) is the population density

A fraction \((R_{dom} \text{ and } R_{ind}) \) of the water withdrawn each day for domestic and industrial use is returned as runoff to the point of use, which may or may not be the point of abstraction.

Note: There is no climate dependence in the above equation.

Default parameter values:

References:

S15. Tracking

WBM tracks water (and constituents) from each given source (water source components in each individual grid cell) through flows and stocks within the model. Stocks include river storage, small and large reservoir storage, groundwater storage, runoff and irrigation storage pools, rice paddy flood waters, and soil moisture. Flows are runoff and baseflow, infiltration, recharge, river discharge, water discharge from reservoirs, evaporation, evapotranspiration, inter-basin transfers, water extracted for human water use, and return flows. The same tracking algorithm applies to all water source components. For any water component c in water storage stock S at time t:

$$S^k_c = \frac{(s^k_c - s^{k-1}_c) + \sum_i (I_{c,i} I_i) - \sum_j (O_{c,j} O_j)}{S^k} \quad (S15-1)$$

where S^k_c is the fraction of stock S composed of component c at time k, S^k is the total volume of stock S at time k, I_i are inflows to and O_j are outflows from stock S, with $I_{c,i}$ the fractions of the ith flow composed of component c all at time-step k. Component stocks (S^k_c) are updated throughout the timestep such that solution is split into multiple operators as the various fluxes impact each stock.

All stocks and flows are considered well-mixed, so that the flows out of a stock have the same fractional water source components as the stock itself. All stocks are initialized with $S_c = 1$ for a default component c. See tracking options below for a description of the default components.

Depending on application for which tracking is being used, managing tracked components through spinup may need different assumptions. WBM provides two options for managing components through spinup:

1) Tracking occurs through spinup, and the model simulation period begins with stocks mixtures reflecting mixtures at the end of spinup.

2) All stocks are reset to at the beginning of the simulation period.

Option 1 is appropriate in identifying the most representative characterization of components within any stock. Option 2 is appropriate when accumulating the flux of a specific component during a dynamic simulation.

WBM Tracking Categories:

WBM currently has three types of water components that can be tracked:

1. Primary source components
Primary source components are: rainwater, snow melt, glacier melt, and unsustainable groundwater. The default initialization category here is rainwater. Glacier melt can only be tracked if glacier water is provided as a model input.

2. Human use components
 Human use components are: irrigation water return flows, domestic/industrial/livestock water return flows (all one category), relict water, and pristine water. The default category here is pristine water.

3. Runoff land mask components
 Runoff land mask components are defined by an input layer identifying different land grid cells as different sources. Runoff generated by each land category is then tracked through the system. Examples of land categories include political boundaries and land cover categories.

Figure S15-1. Example of tracking primary source components through WBM stocks and flows.
S16. Water Temperature
WBM calculates stream temperature using a volumetric weighted average of inputs, with adjustments made due to temperature equilibration with the atmosphere and due to radiative forcing.

Surface and baseflow runoff water temperature
WBM calculates runoff temperatures from each grid cell from volume-weighted mixtures of precipitation equilibrated with autoregressive integrated N-day moving average (ARIMA) of N previous day’s daily air temperatures, and snowmelt, which is assigned a temperature of 0°C. The ARIMA weighted temperatures assume that water stored within soil or shallow groundwater equilibrate to average air temperature over different time windows. Furthermore, baseflow runoff is calculated as an average between the runoff temperatures are provided as a weighted average of N-day ARIMA of daily air temperatures and base layer temperature (BLT) that is an input to the system that represents the temperature of deep groundwater contributing to baseflow though modulated through the hydrodynamic response in the shallow groundwater pool. Generally a spatially explicit dataset of mean annual temperature is used as an input for the BLT temperature which is a ground temperature at depth of about 6 m where influence of seasonal air temperatures can be neglected. As such, there is considerable variation in seasonal surface runoff temperatures whereas shallow groundwater temperatures has a much lesser seasonal variability. Impervious and open-water storm runoff is assumed to be in equilibrium with daily mean wet-bulb air-temperature.

