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Abstract. This paper describes the University of New Hamp-
shire Water Balance Model, WBM, a process-based gridded
global hydrologic model that simulates the land surface com-
ponents of the global water cycle and includes water extrac-
tion for use in agriculture and domestic sectors. The WBM
was first published in 1989; here, we describe the first fully
open-source WBM version (v.1.0.0). Earlier descriptions of
WBM methods provide the foundation for the most recent
model version that is detailed here. We present an overview
of the model functionality, utility, and evaluation of simu-
lated global river discharge and irrigation water use. This
new version adds a novel suite of water source tracking mod-
ules that enable the analysis of flow-path histories on wa-
ter supply. A key feature of WBM v.1.0.0 is the ability to
identify the partitioning of sources for each stock or flux
within the model. Three different categories of tracking are
available: (1) primary inputs of water to the surface of the
terrestrial hydrologic cycle (liquid precipitation, snowmelt,
glacier melt, and unsustainable groundwater); (2) water that
has been extracted for human use and returned to the terres-
trial hydrologic system; and (3) runoff originating from user-
defined spatial land units. Such component tracking provides
a more fully transparent model in that users can identify the
underlying mechanisms generating the simulated behavior.
We find that WBM v.1.0.0 simulates global river discharge
and irrigation water withdrawals well, even with default pa-
rameter settings, and for the first time, we are able to show
how the simulation arrives at these fluxes by using the novel
tracking functions.

1 Introduction

Global hydrologic models (GHMs) are one of the primary
tools used in the study of macro-scale hydrology, and the
past 30 years have seen the development of numerous GHMs.
These include the following models water balance model
(WBM; Vörösmarty et al., 1989), VIC (Liang et al., 1994),
WaterGAP (Döll et al., 2003), H08 (Hanasaki et al., 2008a,
b), PCR-GLOBWB (Sutanudjaja et al., 2018), and others
(Telteu et al., 2021). The terrestrial hydrology concepts and
structures from these models have now been incorporated
into several land surface models (LSMs), e.g., NASA LIS
(Kumar et al., 2006) and the Community Land Model (CLM;
Lawrence et al., 2019), and Earth system models (ESMs)
such as and WRF-Hydro (Gochis et al., 2020) and the Com-
munity Earth System Model (CESM; Zeng et al., 2015),
and others such as the U.S. National Water Model (NWM;
Cohen et al., 2018). The GHMs represent the land surface
component of the hydrologic cycle, converting time series
of weather and land-cover variables into estimates of water
storage and flux values. These models have been applied to
many questions of both basic and applied hydrology, such as
climate change and other anthropogenic impacts on global
river systems (Bosmans et al., 2017; Döll et al., 2012; Had-
deland et al., 2014; Hanasaki et al., 2008b; Vörösmarty et
al., 2000a, 2010; Wada et al., 2011), groundwater depletion
(Döll et al., 2014; Gleeson et al., 2012; Grogan et al., 2017;
Wada et al., 2012), and the role of water extractions in sea-
level change (Gleeson et al., 2012; Konikow, 2011; Pokhrel
et al., 2012). The GHMs have also been used extensively
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in the study of food security and agricultural yields (Bie-
mans and Siderius, 2019; Döll and Siebert, 2002; Elliott et
al., 2014; Haqiqi et al., 2021; Liu et al., 2017; Schewe et
al., 2014) as well as formed the foundation for water qual-
ity models (Mineau et al., 2015; Stewart et al., 2011; de Wit,
2001; Wollheim et al., 2008a, b; Zuidema et al., 2018) and
the inputs for flood inundation models (e.g., Yamazaki et
al., 2011). Recently, GHMs have been employed in inter-
disciplinary studies to evaluate human–hydrologic systems
and the food–energy–water nexus, such as human and eco-
nomic impacts of flooding (Dottori et al., 2018), hydropower
(Mishra et al., 2020; Turner et al., 2019), power-plant cooling
capacity (van Beek et al., 2012; Stewart et al., 2013; Webster
et al., 2022), water markets (Rimsaite et al., 2021), irrigation
decision-making under climate change (Zaveri et al., 2016),
and virtual water trade (Dalin et al., 2017; Konar et al., 2013).
Recent overviews of GHM literature are also provided in Su-
tanudjaja et al. (2018) and Telteu et al. (2021).

The GHMs were developed to quantify land surface hydro-
logic fluxes at global and continental scales, and these mod-
els generally capture the macro-scale behavior of the water
cycle in both natural and human systems (Telteu et al., 2021).
Model limitations include poor simulation during low runoff
periods and a tendency to overestimate mean annual runoff
and discharge (Zaherpour et al., 2018). While early GHMs
only represented natural hydrologic fluxes, the recent addi-
tion of human impacts were shown to greatly improve river
discharge estimates and in most cases, lowered the overly
high estimates of average annual river flow (Veldkamp et al.,
2018). Despite these improvements, there have been calls to
better represent regional water management, co-evolution of
the human–water system and improved human water man-
agement information in GHMs (Wada et al., 2017). A large
challenge for macro-scale hydrological modelers is to bet-
ter capture the human decision-making around water move-
ment, use, and consumption. One method for achieving this
is by linking models from the social sciences to hydrological
models (e.g., Mishra et al., 2020; Webster et al., 2022; Za-
veri et al., 2016). The model described in this paper, WBM
v.1.0.0, captures all the major land surface water stocks and
fluxes with a focus on human alterations of the water cycle.
A significant contribution of this model version is the ability
to track water, depending on its source or use through the en-
tirety of the system, highlighting how movement of water for
human use interacts with the natural water system.

Tracking water sources

As pressures on water resources increase through both cli-
mate change and intensifying human water demand (e.g.,
Vörösmarty et al., 2000a), it is important to know the ori-
gin of regional water resources. While some basins may be
supplied by steady precipitation or recharging aquifers, oth-
ers rely on seasonal snowpack, fossil groundwater, irrigation
returns, glacial melt, or monsoon rains. Each of these water

sources comes with their own set of management challenges
and opportunities, making knowledge of water sources a vi-
tal component of water resource planning. It may seem ob-
vious where a basin or region’s water comes from; however,
human water use introduces complexities into the terrestrial
water cycle that can obscure the often lengthy and circuitous
pathway that waters take from source to use (Grogan et al.,
2017; Zuidema et al., 2020). The discussion here is confined
to the terrestrial water cycle since GHMs do not, by defi-
nition, simulate the atmosphere. Under natural conditions,
most of the water that enters a river basin travels from the
land surface through soils, groundwater through headwater
basins (Alexander et al., 2007), and then through the full river
system to the ocean or endorheic outlet. Humans withdraw
large quantities of water from these natural pathways and
because no activity of human water use is completely con-
sumptive, water extracted from river and groundwater sys-
tems is returned either to its original source or diverted to
an alternate pool. Irrigation accounts for ∼ 70 % of all fresh-
water withdrawals (Rosegrant and Cai, 2002), and is ∼ 50 %
is efficient globally (Döll and Siebert, 2002; Gleick et al.,
1993), returning approximately half of all extracted irriga-
tion water back to surface water and groundwater storages.
The repetition of this activity causes iterative cycles of water
extraction and return over annual to decadal time scales, cre-
ating complex, circuitous pathways. The pathways that wa-
ter travels impact water quality (Huang et al., 2022; Mineau
et al., 2015), food security (Kadiresan and Khanal, 2018),
and governance of water resources through transboundary in-
teractions (Zeitoun and Mirumachi, 2008). Furthermore, hu-
mans develop hydro-infrastructure to intentionally impound
(Lehner et al., 2011; Zuidema and Morrison, 2020) and divert
rivers (Ghassemi and White, 2007), and engage in artificial
recharge of groundwater pools (Dillon et al., 2019). These
activities divert water through natural and artificial stocks,
masking the identity of the original source of the water.

Understanding the journey of certain sources of water il-
luminates their role in downstream water resource issues and
how human-induced complex pathways make the attribution
of upstream changes to downstream effects increasingly dif-
ficult. In this paper, we present three examples of tracking
water parcels through the hydrological cycle by preserving
key attributes related to water sources, return flows from wa-
ter extraction, and an identifier assigned to all runoff gen-
erated from a given land area. This novel modeling method
maintains the identity of a water parcel as it travels through
natural and anthropogenic pathways, illuminating previously
obscured connections between sources, uses and fates, as
well as offering a potential useful tool for understanding wa-
ter quality changes throughout watersheds.

In this paper, we provide a detailed description of WBM
v.1.0.0, its performance compared to observations of global
hydrologic fluxes when using default parameterizations, and
examples of how the tracking functionality can be used to
evaluate the role of human alterations to the global hydro-
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Figure 1. Schematic representation of the water balance model (WBM) showing major fluxes and storages, which are described in
Sect. 2.2.1–2.2.6 below. The land surface fluxes are described in Sect. 2.2.1, and are: precipitation and snow, canopy interception, open
water, runoff from impervious surfaces, soil moisture balance, actual evapotranspiration, surface runoff, and glacier runoff. Both the shallow
groundwater storage pool and the unsustainable groundwater are described in Sect. 2.2.2. River water, including baseflow and hydraulic
geometry, is described in Sect. 2.2.3. Section 2.2.4 describes dams and reservoirs, inter-basin transfers, and small irrigation reservoirs. All
water extractions are described in Sect. 2.2.5. The model operates on daily time steps and over grid cells defined by the digital river network.
Grid-cell resolutions have been used in the range from 30 arcmin to 120 m.

logic cycle. We review previous studies that have used earlier
versions of WBM, and provide guidance for setting up and
running WBM v.1.0.0.

2 WBM model description

2.1 General overview

The WBM (Grogan, 2016; Wisser et al., 2010a) is a process-
based, gridded hydrologic model that simulates spatially and
temporally varying water volumes and quality (Fig. 1), op-
erating at daily time steps. It was one of the first GHMs
developed (Vörösmarty et al., 1989), and is now joined by
many other similar GHMs and LSMs in its representation of
the terrestrial portion of the water cycle. The WBM repre-
sents all major land surface components of the hydrologic
cycle, and tracks fluxes and balances between the atmo-
sphere, above-ground water storages (e.g., snowpack), soil,
vegetation, groundwater, and runoff. A digitized river net-
work connects each grid cell to the next, enabling simulation
of flow through river systems. The WBM includes domes-
tic and industrial water requirements and use, agricultural
water requirements and use (irrigation and livestock), and
hydro-infrastructure (dams and inter-basin transfers). While

the model is considered global, it can be run for any region
and any spatial resolution, given available input data at the
appropriate scale. For example, WBM has been operated at
a local scale of ∼ 120 m grid-cell resolution over a 400 km2

watershed (Stewart et al., 2011), and at global scales (Grogan
et al., 2017; Wisser et al., 2010a) (Table A1).

The WBM is modular and is able to accept climate, land
use/land cover, water management, and water demand inputs
from other models and data sources, such as glacier melt
models (e.g., Huss and Hock, 2015; Rounce et al., 2020a,
b), reservoir operation data (Zuidema et al., 2020), or econo-
metric land use models (Zaveri et al., 2016). The modular
components can be turned on or off with binary flags in a
model initialization file. The modular components can be
turned on or off with binary flags in a model initialization
file. Users can select any combination of the following an-
thropogenic processes: (1) water extraction for irrigation, (2)
rainfed crop water evapotranspiration (ET), (3) water use
for livestock, municipalities, and industrial production, (4)
inter-basin transfers, and (5) reservoirs and dams. In contexts
where water quality is simulated, fluxes of solutes from other
models such as the terrestrial biogeochemical model PnET
(Aber et al., 1997) provide the relevant boundary conditions
to WBM (Samal et al., 2017). While WBM is modular, the
core hydrologic framing requires the following inputs: a dig-
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ital river network identifying flow direction at the resolu-
tion of the model grid (such as STN-30p, Vörösmarty et al.,
2000b; MERIT, Eilander et al., 2021; Yamazaki et al., 2019;
HydroSHEDS, Lehner et al., 2008), or any other standard
flow grids, soil available water capacity and root depth, daily
average temperature, and total daily precipitation. The model
requires a spin-up step to allow water stocks to reach equilib-
rium prior to the model-simulation period. At the beginning
of a simulation, large reservoirs (described in Sect. 2.2.4) are
initialized at 80 % of their full capacity, the soil moisture stor-
age pool (described in Sect. 2.2.1) is initialized at 50 % of
capacity, and all other stocks begin at 0 % capacity. We rec-
ommend a minimum spin-up time of at least 10 years, using
a representative historical climatology of daily weather in-
puts to drive the spin-up period. Model methods and results
described here specifically refer to the open-source release of
WBM v.1.0.0 (Grogan and Zuidema, 2022).

Most features of WBM have been described in prior pub-
lications, and the documentation included in the Supplement
and WBM GitHub repository provides details and equations
for all the WBM v.1.0.0 model methods. Here, we give a
general overview, describe updates and additions to previ-
ously published methods, and point to the most recent and
relevant citations that accurately describe the version of the
model presented here.

2.2 Model description

The WBM simulates terrestrial hydrologic fluxes at a daily
time step using rasterized grids in either geographic or pro-
jected coordinates. Inputs to WBM can be in any GDAL-
readable format, and some parameter sets and databases are
input as delimited text files. Most geospatial data are input as
(potentially multi-layer) raster grids, commonly in GeoTIFF
or NetCDF formats. Many parameters controlling WBM be-
havior can be input as single scalar values or as geospatial
grid or vector fields. All inputs are coordinated through sim-
ple text initialization files. This structure makes it possible to
build simple scripts that automatically generate WBM model
inputs, which can be used for developing batches of simula-
tions, or for performing sensitivity and uncertainty analyses
using user-preferred algorithms.

Previous work that parameterized WBM to match histori-
cal observation used a combination of manual and automated
fitting. Table 1 presents a cross section of parameters that are
typically varied to control the response of WBMs in individ-
ual watersheds. Default values are typically found to be rea-
sonable for both forested, temperate watersheds and global
average conditions, but poor correspondence with observa-
tional data in some watersheds is expected when simulating
large regions with default values. The WBM users should
calibrate the parameters listed in Table 1 (and possibly oth-
ers) for regional modeling. A complete list of parameters and
inputs is provided with the model source code as a spread-
sheet.

2.2.1 Land surface fluxes

Water enters the land surface – and therefore the modeling
framework of the WBM – via precipitation. This precipita-
tion can be intercepted by the vegetative canopy, collect as
snow, enter soil storage, or become surface runoff. Water that
enters soils in excess of the soil’s field capacity infiltrates the
shallow groundwater pool. Bare surfaces and vegetation col-
lectively lose water to the atmosphere through ET.

Precipitation and snow. Precipitation is partitioned into
solid (snow) and liquid (rain) portions within the WBM ac-
cording to temperature thresholds. Snow accumulation and
snowmelt, both expressed in terms of snow water equivalent
(SWE), are also functions of temperature thresholds. These
snow thresholds are fully described in Wada et al. (2012) and
Grogan (2016). Accumulated snow is represented as a single
layer. For regions with high-elevational gradients, a subgrid-
cell binned distribution of elevations can be used to parti-
tion the grid into liquid/solid precipitation portions and snow
accumulation/snowmelt portions. If subgrid elevation snow
processes are not used, the same snow processes apply to the
entire grid cell. The subgrid-cell elevation method described
in Mishra et al. (2020) and Grogan et al. (2020) is elaborated
on here. The elevation distribution of each model’s grid cell
is calculated from a 30 or 500 m or finer-resolution digital
elevation model (DEM), resulting in binned elevation cate-
gories of 1H vertical bands. The size of the bins is user-
defined and can range from 0 to 5000 m, with a default bin
1H size of 250 m. A temperature lapse rate, L [◦C km−1] is
applied to the mean daily temperature T [◦C] at the reference
elevation Href [m] for each binned elevation category, result-
ing in an adjusted mean temperature Te [◦C], for the portion
of each grid cell in elevation bin category e.

Te = T +
L

1000
(He−Href) . (1)

The reference elevation Href [m] is the average elevation of
the grid cell represented by the temperature dataset. Precipi-
tation rates are assumed to be equal across all elevation bins
e, such that P e = P , where P e [mm d−1] is the precipitation
rate at elevation e, and P [mm d−1] is the input precipita-
tion rate. The SWE in elevation bin e, Se [mm], is updated
through time steps of length dt :

dSe

dt
= P es −M

e, (2)

where the frozen precipitation rate P es [mm d−1] is a function
of the temperature at elevation e, T e [◦C] and a reference
temperature Ts [◦C]:

P es =

{
P if T e < Ts
0 if Ts ≤ T

e,
, (3)
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Table 1. Default parameter values with suggested minimum (Min) and maximum (Max) parameter ranges, and the WBM default value
(Default) when the parameter value is not user-defined.