The ARIMA temperature (T_A^N, °C) of N-day moving window is calculated as

$$T_A^N = \sum_{i=0}^{\infty} \frac{(N-1)i}{N^{i+1}} T_a^i$$

(S16-1)

where i is an index of the day prior to present and T_a^i is the air temperature at the day i. The ARIMA model is a simplified but effective way to account for heating/cooling inputs to a top layer of land from atmosphere which, in turn, transfers to the water in contact with the layer. Physically it represents a temperature of a fluid or solid body that receives daily portions of heat equivalent of 1/N of the body mass at that day’s temperature which equilibrates with the cumulative body temperature and then it loses the heat equivalent of 1/N of the body mass at the mixed body temperature as shown in Figure S16-1.
A smaller moving average window corresponds to a larger relative amount of daily mixing heat additions, and, thus, reducing the signal of previous days heating/cooling history. By default WBM uses 5-day moving window for the surface runoff temperature ($N_{sr} = 5$), and 15-day moving average for the shallow base flow temperature ($N_{bf} = 15$). The moving window day-interval values are chosen to correspond to a typical 10 and 150 cm soil layer heat propagation lag times from ambient air temperature according to GIPL soil temperature model (Jafarov et al., 2012; Wisser et al., 2011). We note that the current implementation of landscape water temperature in runoff differs from the weighted daily averages of incident precipitation used in prior studies (Stewart et al. 2013, Samal et al. 2017); the current formulation approximates the effect of soil water changing temperatures through conductive processing following precipitation. Essentially the ARIMA model is a simplified model of the integral soil temperature of a given depth. Since the baseflow is formed as a mix of water from different soil or bedrock depths sources, the base flow temperature (T_{bf}) is, in turn, calculated as a weighted average of deeper shallow ground water (> 6 m deep) that has a value of long term mean annual air temperature (T_{a}^{aw}) and calculated daily top soil layer temperature (T_{A}^{N}) using a weighting factor for the latter (w_{tt}) as following

$$T_{bf} = (1 - w_{tt}) \cdot T_{a}^{aw} + w_{tt} \cdot T_{A}^{N}$$

(S16-2)

WBM uses a default value of 0.59 for the weighting parameter w_{tt}. This parameter and lengths of ARIMA running averages were found empirically by minimizing the error of simulated and observed runoff water temperatures from the data of Hubbard Brook site of the Long Term Ecological Research (LTER) network (Figure S16-2). While we find that this parameter combination works reasonably well over many study catchments in temperate regions, updating these values for region-specific studies if advisable.
Streamflow (rivers and reservoirs) water temperature

Streamflows water temperatures are adjusted during discharge routing using the river temperature re-equilibration model RTRM (Stewart et al., 2013) that follows an approach based on a combined empirical and deterministic approach outlined in (Dingman, 1972). This method is appropriate for large scale applications, including lakes and large rivers (Morse, 1972) and is based on the theory of equilibrium temperature; the temperature at which there is no net exchange of energy with the atmosphere (Edinger et al., 1968; Morse, 1972; Webb et al., 2003). The model uses wind speed, air temperature, weather conditions (clear/cloudy), relative or specific humidity, and incoming solar radiation to predict water temperatures. The in-stream equilibrium temperature \(T_e, ^\circ C \) and resulting water temperature \(T_w, ^\circ C \) of any given river reach is determined as (Dingman, 1972) and adjusted to a simulation time step:

\[
T_e = T_a + \left[\frac{E_R - E_O}{\chi_E} \right] \tag{S16-3}
\]

\[
T_w = (T_o - T_e) \exp \left(-\frac{\chi_E}{\rho_w c_w h} \left(\frac{L}{u} \right) \right) + T_e \tag{S16-4}
\]