Parameter Description Units Min Max Default

α Evapotranspiration response to soil moisture drying – 2 20 5
CLAI Maximum canopy interception storage mm 0 1 0.2
γ Percolation fraction below root zone – 0.1 0.9 0.5
β Baseflow release time constant d−1 1× 10−3 0.1 0.025
CSRP Quick-flow release coefficient – 0.2 1.0 0.75
TSRP Threshold storage allowed in quick-flow pool – 10 50 1000a

L Temperature lapse rate ◦C km−1
−8 −6 −6.49

Ts Snowfall temperature threshold ◦C −2 0 −1
Tm Snowmelt temperature threshold ◦C 0 2 1
Rperc Fraction of irrigation returns to groundwater – 0 1 0.5
Rind Fraction of returns from industrial use – 0 1 0.86
Rdom Fraction of returns from domestic use – 0 1 0.89
Uw Speed of wave propagation (celerity) m s−1 1 3 2.18

Hydraulic geometry

η Coefficient relating mean discharge and depth – 0.1 0.33 0.25
ν Exponent relating mean discharge and depth – 0.1 0.5 0.40
τ Coefficient relating mean discharge and width – 3.7 10 8.00
φ Exponent relating mean discharge and width – 0.2 0.7 0.58
f Exponent relating instantaneous discharge to mean depth – 0.35 0.75b 0.40
b Exponent relating instantaneous discharge to mean width – 0 0.25b 0.10
m Exponent relating instantaneous discharge to mean velocity – 0.25 0.65b 0.50

a Default value effectively defines no upper bound to storage within the surface runoff pool. b The sum of f , b, and m (and ν, φ, and ε) must equal 1.

and calculation of snowmelt at elevation bin e,Me [mm d−1]
follows the methods from Willmott et al. (1985):

Me
=

{
2.63+ 2.55T e+ 0.0912T eP if Tm < T

e

0 if T e ≤ Tm.
(4)

The total SWE, S [mm d−1], in the grid-cell at each time step
is the sum of all SWE values at each elevation band e mul-
tiplied by the corresponding fraction of grid-cell area repre-
sented by elevation bin e, f e:

S =

n∑
e=1

Sef e. (5)

Variables controlling SWE accumulation include the snow-
fall threshold Ts, with a default value of−1 ◦C; the snowmelt
threshold Tm, with a default value of 1 ◦C; and the lapse rate
L, with a default value of −6.4 ◦C km−1. Both T e and L can
be constants for the whole simulation domain, or they can be
a spatially variable gridded input layer.

At high elevations and cold climates, it is a common case
that annual snowfall exceeds annual snowmelt volume. In re-
ality, this excess snowpack converts to ice and forms glaciers.
The WBM does not internally simulate glacier formation or
dynamics; this causes unrealistic, infinite snow accumula-
tion. To address this problem, users can define a threshold
(e.g., 5000 mm of SWE) above which snow water volumes

are shifted down elevation bands on the date of annual snow-
pack minimum (assumed to be 15 August in the Northern
Hemisphere and 15 February in the Southern Hemisphere).
If there is no elevation bin in the grid cell in which snow
is melting, snow water is further shifted downstream to the
next grid cell, following the direction of flow as defined by
the digital river network.

Canopy interception. Vegetation intercepts incoming pre-
cipitation, preventing some of the total precipitation from
reaching soils below and adding to the total ET flux. The
canopy intercepts liquid precipitation only. The WBM uses
canopy rainfall interception formulations from Deardorff
(1978) and Dickinson (1984):

dWi

dt
= (P −Pt)−Ec, where WiW

max
i , (6)

where Wi is canopy water storage [mm], Wmax
i [mm] is

the canopy water storage capacity, P [mm d−1] and Pt
[mm d−1] are liquid precipitation and throughfall, respec-
tively (see “Precipitation and snow” subsection above), and
Ec [mm d−1] is evaporation of the canopy water.

Canopy water storage is limited by its capacity Wmax
i ,

which is proportional to the leaf area index (LAI) [m2 m−2]:

Wmax
i = CLAI ·LAI, (7)
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where CLAI is canopy interception coefficient [mm] typically
ranging from 0.15 to 0.25 mm (Dingman, 2002); WBM uses
a default value of 0.2 mm, as suggested in Dickinson (1984).

The canopy water evaporation rate Ec [mm d−1] is a func-
tion of the canopy water storageWi [mm], canopy water stor-
age capacity Wmax

i [mm], and the open water evaporation
rate Eow [mm d−1] (Deardorff, 1978):

Ec = Eow

(
Wi

Wmax
i

)2/3

. (8)

Throughfall is then calculated as the amount of water over-
filling the canopy interception pool, while accounting for
evaporation over the course of the time step.

Open water and impervious surfaces. The WBM repre-
sents direct storm runoff over impervious surfaces (Zuidema
et al., 2018); the latter prevents water from entering soil and
increases storm runoff. If provided with a map of impervi-
ous surface fractions of the grid-cell area, the WBM assumes
no soil water holding capacity and does not calculate canopy
interception on those areas. To define the fraction of precipi-
tation that is routed directly to streams, the WBM calculates
an effective impervious area adapted from Alley and Veen-
huis (1983):

f eff
imp = f

0.4
imp. (9)

Given an input dataset of the fraction of grid-cell open water
areas fow (e.g., lakes and ponds), the WBM treats open water
areas as direct contributors of storm runoff to river systems;
open water grid cells have no soil infiltration, surface reten-
tion pool, or shallow groundwater pool. The WBM limits the
sum of impervious surface and open water areas to 97.5 % of
the grid-cell area for continuity, except for expansive lakes
occupying entire grid cells which are masked from any ter-
restrial water balance calculations. Endorheic lake grid cells
are also fully masked from terrestrial wate balance calcula-
tions; they are treated as water outlets in the same way that
ocean grid cells adjacent to river mouths are outlets. Direct
storm runoff Rstrm [mm d−1] is calculated as the sum of in-
coming precipitation P [mm d−1] and snowmelt water M
[mm d−1], multiplied by the sum of the effective impervious
area fraction f eff

imp and open water fraction fow:

Rstrm =
(
f eff

imp+ fow

)
(P +M). (10)

Storm runoff Rstrm [mm d−1] is routed directly to streams.
The remainder of precipitation and snowmelt water are
routed to soil infiltration. If soil is already saturated, this re-
mainder contributes to surface runoff and shallow groundwa-
ter recharge (see below for descriptions of these processes);
Hortonian (infiltration excess) flow is not simulated.

Soil moisture balance. Soil moisture balance,WS [mm], is
calculated by tracking a grid cell’s water inputs, water out-
puts, and holding capacity of the soil moisture pool. The

WBM simulates a single soil layer, and does not explicitly
represent vertical fluxes of water through the soil. The soil
moisture pool’s available water capacity Wcap [mm], is de-
termined by the rooting depth Rd [mm], soil field capacity
Fcap [–], and soil wilting point Wpt [–]:

Wcap = Rd(Fcap−Wpt). (11)

The WBM can take these soil and vegetation parameters –
rooting depth, field capacity, and wilting point – as inputs
and calculate the soil available water capacity as described
in Eq. (11), or it can take available water capacity as a model
input.

Water inputs to the soil come from throughfall of liquid
precipitation Pt [mm d−1], and snowmelt M [mm d−1]. Out-
put is via actual evapotranspiration, AET [mm d−1], modi-
fied by a soil-drying function g(Ws), and gravity drainage
D [mm d−1]. Soil moisture balance calculations for natural
land covers are fully described in Wisser et al. (2010a) and
crop land covers in Grogan (2016). Change in soil moisture
is calculated at each time step [d] as:

dWs

dt
= Pt +M −AET−D, (12)

where gravity drainage D [mm d−1] is a function of the
soil available water capacity Wcap [mm], actual evapotran-
spiration, AET [mm d−1], throughfall of liquid precipitation
Pt [mm d−1], snowmelt M [mm d−1], and the water depth
stored in the soil moisture pool in the previous time step:

D =


(
W k−1

s +Ptdt +Mdt −AETdt −Wcap
)
/dt

if Wcap < (W
k−1
s +Ptdt +Mdt −AETdt)

0
if Wcap > (W

k−1
s +Ptdt +Mdt −AETdt),

(13)

This gravity drainage water becomes surface runoff and/or
recharge to the shallow groundwater storage pool.

Potential and actual evapotranspiration. Evaluation of dif-
ferent potential evapotranspiration (PET) functions is pro-
vided in Vörösmarty et al. (1998); the version of WBM de-
scribed here has options to use the Hamon (1963), Penman–
Monteith (Penman, 1948; Monteith, 1965), and FAO Irriga-
tion and Drainage Paper No. 56 modification to Penman–
Monteith (Allen et al., 1998) PET functions. The Hamon
method requires only two climate inputs (temperature and
precipitation), while the other two functions require addi-
tional inputs of air humidity (relative, absolute, or dew/wet-
bulb temperature), wind speed vectors, and cloud cover. The
Hamon and Penman–Monteith functions are both described
in Vörösmarty et al. (1998), and the FAO Irrigation and
Drainage Paper No. 56 (Allen et al., 1998) modification to
Penman–Monteith PET is described in the WBM model doc-
umentation provided in the Supplement.

Actual evapotranspiration (AET) from naturally vegetated
land areas is a function of the PET, soil moisture, and soil
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properties; these soil properties are field capacity, wilting
point, and rooting depth (see Eq. 11 above). In a given
time step, if soil moisture is sufficient to meet PET, then
AET=PET. Otherwise, PET is modified by a soil-drying
function g(Ws). The amount of water that can be drawn out
of the soil moisture pool depends on the current soil mois-
ture and the available water capacity. These functions are de-
scribed fully in Wisser et al. (2010a) and Grogan (2016). De-
fault model inputs represent the land surface as a generic, ref-
erence vegetation type (Allen et al., 1998), with soil-drying
parameters from Federer et al. (2003) estimated to best match
global average runoff. The ET from land-cover types other
than a generic reference vegetation can be represented, given
input data on the subgrid-cell fraction occupied by these
land-cover types and a set of associated parameters. When
using subgrid-cell land-cover inputs, the WBM simulates a
full soil water balance for each portion of the grid cell that is
identified as a unique land-cover type. Model output provides
a grid-averaged value for each stock and flux. For cropland
land-cover inputs, subgrid-cell crop-specific water balance
values can be output for soil moisture, PET, irrigation water
applied (for irrigated crops), and blue and green water use by
crop (for irrigated crops). For fine-resolution simulations, in-
puts identifying the dominant land-cover type can be used to
parameterize the entire grid cell, or land cover can be used to
average necessary parameters a priori. Crop ET calculation
methods are from Allen et al. (1998), with default parameter
values for crops from Siebert and Döll (2010). While AET
from other land-cover types (e.g., forest or grassland) can be
parameterized and simulated, no published study has used
this option of WBM yet. The AET from other consumptive
water uses are described below in Sect. 2.2.5.