where \(T_a \) is the local air temperature \(^\circ C \), \(E_R \) is the net incoming solar radiation \(\text{KJ m}^{-2} \text{d}^{-1} \), \(E_O \) is the heat loss rate when \(T_w = T_a \) \(\text{KJ m}^{-2} \text{d}^{-1} \), \(\chi_E \) is the energy exchange coefficient \(\text{KJ m}^{-2} \text{d}^{-1} ^\circ C^{-1} \), \(T_w \) is the resulting water temperature \(^\circ C \), \(T_o \) is the initial water temperature of inflowing water from upstream \(^\circ C \), \(L \) is the length of the river grid cell \(\text{m} \), \(\rho_w \) is the density of water.
(kg m\(^{-3}\)), \(C_w\) is the specific heat of water (KJ kg\(^{-1}\) oC\(^{-1}\)), \(h\) is water depth (m), and \(u\) is the stream velocity (m d\(^{-1}\)), \(\Delta t\) (d\(^{-1}\)) is a simulation time step.

Notes for equation (S16-4):
- Minimum operator in equation (16-4) controls exposure time while water travels through the grid cell which should not exceed the length of simulation time step to prevent double counting of water heating during its routing downstream.
- Water depth \(h\) is assumed do not exceed 20 m reservoir and lake depth which is an empirical limit to the active mixing surface layer indicated by typical lake thermocline (REF).

Values for \(E_o\) and \(\chi_E\) are determined using linear functions based on data in New England rivers across various weather conditions and wind speeds (\(u_a\)) as follows (Dingman, 1972):

Clear:

\[
E_o = 105 + 23u_a \tag{S16-5}
\]
\[
\chi_E = 35 + 4.2u_a \tag{S16-6}
\]

Cloudy:

\[
E_o = -73 + 9.1u_a \tag{S16-7}
\]
\[
\chi_E = 37 + 4.6u_a \tag{S16-8}
\]

We found that the described above method yield systematic overestimation of instream water temperatures. The source of error is apparent as air humidity is ignored which controls equilibrium water temperature in contact with atmospheric air. So, WBM applies air humidity correction to equilibrium water temperature \((T_e)\) following known thermodynamic formulation for dew point (wet bulb) temperature (Van Wylen et al., 1994)-

\[
T_{e}^h = \frac{\frac{e_s + rh_{61.078}}{610.78}}{\frac{7.5 \cdot \ln \frac{e_s + rh_{61.078}}{610.78}}{7.5 \cdot \ln 10}} \tag{S16-9}
\]

where vapor pressure \((e_s, \text{ Pa})\) is a function of relative humidity \((rh, \text{ fraction})\)-

\[
e_s = 610.78 \cdot e^{\frac{17.27 \cdot T_e}{T_e + 237.3}} \tag{S16-10}
\]

WBM water temperature calculation functions also have a correction to the net incoming solar radiation \((E_R)\) for a canopy shading of streams which can be very considerable for small streams where they cross landscapes with high canopy forest during vegetation seasons with high values of Leaf Area Indices (LAI). Canopy shading of river water surfaces reduces solar radiation heating. It affects only portion of river beds along their bank at the distance of the canopy heights assuming quasi-average 45° sun inclination throughout the daylight period and regardless to river bank orientation. In addition, the density of canopy also controls amount of radiation that can penetrate the vegetation cover. The latter is accounted by using normalized Leaf Area Index (LAI) in its annual time series. Putting together both canopy height and LAI the equation used for canopy shading factor \((f_{shade}, \text{ fraction})\) is

\[
f_{shade} = \frac{\text{LAI} \cdot \max \left(\frac{H}{W} \right)}{1} \tag{S16-11}
\]
where LAI (unitless) is normalized LAI index between its annual min and max values, H_c (m) is canopy height, and W_s (m) is stream width. The default dataset for the canopy height is from (Simard et al., 2011). The canopy shading factor f_{shade} is added to cloud fraction correction to the unobstructed net incoming solar radiation for the water temperature calculation inputs.

Combining temperature of local runoff and streamflow routing

At each pixel, initial temperature at the beginning of the timestep is calculated as the volume weighted average of upstream inputs, local runoff in the current time step, and storage remaining in the stream reach following routing from the previous timestep (S_R):

$$T_0 = \left(S_R T^{k-1}_w + \sum_j^n Q^k_{w,j} \right) / Q^*$$ \hspace{1cm} (S16-12)

where T^{k-1}_w is stream calculated at the end of the previous timestep, $Q^k_{w,j}$ is the discharge flowing into the cell from upstream pixel j, and $T^k_{w,j}$ is the temperature of the j^{th} upstream cell, and Q^* is the total flow at the pixel prior to calculating any retention in the cell from routing. Equilibrium temperature T_e is calculated early in the time-step, whereas the calculation of stream temperature is calculated during WBM’s routing function call.

We found a satisfactory match of WBM calculated and USGS observed water temperatures (Figure S16-3).
References
Nitrogen routing

Dissolved inorganic nitrogen (DIN) is loaded to the river network from both point source \((DIN_{PS} \text{[kg day}^{-1}])\) based on wastewater treatment plant effluent and non-point sources \((DIN_{NPS} \text{[kg day}^{-1}])\) based on human land use. For non-point source loading, by default WBM utilizes an empirical DIN loading function that was originally developed for the Ipswich River watershed located in northeast Massachusetts (Wollheim et al., 2008). This sigmoidal function relates the fraction of human land use upstream (both developed and agriculture) with the concentration of DIN in runoff \((C_{DIN}^{NPS}) \text{[g L}^{-1}]\). Specifically, \(C_{DIN}^{NPS}\) is calculated as:

\[
C_{DIN}^{NPS} = \frac{\text{Asym}}{1 + e^{\frac{(Xmid - HLU)}{scale}}} \tag{S17-1}
\]

where Asym [g L\(^{-1}\)] is the maximum concentration found in runoff, HLU [-] if the fraction of both developed and agricultural land use, scale [-] determines the range of HLU at which concentration rises, and Xmid is the inflection point of that curve. Xmid depends on runoff (runoff) and has an intercept (Xmid\(_b\)) and a slope (Xmid\(_m\)).

\[
Xmid = Xmid_b + Xmid_m \cdot \log(\text{runoff}) \tag{S17-2}
\]

Parameters Asym, Xmid\(_b\), and Xmid\(_m\) default to values reported in Wollheim et al. (2008) but are accepted as input parameters when locally available information is available, or for the purposes of model calibration.

Grid cells containing a wastewater treatment plants (WWTP) receive DIN loading [kg/d] as,

\[
L_{DIN}^{WWTP} = WWTP\text{loadRate} \cdot Pop_{WWTP} \cdot (1 - R_{Trmt}) \tag{S17-3}
\]

where daily nitrogen load influent to the treatment plant \((WWTP_{loadRate}) \text{[kg/ Person/d]}, population served by each plant \((Pop_{WWTP} \text{[P]})\) for each treatment plant is read into the model and interpolated linearly between years of known service population. Nitrogen removal for treatment plants \((R_{Trmt})\) are values input from a lookup-table relating removal rate to treatment type (Table 17-1). The data used for waste water treatment plants in the USA is available through the US Environmental Protection Agency Clean Water Needs Survey (CWNS) data (USEPA, 2016) and includes plant coordinates in longitude-latitude, population served, and treatment type.

Table S17-1: Nitrogen removal fractions for each process type for wastewater treatment plants following.

<table>
<thead>
<tr>
<th>Process Type</th>
<th>Removal fraction (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>0.1</td>
</tr>
<tr>
<td>Secondary</td>
<td>0.5</td>
</tr>
<tr>
<td>Secondary (Advanced) / Tertiary</td>
<td>0.8</td>
</tr>
</tbody>
</table>
Concentration of DIN in local runoff \(C_{\text{DIN}}^{\text{Local}} \) entering the stream network adds the flux from WWTP to concentration associated with NPS loading via Equation 17-4.

\[
C_{\text{DIN}}^{\text{Local}} = C_{\text{DIN}}^{\text{NPS}} + \frac{\frac{\text{WWTP}}{1000 \ A\ \text{runoff}}}{\text{runoff}}
\]

(S17-4)

Where A is pixel area in m\(^2\), and runoff has units of mm d\(^{-1}\).