Open water evaporation applies to the fraction of grid cells
containing terrestrial free water surfaces, including river sur-
face area, lake and reservoir area, and inter-basin transfer
canal area (see Sect. 2.3.4 below for a description of inter-
basin transfer canals). Open water evaporation rates can be
input into the WBM, available from reanalysis models such
as MERRA2 (Gelaro et al., 2017), estimated as a multiplier
on PET in the absence of an input dataset; the default multi-
plier in the WBM is 1.0. The river surface evaporation Eriv
is calculated as a function of open water evaporation rates O
and river geometry:

Eriv =min(
√
A · yREow, WR), (14)

where A is the grid cell area [m2], yR is the stream width
[m], Eow is the open water evaporation rate [m d−1], andWR
is the storage of water in the river [m3]. Hydraulic geometry
relations used to estimate stream width are described below
in Sect. 2.2.3.

Surface runoff. When water enters a grid cell in excess
of the volume that can be stored in soils, the canopy, and
lost through ET, then gravity drainage occurs, resulting in
both surface runoff and recharge. The distribution of this ex-
cess water between surface runoff and shallow groundwa-

ter recharge is defined by a model parameter which sets the
fraction of drainage water that recharges shallow groundwa-
ter; the complement of this value is treated as surface runoff.
To capture the hydrodynamic response of runoff generation
following precipitation and snowmelt events, water passes
through either a surface retention pool or a shallow ground-
water pool, described below. Once the runoff water leaves
either of these pools, it joins with storm runoff and forms
total land runoff that is then routed downstream as river flow.

Surface runoff, RS [mm d−1], is retained in the surface
runoff retention pool, WSRP [mm], prior to draining to the
stream network. This temporary storage of surface runoff in
the surface retention pool represents flow over the land sur-
face and temporary storage in ephemeral pools and wetlands.
The drainage rate, RSRP [mm d−1], from the surface runoff
retention pool, WSRP [mm], follows a tank drainage formu-
lation:

RSRP = CSRP
√

2GWSRP, (15)

where CSRP is a unitless discharge coefficient of the surface
runoff retention pool and includes unit conversions, and G is
gravitational acceleration.

There is an upper limit, TSRP [mm], imposed on the storage
volume in the surface runoff retention pool. This limit cap-
tures the response of over-filled surface topographic depres-
sions. When the volume of the surface runoff retention pool
exceeds this limit, then the overflow water, REXC [mm d−1],
is moved to the river. This helps to capture flashy hydro-
dynamic responses more accurately during extreme events
(Zuidema et al., 2020). Change to the storage value of the
surface runoff retention pool WSRP is as follows:

dWSRP

dt
= RS−RSRP− δ(t − tE)RExc, (16)

where RS [mm d−1] is surface runoff, RSRP [mm d−1] is the
drainage rate out of the surface runoff retention pool, tE are
times when the surface runoff pool exceeds the limit, δ rep-
resents the Dirac delta, the integral of which over 1 time step
equals unity, and REXC [mm d−1] is the overflow water.

The balance of the surface runoff retention pool is calcu-
lated as a split operator in three stages:

1.

W 1
SRP =W

k
SRP+Rsdt, (17)

2.

W 2
SRP =W

1
SRP−RSRPdt, (18)

where

RSRP = CSRP

√
2GW 1

SRP, (19)
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3.

W k+1
SRP =W

2
SRP−RExcdt, (20)

where

RExc =

{
(TSRP−W

2
SRP)/dt if W 2

SRP > TSRP
0 if W 2

SRP ≤ TSRP,
(21)

where W k
SRP and W k+1

SRP are the storage in the surface reten-
tion storage pool at the previous and present time step, re-
spectively. The threshold for storage in the surface runoff re-
tention pool (TSRP) is set to 1000 mm by default, which ef-
fectively turns off this functionality, unless an alternate value
is defined. Decreasing TSRP to values in the range of 15 to
50 mm increases the flashy response of the model in tem-
perate climates, enabling users to calibrate this parameter to
capture regional variations in storm responses.

Glacier runoff. Another flux of water from the land sur-
face to the rivers is glacier runoff. While the WBM does
not simulate glacier formation and dynamics beyond routing
the accumulated snowpack downstream as described above,
it can take inputs of glacier area and runoff generated on that
area. The glacier area within each grid cell is removed from
the land area simulated by the WBM; all water accumula-
tion and runoff from that land area is taken from the glacier
input dataset. The WBM assumes that this land area, which
is typically a fraction of a grid cell, sits at the highest ele-
vation within the grid. To avoid double-counting precipita-
tion inputs onto this land area (which is accounted for by
the glacier input dataset), the WBM reduces grid-cell pre-
cipitation linearly by the fraction of the grid cell covered by
glacier area. Each glacier has a single designated outlet lo-
cation, even in the case that the full glacier covers multiple
grid cells, and it is also assumed that runoff from the glacier
area all flows directly into the outlet grid cell’s river system.
These methods are first described in Mishra et al. (2020),
and were developed to make use of rasterized output from
the Python Glacier Evolution Model (PyGEM; Rounce et al.,
2020a), which provides glacier runoff at a monthly time step.
The standard output format of PyGEM is not gridded; rather,
post-processed PyGEM output is required as input for the
WBM (Prusevich et al., 2021).

2.2.2 Groundwater

Shallow groundwater storage pool. As noted above, when
water enters a grid cell in excess of the volume that can be
stored in soils, the canopy, and lost via ET, then runoff and
recharge both occur. The portion of that excess water that
becomes recharge is defined by the recharge fraction param-
eter, with a default value of 0.5. Alternative non-default in-
put values can be a constant applied to the whole simulation
domain, or a gridded layer to reflect its spatial variability.
The recharge water enters a below-soil storage pool called
the shallow groundwater storage pool. This shallow ground-
water pool generates baseflow (i.e., subsurface runoff) by

leaking water to the river system stream reaches in the same
grid cell where recharge occurred. The leakage rate, RSGW
[mm d−1], is a function of a hydrodynamic groundwater con-
stant, β [d−1], applied to the depth of water stored in the
shallow groundwater pool, WSGW [mm]:

RSGW = β ·WSGW. (22)

The default value for β is 0.025.
Unsustainable groundwater. Following the GHM methods

of Hanasaki et al. (2008a) and Wada et al. (2012), the WBM
additionally represents an unsustainable groundwater source.
The WBM’s implementation of unsustainable groundwater
was first described in Wisser et al. (2010a), and again in
Grogan et al. (2015, 2017), Liu et al. (2017), and Zaveri et
al. (2016). Here, as in previous WBM and other GHM pub-
lications, unsustainable groundwater is defined as ground-
water used in excess of the recharge stored in the shallow
groundwater pool. We acknowledge that this definition does
not capture the complex nature of surface water–groundwater
interactions; however, this definition has been adopted by the
GHM community as sufficient for macro-scale representa-
tions of the large volumes of water required to meet agri-
cultural water uses that are clearly in excess of surface water
and short-term (yearly to decadal) groundwater recharge sup-
plies (Hanasaki et al., 2008b; Wada et al., 2012; Grogan et al.,
2017; Hanasaki et al., 2018). The unsustainable groundwater
source is not defined as a stock or storage pool, hence no state
variable is associated with it. When the demand for water ex-
tractions (see Sect. 2.2.5 below) exceeds the water supply
available from surface water and shallow groundwater, the
WBM has the option of allowing the residual, or a parameter-
defined fraction of the residual, to be supplied from an unlim-
ited unsustainable groundwater source. This effectively de-
fines unsustainable groundwater use – alternatively known
as groundwater mining or the use of fossil groundwater
when recharge is known to have occurred pre-historically
(Jasechko et al., 2017) – as any groundwater extraction in
excess of the long-term recharge rates applied to the shal-
low groundwater pool and represents an additional source of
water entering the simulated hydrologic system. Prior work
(e.g., Gleeson et al., 2012; Grogan et al., 2015, 2017; Wada et
al., 2012; Zaveri et al., 2016) has shown that the assumption
that this unsustainable water source is available is reasonable
at a macro-scale and allows GHMs to evaluate aquifer min-
ing at large scales and compare to groundwater-based mass
change observations from the GRACE satellite (Sutanudjaja
et al., 2018).