Stream nitrate concentration is calculated in two steps. Prior to calculating the concentration in the stream during the current time-step, evapoconcentration of DIN from evaporation from the river network is calculated. Stream concentration from the prior timestep \(C_{\text{DIN}}^{\text{stream}}^{t-1} \) is scaled upwards by the flux of network evaporation by Equation S17-5.

\[
C_{\text{DIN}}^{\text{stream}}^1 = C_{\text{DIN}}^{\text{stream}}^{t-1} \left[\frac{\text{stream}^{\text{stream}} \ dt + S}{S} \right]
\]

(S17-5)

In Equation 17-5, \(C_{\text{DIN}}^{\text{stream}}^1 \) is an intermediate solution of stream DIN concentration prior to the routing, \(A^{\text{stream}} \) [m\(^2\)] is the surface area of open water, \(E^{\text{stream}} \) [m d\(^{-1}\)] is the evaporation rate from open water surfaces, and \(S \) [m\(^3\)] is the flow storage of unrouted streamwater. During this step, the mass of DIN that is removed from the surface network from abstraction for human uses is calculated for verifying whole basin DIN mass balance.

Stream DIN concentration is then advanced during routing in two steps that account for 1) new inputs to the network (Equation S17-6), and 2) in-stream DIN removal. Stream DIN concentration after adding local inputs \(C_{\text{DIN}}^{\text{stream}^2} \) [g L\(^{-1}\)] is given by equation S17-6.

\[
C_{\text{DIN}}^2 = \frac{1}{Q} \left(\sum_{j=0}^{n} Q^j C_{\text{DIN}}^{\text{stream}^2} + (1000 \ A\ \text{runoff} \ dt) C_{\text{DIN}}^{\text{Local}} + \frac{S}{dt} C_{\text{DIN}}^{\text{stream}^1} \right)
\]

(S17-6)

where \(Q \) is discharge within the reach during the time-step, and \(Q^j \) is the discharge from the \(n \) reaches upstream draining to the respective pixel.

Then stream DIN concentration at the end of the time-step is calculated in Equation S17-7.

\[
C_{\text{DIN}}^{\text{stream}} = C_{\text{DIN}}^2 (1 - R)
\]

(S17-7)

The proportion of DIN removed within each grid cell by physical and biogeochemical processes \(R \) [-] is calculated following the temperature corrected first-order uptake methods of the Stream Solute Workshop (1990). \(R \) is calculated using the efficiency loss model (Mulholland et al. 2008) with an uptake velocity \((v_f) \) [m day\(^{-1}\)] that varies with both in-channel water temperature and DIN concentration. Removal is calculated by Equation S17-8,

\[
R = 1 - \exp \left(-\frac{v_f}{H_L} \right)
\]

(S17-8)
where the uptake velocity \((v_f \text{ [} m \text{ d}^{-1}]) \) and the hydraulic load \((H_L \text{ [} m \text{ d}^{-1}]) \) are given by Equations S17-9 and S17-10.

\[
V_f = \frac{86400 \times 100 \text{ cm} \text{ m}^{-1}}{100 \text{ cm} \text{ m}^{-1}} \log(1 \text{e}^{6 \mu g \text{ g}^{-1} C_{\text{DIN}}}) \cdot X_{\text{Temp}} \tag{S17-9}
\]

\[
H_L = \frac{d}{\tau} = \frac{d}{\frac{d}{u} \frac{\Delta t}{u}} = \frac{Q}{A} \tag{S17-10}
\]

In Equations S17-9, \(\text{int [log cm s}^{-1}] \) is the uptake velocity constant (value of -2.975; Mulholland et al. 2008), and \(\text{slope [-]} \) is the efficiency loss slope (slope of the uptake velocity vs. concentration, value of -0.493; Mulholland et al. 2008). Conversion between cm s\(^{-1}\) and m d\(^{-1}\) and \(\mu g \text{ L}^{-1} \) and g L\(^{-1} \) and needed to relate the units of the empirical relationships from Mulholland et al. (2008) and the native units in WBM. These conversions are dropped in the derivation below. A water temperature correction \((X_{\text{Temp}} [-]) \) is given by Equation S17-11.