2.2.3 River discharge

The WBM has a horizontal water transport model that repre-
sents the flow of rivers in one dimension. The foundation of
this model is the digital river network, which defines exactly
one flow direction for each grid cell. As grid cells connect
into networks, these form the representation of river systems.
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Note that every grid cell has a flow direction, regardless of
whether enough water accumulates to actually flow through
the grid cell or not (e.g., an arid region with no or low precip-
itation would have no flow, but would have a defined network
of flow directions, as described by the STN-30p network
(Vörösmarty et al., 2000b). The model offers two options for
calculating river flow velocity: (1) a Muskingum-Cunge so-
lution of the Saint-Venant flow equations (Maidment, 1993),
and (2) a linear reservoir routing solution. We find that the
Saint-Venant flow equations are only appropriate for simula-
tions of relatively coarse grid-cell resolution – half-degree
by half-degree or larger – where much of the river’s vol-
ume remains within the grid cell over a 24 h time period.
For the finer-resolution simulations – 5 min grid-cell size
and smaller – that are now common amongst many GHMs,
the linear reservoir routing method is more appropriate. The
Muskingum-Cunge solution is fully documented in Wisser et
al. (2010a) and Grogan (2016), and the linear reservoir rout-
ing method follows common formulations (Dingman, 2002,
p. 429). Linear reservoir routing calculates reach outflow as
a function of the water volume within each grid cell, with a
release coefficient that is a function of celerity (rapidity of
downstream motion) and reach length. Both methods are de-
scribed again in the model documentation in the Supplement.

Hydraulic geometry. The WBM incorporates both down-
stream and at-a-station stream geometry relationship as-
sumptions to calculate river width, depth, and velocity from
discharge. The WBM assumes that each grid cell has a single
representative stream reach and calculates a rolling average
of annual mean discharge for each reach in a simulation over
the previous 5 years of a simulation. The long-term mean dis-
charge, Q [m3 s−1], is then used to estimate the long-term
mean depth, z [m], width, y [m], and velocity, u [m s−1],
using downstream hydraulic geometry relations and scaling
factors from Park (1977):

z= ηQ
ν
, (23)

y = τQ
φ
, (24)

u= δQ
ε
, (25)

where η, ν, τ , φ, δ, and ε are user-defined variables, with
optional default values listed in Table 1.

Instantaneous estimates of the three variables (z [m], y
[m], and u [m s−1] for depth, width, and velocity, respec-
tively) are given as functions of instantaneous Q [m3 s−1]
and mean discharge Q [m3 s−1], scaled by appropriate at-a-
station hydraulic geometry exponents (Dingman, 2009):

z= z

(
Q

Q

)f
(26)

y = y

(
Q

Q

)b
(27)

u= u

(
Q

Q

)m
(28)

In the above equations, parameters f , b and m are all user
defined variables, with optional default values from Leopold
and Maddock (1953), listed in Table 1.

2.2.4 Hydro-infrastructure

Dams and reservoirs. Large dams and reservoirs alter river
flows and provide water supplies to surrounding areas. When
provided with a database containing the required informa-
tion, WBM simulates the impact of reservoir operations on
river flow, and it uses the water stored in reservoirs as supply
for water extractions and consumptive uses (see Section 2.2.5
below). The input dam database must have the following in-
formation to be of use to WBM: the year of dam construction,
the reservoir area and capacity, the upstream catchment area,
the main purpose, and the location. The database may option-
ally include information about the year a dam was removed,
if applicable. Dam databases with this information include
the Global Reservoir and Dam Database (GRanD; Lehner et
al., 2011), and the Hydrologically Consistent Dams Database
(HydroConDams; Zuidema and Morrison, 2020).

The WBM employs a general reservoir water release rule,
with parameter modifications for dams of different purposes,
such as irrigation supply or flood control. A general water
release rule is designed to maintain outflows approximately
equal to average annual inflows, but to release less water
when reservoir levels are low and more water when reser-
voir levels are high. Water levels that are considered “high”
or “low” are based on the purpose of the dam and can be
parameterized for specific dams or set of dams. Dams on ir-
rigation reservoirs are additionally parameterized with a time
series of downstream irrigation water requirements, ensuring
that water is released downstream from the dam during the
time of greatest water extraction demand. In reality, many
irrigation reservoirs are connected to downstream irrigated
areas by canal systems that flow directly from the reservoir
and do not rely on dam operations. The WBM does not rep-
resent these canal systems, and thus uses dam water releases
to account for this canal-enabled downstream flow of water.
Full reservoir release methods, along with parameter values
assigned to different dam types, are documented in Rougé
et al. (2021). Alternatively, discharge from individual dams
can be input directly into the WBM, thereby making calcu-
lated reservoir storage a function of observed reservoir output
(Zuidema et al., 2020); this ensures that releases match his-
torical records in cases where WBM’s default functions vary
too far from observed reservoir operations.

Reservoirs with a storage capacity below a given threshold
(default is 1 km3) are treated as unmanaged spillway dams
with the spill gate geometry determined from the stream ge-
ometry for the average annual flow. Water release from these
structures are calculated from the hydraulic formulations for
those dam structures given in the US Army Corps Engineers
handbook (United States Bureau of Reclamation, 1987; US
Army Corps of Engineers, 1987). Natural lakes are treated
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in a similar way as the spillway dams, but the gate geometry
is determined as those from instantaneous riverbed geometry
described above.

Small irrigation reservoirs. Rainwater harvesting for irri-
gation water supply is represented in the WBM’s small irri-
gation reservoir module. These small reservoirs do not dam
rivers as larger reservoirs do, and hence do not alter river
flow. Rather, they collect rainwater and surface runoff, stor-
ing it on the land surface and preventing it from reaching the
river system. Note, these are not run-of-river reservoirs, but
structures on the land surface. We do not know of any global
or even regional dataset that describes the location and ca-
pacity of these small irrigation reservoirs. Small irrigation
reservoir methods of the WBM were first developed and de-
scribed in Wisser et al. (2010b), where a range of capacities
were simulated to provide a sensitivity analysis and quantify
the potential importance of these highly localized water sup-
ply systems.

Inter-basin transfers. Inter-basins transfers are large
canals, tunnels, or pipelines that move water across river
basin boundaries. These large projects alter flows in both the
sending and receiving river systems and can be used to sup-
ply water for consumptive uses. The WBM simulates how
inter-basin transfers alter the flows in both the sending and
receiving rivers, though it does not explicitly represent the
routing of water discharge through the canal system. The
WBM’s inter-basin transfer methods were first developed
and described in Zaveri et al. (2016) and described again
in Liu et al. (2017). Five parameters are used to simulate
the water transfer: (1) the water sending point latitude and
longitude, (2) the water recipient latitude and longitude, (3)
a minimum allowed sending river flow, (4) a maximum al-
lowed canal intake flow, and (5) a water release rule for flow
volumes between the minimum and maximum. A database of
India’s inter-basin transfers was used by the WBM in Zaveri
et al. (2016) and is included as a Supplement to that publica-
tion.

2.2.5 Water extraction and consumptive water use

Water extractions from rivers, reservoirs, and groundwater
are an important part of simulating water supply and changes
in human–hydrologic interactions. The WBM first imple-
mented water extractions for irrigated agriculture (Wisser
et al., 2008, 2010a), which is globally known to account
for ∼ 70 % of all freshwater extractions (Rosegrant and Cai,
2002). Modules for water supply to livestock, domestic, and
industrial use, which are less consumptive than irrigation wa-
ter and account for a smaller proportion of total global extrac-
tions, were added to the WBM in Liu et al. (2017). When wa-
ter is removed from a storage (e.g., reservoirs or the shallow
groundwater pool), the storage value of that stock is updated
within the daily time step.

Water withdrawals are taken from different water stocks
and fluxes based on a given priority order of both water users

and water sources; this rule set has a number of user input op-
tions and parameters, making it highly flexible and customiz-
able. The default priority order for withdrawal by water users
within a grid cell is as follows: (1) domestic, (2) industrial,
(3) livestock, and (4) irrigation. In turn, the withdrawals from
each user group come from water storage and flux pools in
the following order until the requested withdrawal water vol-
ume is met:

1. Small irrigation reservoirs – source is available only to
livestock and irrigation water use

2. Shallow groundwater (SGW) – when SGW is extracted
for domestic, industrial, and livestock use, all the water
in the SGW pool can be extracted, up to the volume re-
quested by the sector. When this source is extracted for
irrigation, an optional parameter, rsg [–], defines the tar-
get ratio of groundwater-to-total withdrawals for irriga-
tion water extractions. This parameter can be a constant
or a spatially variable grid. If rsg is not defined, all avail-
able SGW is extracted for use (up to the water demand)
in this step. In the case where rsg is defined, this first
groundwater withdrawal step takes water from SGW up
to the volume defined by the product of rsgw and irri-
gation water demand, D [mm], even if there is more
SGW available and D is greater than the defined wa-
ter amount, such that shallow groundwater withdrawal,
Wsgw, at this step is

Wsgw =min(rsgwD, SGW); (29)

3. Surface water in a river or reservoir within the same grid
cell – stream water available for extraction, Se, is the
sum of water retained in river and reservoir storage at
the end of the previous time step,W k−1, and the volume
of water flowing through the reach during the previous
time step,Qk−1, limited by a scaling factor that is set to
the default value of 0.8:

Se = 0.8 (W k−1
+Qk−1). (30)

The scaling factor of 0.8 prevents river reaches from be-
ing completely dried out by water extractions;

4. Shallow groundwater – second extraction for irrigation
only. If the parameter rsgw is defined in a way that lim-
ited SGW extraction for irrigation to less than the avail-
able SGW volume in Step 2, and there is still residual
water demand, then water volumes up to the remain-
der of the SGW storage volume can be extracted at
Step 4. By combining Steps 2 and 4, the target irriga-
tion groundwater-to-total withdrawal ratio is achieved
only in the case where the sum of surface and SGW
volumes is sufficient to meet this ratio; Step 4 ensures
that fulfilling water withdrawal demands using sustain-
able resources within the grid cell takes priority over
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achieving the target ratio. This step does not apply to
livestock, domestic, or industrial water extractions, as
no ratio parameter is applied to those water uses;

5. Surface water in a river or reservoir outside the given
grid cell that has the largest storage+ discharge volume
within a set of parameter-defined radii – a different pa-
rameter can be set for irrigation water use than for other
uses, representing the differences in irrigation and mu-
nicipal water supply infrastructure. The default radius
value is 100 km for all water uses; the user can define
a set of alternative constant scalars or gridded layers of
values;

6. Unsustainable groundwater (UGW) – water available
for extraction from this pool may be limited by the
UGW allowance ratio, if defined. Because this source
of water has no stock value, the allowance ratio applies
a scaling factor of ≤ 1 to the water withdrawal demand.
This scaling factor is independent of rsgw, and if not de-
fined, this pool is unlimited.

Irrigation. Given inputs of irrigated land area and as-
sociated crop-specific parameters, the WBM calculates the
agronomic water requirements for optimal crop growth over
its three growing seasons: (1) planting and development,
(2) growth, and (3) harvesting. In the WBM, crops extract
water from the soil moisture pool each day of the crop’s
growing season. Given sufficient water in the soil mois-
ture pool, the amount of water used by each crop is the
crop’s PET. When soil moisture levels drop below a crop-
specific threshold, the difference between the soil moisture
level and field capacity is defined as the irrigation water re-
quirement. This method of crop irrigation water requirements
follows FAO guidance (Allen et al., 1998), as is typical of
GHMs. The WBM’s crop irrigation water requirement meth-
ods have been described in Grogan et al. (2015, 2017), Liu
et al. (2017), Wisser et al. (2010a), Zaveri et al. (2016) and
Zuidema et al. (2020).

Alternatively, the WBM has the option to calculate a daily
crop gross irrigation water requirement instead of using the
crop-specific soil moisture threshold to trigger water extrac-
tions. This option is useful for simulations with large grid-
cell sizes, where the calculation of average soil moisture
over large irrigated areas leads to unrealistically high irriga-
tion water demands in a single day. When using this option,
the WBM estimates gross crop irrigation water requirements
each day, equal to the difference between soil moisture con-
tent and field capacity, and modified by either the classical
irrigation efficiency parameter or the irrigation technology-
derived classical efficiency for the day (described below). Ir-
rigation water is then extracted from water sources each day,
and stored in an irrigation water storage pool that does not in-
teract with other fluxes within the model until the day when
the crop-specific soil moisture threshold is reached. When
this threshold is reached, water is moved from the irrigation

water storage pool to soil moisture. This option extracts rel-
atively small amounts of water from water stocks each day,
instead of larger amounts of water on the day that the soil
moisture threshold is reached. These smaller, daily extrac-
tions may better simulate the temporal distribution of irriga-
tion activity over large grid-cell areas.

The amount of water required by a crop to achieve
AET=PET is less than the amount of water that must be ex-
tracted from a water source due to inefficiencies in irrigation
water extraction, transportation, and application. The WBM
has two options for calculating the gross irrigation water ex-
traction required as a function of net irrigation water required
by the crop: (1) the irrigation efficiency method, and (2) the
irrigation technology method. In both cases, water extracted
in excess of net irrigation water requirements are returned to
surface and groundwater systems on the same day as extrac-
tion. Returns to the surface water system are treated as sur-
face runoff (see above description of surface runoff), and are
added to the surface runoff storage pool. Returns to the shal-
low groundwater system are treated as shallow groundwater
recharge (see above).

The irrigation efficiency method is standard for GHMs and
described in Grogan et al. (2015, 2017), Liu et al. (2017),
Wisser et al. (2010a), and Zaveri et al. (2016). In this method,
classical irrigation efficiency is an input to the WBM and
directly modifies the net irrigation water requirement by a
spatially varying constant. Classical irrigation efficiency is
defined as the ratio between net irrigation water required and
gross water extractions. Net irrigation water requirements in-
clude water transpired by the crops and associated soil evap-
oration that is unavoidable. As described in Grogan (2016)
and Wisser et al. (2010a), net irrigation water requirements
for rice paddies also include an additional water volume, rep-
resenting the water needed to enable flooding at the start of
the growing season and maintenance of the flood paddy wa-
ter level throughout the season to compensate for percola-
tion. The volume of water added to initially flood the rice
paddies is an input parameter with a default depth value of
50 mm applied over all irrigated rice paddy areas. The daily
additional water application rate used to maintain the paddy
depth is based on the rate of water percolation through the
underlying soils. This is also an input dataset, with methods
for calculating percolation rates from soil property data de-
scribed in Wisser et al. (2010a). Both the initial paddy flood
water and the daily maintenance water are included in net ir-
rigation water volume of the irrigated rice, and the irrigation
efficiency parameter is applied to these volumes in the same
way it is applied to other net irrigation water requirements.

The irrigation technology method in the WBM is first
described in Zuidema et al. (2020); it represents non-
consumptive irrigation water losses as a function of irriga-
tion technology-specific parameters and open water evapo-
ration rates (which can be input or calculated as a function
of weather inputs). In this second method, inputs on the spa-
tial distribution of different irrigation water conveyance and
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Table 2. Default livestock parameters for the livestock water use
module.

Livestock Slope Intercept Service Population
sj Il water Bl growth rate

Buffalo 0.345 16.542 5 0.001863
Cattle 0.345 16.542 5 0.001863
Goats 0.215 4.352 5 0.003731
Pigs 1.4575 −6.14 25 0.000309
Poultry 0.019 0.1823 0.09 0.13397
Sheep 0.57 −0.35 5 0.003

application technologies (Jägermeyr et al., 2015, 2016) is re-
quired, and the inefficient water losses that occur over space
and time are calculated within the WBM as a function of ir-
rigation technology type and weather variables. Therefore,
classical irrigation efficiency is calculated and provided as a
time- and space-varying model output.

Blue water and green water use for irrigation. Falkenmark
and Rockström (2006) introduced the concept of “blue wa-
ter” and “green water” into the GHM literature to distinguish
between direct precipitation and irrigation water sources in
crop AET. Blue water is defined as liquid water that can
be extracted from aquifers, surface water reservoirs (lakes
and dams), and river systems, and green water is defined as
soil moisture water originating from direct precipitation (in-
cluding snowmelt) (Falkenmark and Rockström, 2006). The
WBM can estimate the flux of blue and green water via ET
by irrigated crops. Note that all ET from rainfed crops is
by definition green water. All water that becomes irrigated
crop ET must first enter the soil moisture pool. Water en-
ters the soil moisture pool by either (1) direct precipitation
or snowmelt, which is green water, or (2) irrigation from sur-
face or groundwater, which is blue water. We assume that
water in the soil moisture pool is well mixed on a daily time
step. Therefore, the ET out of that pool has the same pro-
portions of blue and green water as the soil moisture pool
itself. Optional model output variables include the grid-cell
average soil moisture that is made up of blue and green wa-
ter [mm], grid-cell total ET of blue and green water from the
soil storage pool [mm d−1], crop-area specific soil moisture
values of blue and green water [mm] (e.g., blue water stored
in soils under a specified input crop type), and crop-specific
ET of blue and green water [mm d−1].

Livestock. Livestock require water for drinking and for ser-
vice water, which includes washing and cooling. The WBM
uses the methods and default parameter values (Table 2) pro-
vided by Steinfeld et al. (2006) to calculate livestock water
use by animal type. Daily livestock water, Lw [m3 d−1], for
each livestock type is calculated each day as

Lw = (Il+ slT +Bl)Dl, (31)

where Il [m3/head/day] is the minimum water demand for
livestock type l, sl [m3/head/◦C/day] is the temperature-

induced consumption requirement for livestock type l [–], T
is the daily mean air temperature, with a minimum value of 0
[◦C]; Bl [m3/head/day] is the daily service water volume re-
quired per animal, and Dl is the density of livestock type l in
the grid cell [animal head/grid cell]. Additionally, an animal
population growth rate can be applied to each livestock head
density category to represent increases in population over a
given single-year value of animal head density data (the year
of Dl, input reference livestock density). This is useful as
limited global livestock density data are available. Livestock
are assumed to consume 5 % of their water extractions, with
the remaining 95 % returning to the system via runoff; the
ratio of consumption to return flows can be modified by user-
defined input parameters.