\[
X_{\text{Temp}} = Q_{10}^{\left(\frac{(T_w - T_{\text{ref}})}{10}\right)} \tag{S17-11}
\]

In Equation S17-11, \(Q_{10} \) is the factor (default of 2) of increase for every 10 degrees difference of water temperature \((T_w) \) from a reference temperature \((T_{\text{ref}}) \) that = 20°C based on the data in Mulholland et al. 2008. In Equation 17-10, \(d \) is water depth (but is limited to 20 m to prevent unrealistically high \(H_L \) for reservoirs considering not all areas of deep reservoirs will be effective at denitrification), and the \(\tau \) is the reach residence time calculated as the reach length (m) divided by the daily flow velocity \(u \text{ (m d}^{-1}) \). The reach residence time \(\tau \) is limited to the time-step length to prevent unrealistically high values of removal from being calculated.

Reach scale velocity, depth, and temperature are estimated based on runoff and storage within reaches at the beginning of the timestep, and thus \(H_L \) and several terms for \(v_f \) can be calculated efficiently prior to the networked routing calculation. However, because \(v_f \) is dependent on \(C_{\text{DIN}} \), DIN removal in rivers \((R_{\text{River}}) \) must be calculated as a network operation. Prior to the network calculation, a denitrification coefficient \((\chi_{\text{denit}}) [-] \) is calculated. First, we expand the definition of \(v_f \) in equation S17-8 (Equation 17-12):

\[
R = 1 - \exp \left(-\frac{10^{\text{int + slope log}(C_{\text{DIN}}) \cdot X_{\text{Temp}}}}{H_L} \right) \tag{S17-12}
\]

Then, after expanding powers and logs:

\[
R = 1 - \exp \left(-\frac{(10^{\text{int}} C_{\text{DIN}} \text{ slope} \cdot X_{\text{Temp}})}{H_L} \right) \tag{S17-13}
\]

Terms are then rearranged:
\[R = 1 - \exp \left(-\frac{10^{\text{int} X_{\text{Temp}}}}{H_L} C_{\text{DIN \, slope}} \right) \]

(S17-14)

and the first term is precomputed as a denitrification coefficient \(\chi_{\text{denit}} \):

\[\chi_{\text{denit}} = \frac{10^{\text{int} X_{\text{Temp}}}}{H_L} \]

(S17-15)

Then the denitrification coefficient \(\chi_{\text{denit}} \) and efficiency loss slope \(\text{slope} \) are passed to functions performing the downstream network calculation of \(C_{\text{DIN}} \) while simultaneously calculating river removal \(R_{\text{River}} \) according to equation S17-16.

\[R = 1 - \exp \left(-\chi_{\text{denit}} \left(C_{\text{DIN \, slope}} \right) \right) \]

(S17-16)

The default parameterization in WBM provided above represents the permanent DIN removal from the stream network by denitrification, but \text{int} and \text{slope} are parameters that can be input to represent assimilation or local estimates of DIN removal processes.

For river reaches within reservoirs, an alternative to the in-stream denitrification is available. Grid cells containing reservoirs remove DIN following the empirical relationship developed by Seitzinger et al. (2002), which relates the fraction of DIN removed within the waterbody to hydraulic load and utilizes the same water temperature correction factor as the efficiency loss model.

\[R_{\text{reservoirs}} = \left(0.88453 \cdot H_L^{-0.3677} \right) \cdot \frac{X_{\text{Temp}}}{365.26} \]

(S17-17)

In S17-17 \(A_{\text{rsvr}} \) [m²] is the surface area of the reservoir, \(H_L \) [m day⁻¹] is the hydraulic load calculated by Equation S17-18:

\[H_L = \frac{Q_{\text{rsvr}}}{A_{\text{rsvr}}} \]

(S17-18)

where \(Q_{\text{rsvr}} \) is discharge out of the reservoir, and assuming the reservoir surface area is equal to the reservoir benthic surface area. Dividing by 365.26 converts the original removal rate from Seitzinger et al. (2002) for a daily time-step.

References

Park C 1977 World-wide variations in hydraulic geometry exponents of stream channels – Analysis and some observations. J Hydrol 33 133-146