Domestic and industrial. Households and industry extract
water for a range of purposes, and at rates that have great spa-
tial variability. The WBM represents these extractions based
entirely on an input per capita water extraction rate and a
population density map, such that domestic water use, Ud
[m3/grid cell/day], is

Ud = udomADpop, (32)

and industrial water use, Ui [m3/grid cell/day] is

Ui = uindADpop, (33)

where A [km2] is the area of the grid cell, udom
[m3/person/day] is the per capita domestic water withdrawal,
uind [m3/person/day] is the per capita industrial water use,
andDpop [persons/km2] is the population density. Domestic
and industrial water use each have unique return-fraction co-
efficients, which default to uniform values of 84 % and 89 %,
respectively.

2.2.6 In-stream nitrogen and water temperature

Nitrate–nitrogen concentration. The WBM estimates in-
stream and in-reservoir nitrate–nitrogen (N–NO3) concen-
tration. In-stream N–NO3 concentrations are a function of
point-source nitrate inputs from wastewater treatment plants,
nonpoint-source nitrate inputs from the land surface, and in-
stream denitrification. Wastewater treatment plant contribu-
tions to in-stream nitrate are calculated using data on served
population and waste treatment type, as described in Samal et
al. (2017). Nitrate inputs from land are estimated as a func-
tion of simulated grid-cell runoff and the estimated nitrate
concentration in runoff from different land-use types. Esti-
mation of land use-specific runoff nitrate concentrations are
described in Wollheim et al. (2008a). The suite of param-
eters describing nitrate concentration in runoff from differ-
ent land-use types may require region-specific calibration,
based on high spatial resolution nitrate sampling from head-
water catchments along a gradient of human land use and
flow conditions (Wollheim et al., 2008a). The model default
values are found to be adequate for moderately developed
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landscapes with modest agricultural cover in the northeastern
United States (Samal et al., 2017; Simon, 2018; Stewart et al.,
2011). In-stream (Stewart et al., 2011) and in-reservoir (Si-
mon, 2018) denitrification are calculated using temperature-
corrected denitrification along the benthic surface assuming
efficiency loss kinetics, following Mulholland et al. (2008)
and Wollheim et al. (2014).

Water temperature. River temperature is calculated follow-
ing Stewart et al. (2013) with an addition to account for air
humidity and canopy shading (see documentation in the Sup-
plement for details). Temperature is first calculated on the
landscape, mixing air temperatures depending on the tim-
ing of shallow groundwater recharge. River temperature re-
equilibration is then calculated through a combined empirical
and deterministic re-equilibration procedure given by Ding-
man (1972). The re-equilibration is a function of channel hy-
draulics, air temperature, solar radiation, humidity, and wind
speed.

2.2.7 Water source tracking

The WBM tracks water from each source (water inputs into
each individual grid cell) through all flows and stocks within
the model. Stocks within each grid cell include soil moisture,
small reservoir storage, shallow groundwater storage, surface
retention and irrigation storage pools, rice paddy flood wa-
ters, river storage, and large reservoirs. Flows are infiltra-
tion into soils, surface runoff, recharge to shallow ground-
water, baseflow, river discharge, water discharge from reser-
voirs, evaporation, ET, inter-basin transfers, water extracted
for human water use, and return flows from human water use.
These stocks and flows are depicted in Fig. 2. The WBM’s
tracking functionality retains information about the genera-
tive mechanism (i.e., the water source) as water flows across
the landscape through the river network. This includes pro-
cesses such as extraction for human use, and subsequent re-
distribution according to hydrologic flow paths.

The same tracking algorithm applies to all water source
components. For any water component c in water storage
stock S at time step k in a given grid cell,

Skc =

(
Sk−1
c · Sk−1)

+
∑
i

(
Ic,i · Ii

)
−
∑
i

(
Skc Oj

)
Sk

, (34)

where Skc is the fraction of stock S composed of component
c at time k. The total volume of stock S at time k is Sk; Ii are
inflows to and Oj are outflows from stock S, with Ic,i being
the fractions of the ith flow composed of component c, all
at time step k. Component stocks (Skc ) are updated through-
out the time step, such that the solution is split into multiple
operators as the various fluxes impact each stock.

The WBM performs three types of component tracking:
(1) primary source component tracking (Fig. 2), representing
the initial input of water into the water balance equations,
(2) return flow component tracking representing water that
has been reintroduced to the hydrologic cycle following hu-

Table 3. Tracking component categories, and the identification of
the water source components tracked.

Tracking group Water components tracked

Primary source components Raina

Snow
Glacier runoff
Unsustainable groundwater

Return flow Pristine (no return)
Domestic/Livestock/Industrial
returns
Irrigation returns
Relicta,b

Land surface labels ID_1, ID_2, . . . , ID_N

a This component comprises 100 % of reservoir and soil moisture stocks prior
to spinup
b Relict water is defined as water stored in all water storage pools (aka stocks)
at the beginning or end of spinup.

man extraction, and (3) runoff from labeled land attributes
(Table 3). The model user can choose any combination of
sources to track simultaneously, as the tracking modules are
independent and each can be turned on or off in a given
model simulation. A user interested in understanding the
role of snowmelt as a component of streamflow downstream
of a mountainous region would use primary source compo-
nent tracking, whereas a user interested in understanding the
potential for anthropogenic contaminants to be present in
streamflow would use return flow component tracking. If a
user was interested in runoff generated within any political
boundary, land attribute tracking could be used. The inter-
section of different tracking components is not calculated;
by turning on both primary source and return flow compo-
nent tracking, for example, the WBM will not calculate the
fraction of irrigation return flow composed of snowmelt. Pri-
mary source components were first described in Grogan et
al. (2017), where only the unsustainable groundwater com-
ponent was analyzed. Return flow components were first de-
scribed in Zuidema et al. (2020); land-cover mask compo-
nents are described here.

All stocks and flows are considered well-mixed so that the
flows out of a stock have the same fractional water source
components as the stock itself. For each tracking group (see
Table 3), all stocks are initialized with Sc = 1 for a given
component of each group. For example, in primary source
component tracking, all stocks are initialized as 100 % rain
water; as the model goes through a spin-up stage, water from
the other components are added to these stocks. At the begin-
ning of a simulation, large reservoirs are initialized at 80 %
of their full capacity, the soil moisture storage pool is initial-
ized at 50 % capacity, and all other stocks begin at 0 % ca-
pacity. We recommend a minimum spin-up time of 10 years
to allow all stocks to reach equilibrium storage, and impor-
tantly for many stocks to accumulate the different tracked
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Figure 2. Schematic representation of the primary source component tracking. All surface water and shallow groundwater are composed of
the four primary sources: rain, snowmelt, glacier runoff, and unsustainable groundwater. When surface water and/or shallow groundwater
is extracted for use, this initiates both a local cycle and a downstream cycle of water use and re-use. In the example shown here, water
is extracted and applied to soils (irrigation). A portion of the extracted water and a portion of the soil water become evapotranspiration
(the consumed portion, shown with hashes). Some of the water applied to soils percolates to the shallow groundwater pool. Water from the
shallow groundwater pool can be extracted again, continuing the local water re-use cycle. Water extracted for use, and water from the shallow
groundwater pool, generate runoff that moves downstream. This initiates a downstream cycle in which this water can be re-extracted for use
from the surface water system. Downstream cycles intersect with local cycles, as water from the four primary sources are input into every
locality. Figure modified from Grogan et al. (2017).

water components. The WBM operates at a daily time step,
and for some stocks (e.g., river discharge) our well-mixed as-
sumption is appropriate; however, other stocks are typically
not well-mixed at the daily time scale; for example, reser-
voirs (Håkanson, 2005) and groundwater (Hrachowitz et al.,
2013) are known to mix at longer time scales. Therefore, we
consider these fluxes with caution at short time scales (days
to years), but find them informative when averaged over long
periods (years to decades).

Return flow tracking has an additional option for resetting
the stock component values after spinup has completed. At
the end of spinup (prior to the simulation period), stocks can
be reset to 100 % relict water. Relict water is defined as any
water stored in simulated water stocks at the end of spinup;
it makes no assumptions about the source, age, or use con-
dition of the water. This option allows the user to interpret
changes to stock components that only occur within the sim-

ulation period, removing assumptions about starting compo-
sitions. New water entering the system during the simulation
period as precipitation or glacier runoff is tagged as “pris-
tine” water. This option is one way to explicitly track the fate
of components that enter the simulation at the onset of the
representative simulation period (Zuidema et al., 2020).

Note that the land surface label tracking can track mul-
tiple land labels at once that can include sets of politi-
cal boundaries, land-cover types, soil types, biogeographic
or climate zones, or other identifiers such as the grid-cell
Strahler stream order or distance of a grid cell from the river
mouth. These land labels can occupy entire grid cells, or be
provided as a set of grid-cell fractional coverage (i.e., a per-
centage of each grid cell is covered by each label type). The
WBM will track each identified land label with a unique nu-
merical ID input via a raster-based mask of unique values.
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3 Model evaluation

River discharge is the observational data against which most
GHMs are validated, in part due to the abundance of high-
quality global river discharge data and in part due to the fact
that river flow is an integrative result of all the land surface
fluxes simulated by GHMs. Here, we first summarize pub-
lished validation of the WBM output in recent relevant pa-
pers (Sect. 3.1). We note where these evaluations make use
of prior code branches (e.g., the C++ version of WBM, or
FrAMES) or are regionally specific. We then present an eval-
uation of global river discharge, simulated by the open source
WBM v.1.0.0 described here (Sect. 3.2). Furthermore, we
evaluate the model’s estimation of water extraction for irriga-
tion against the only global dataset available for this metric.

3.1 Published WBM validation and evaluation

This section reviews the literature of WBM publications that
include validation and/or evaluation of model components
that are included in the WBM open source model. These pa-
pers report a variety of different evaluation metrics, which
we summarize here.

Global river discharge. The Perl/Perl Data Language
(PDL) version of WBM (described here) was most recently
evaluated against global discharge from the Global Runoff
Data Center reference dataset (The Global Runoff Data Cen-
tre, 2015) in Grogan (2016). Grogan (2016) reports that a
linear regression of modeled versus observed average an-
nual river discharge for the years 1980–2009 typically shows
strong agreement (r2 values between 0.74 and 0.87), but that
this agreement varies with the choice of input climate dataset.
In comparing four different climate input datasets, the UDEL
(Willmott and Matsuura, 2001) and NCEP (Saha et al., 2014)
climate inputs were found to provide the best global dis-
charge simulations, with more than 40 % of all GRDC sta-
tions achieving a Nash–Sutcliffe efficiency (NSE; Nash and
Sutcliffe, 1970), a typical hydrologic evaluation metric, of
> 0, meaning that the model predicted observations better
than the mean of historical observations. There is also spa-
tial variation in model performance. As can be seen in Gro-
gan (2016), river discharge from the WBM matches obser-
vations best in temperate and tropical regions, but performs
poorly in arid climates. Spatial variation in validation met-
rics is also in part due to the choice of climate inputs. Over-
all, the WBM simulations from Grogan (2016) are biased
low compared to observations. These results are consistent
with global river discharge evaluation of the WBM’s C++
version (also called WBMplus) in Wisser et al. (2010a), who
report an average model mean bias error (MBE) for runoff
of−1.2 mm per month from 1901–2002. Fekete et al. (2002)
also compared WBM (C/C++ version) global river discharge
to GRDC data, and reports a positive mean bias for runoff
of 7.9 mm yr−1. All three published global river discharge
evaluations show that simulated discharge performs better

in larger catchments than in smaller ones. All three simula-
tions used a 0.5◦ grid-cell resolution; we refer readers to the
publications themselves for descriptions of parameter value
choices, as the level of calibration and the setting of default
parameters varies, depending on the study.

Regional river discharge. The WBM can be used for sub-
continental scale or regional studies. In this case, a finer
spatial resolution must be used, model parameters can be
calibrated to better fit local conditions, and regional river
discharge data are used for evaluation. Grogan (2016) and
Zaveri et al. (2016) evaluated the WBM against river dis-
charge data in India, using discharge and runoff data from
the India Water Resources Information System (India-WRIS)
and FAO AQUASTAT (Frenken, 2012), respectively. They
report that the NSE (Nash and Sutcliffe, 1970) is > 0 for
15 of the 20 India-WRIS sites, and average annual runoff
from the WBM compares well with AQUASTAT reports
for the 8 largest river basins in India. These continental-
scale simulations of India used the same 0.5◦ spatial reso-
lution as the global simulations, along with a regional cli-
mate driver (APHRODITE; Yatagai et al., 2012). A finer, ∼
100 km2 (6 arcmin) grid-cell resolution simulation of north-
eastern North America had NSE values > 0 at 82 % of the
791 USGS gage stations used for comparison in Grogan et
al. (2020). A very fine resolution, 1 km grid- cell scale simu-
lation of the Trishuli Basin in Nepal, is evaluated in Mishra
et al. (2020), where overall agreement with reported monthly
mean river discharge is shown (NSE> 0.7), though seasonal
variation indicates that the WBM underestimates summer
high flows in some years, and in other years it overestimates
high flows over a period of 11 years. A similar fine-resolution
simulation (∼ 1 km) of the Upper Snake River basin in Idaho,
United States, is evaluated in Zuidema et al. (2020); sea-
sonal discharge in headwaters compares well (NSE= 0.9)
with USGS gage data, though the WBM demonstrates a pos-
itive bias (discharge values are too high) and large variation
in seasonal discharge in the basin’s small tributaries. All fine-
resolution simulations of the WBM described here used non-
default parameter sets that were calibrated to regional data,
unlike the global runs described above. Even with regional
calibrations, the simulations result in outcomes similar to
that of the global analyses: WBM river discharge typically
compares well to observations, though better in larger than
smaller river basins, and better when aggregated to a monthly
time step rather than a daily one. Default parameters provide
good performance at large (continental to global) scales, but
calibration is required for local to regional studies to account
for local deviations of parameters from the global means. Ad-
ditionally, simulated river discharge disagrees with observa-
tions immediately downstream of dams that either are not
represented in the input dam database, or are operated with
decision rules not captured by WBM’s reservoir operation
algorithms, as described in Rougé et al. (2021).

Irrigation water extractions. The WBM is often used for
agricultural applications. It has therefore been well validated
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Figure 3. Annual irrigation water withdrawals from WBM compare well to FAO AQUASTAT (FAO, 2016) country-level reported (a) total
irrigation, (b) surface water use, and (c) groundwater use. Note that both the x and y axes are on a log scale. Total values from updated
simulations (WBM v.1.0.0) are reported in Table 6. Figure modified from Grogan et al. (2017).

against FAO country-level reported irrigation water extrac-
tion data, globally in Grogan (2016), Grogan et al. (2017),
Wisser et al. (2008), Wisser et al. (2010a) (Fig. 3), and re-
gionally in Zaveri et al. (2016) and Zuidema et al. (2020).
Notably, Wisser et al. (2008) quantifies the high uncertainty
in irrigation water withdrawals as a function of input climate
and crop-map data. Globally, WBM-simulated average to-
tal irrigation water extraction for the years 1963–2002 varies
from 2200 to 3800 km3 yr−1 in Wisser et al. (2008), with the
large difference in values entirely due to the choice of climate
input and crop map. While the evaluation data used in all
the WBM publications are fully independent of model input
data, it should be noted that most irrigation water extraction
data are reported statistics, not direct observations.

Additional validation and evaluation metrics. In addition
to river discharge and irrigation water extractions, regional
studies were evaluated against metrics that are relevant to
their application. For example, Zaveri et al. (2016) qualita-
tively evaluated the WBM’s change in groundwater levels in
the Indian state of Punjab using data on well levels; Gro-
gan et al. (2020) evaluated simulated SWE across northeast-
ern North America, and Zuidema et al. (2020) evaluated on-
set timing of the WBM’s snowmelt. The evaluation of SWE
found that, for most study sites in the northeastern United
States, goodness-of-fit (r2) values were> 0.5, but model per-
formance was poor where winter precipitation is dominated
by lake-effect snow and where climate is moderated by the
coastal warming effect (Grogan et al., 2020). Zuidema et
al. (2020) found that the timing of peak runoff generation
due to snowmelt was well-captured by WBM, but the onset
of snowmelt had an early bias in most years.

Validation of FrAMES. The functions of the FrAMES
model (Wollheim et al., 2008a, b; Stewart et al., 2013) for
river temperature and in-stream nitrogen concentrations have
been incorporated into the open source version of the WBM
described here. Despite having a different name, FrAMES
is part of the WBM family because it added modules for
in-stream processes to the WBMplus model code base (see

Sect. 5 below). While there is yet to be a published evaluation
of the open source WBM implementation of these functions,
the nitrogen functionality of the FrAMES model is evaluated
globally in Wollheim et al. (2008a) and regionally in Samal
et al. (2017) and Stewart et al. (2011). River temperature sim-
ulations are evaluated across northeastern North America in
Stewart et al. (2013). FrAMES also has an in-stream chloride
module; while the WBM does not have this module imple-
mented yet, chloride is an informative metric for evaluating
river discharge as this solute is a conservative tracer. We re-
port chloride validation findings of FrAMES here to show
how well discharge matches observations since the river dis-
charge functions in WBM and FrAMES are the same. In
Zuidema et al. (2018), simulations of river discharge, tem-
perature, and chloride in the Merrimack and Piscataqua River
watersheds of New England, United States, were assessed us-
ing approximate Bayesian computation (Sadegh and Vrugt,
2013), which provides information on the best regional pa-
rameterization for the model. The best parameter estimates
resulted in simulated flow-duration curves with an NSE value
of 0.93 compared to USGS gage data. Further, Zuidema et
al. (2018) found that default WBM parameters for the hy-
drodynamic groundwater constant and CSRP, while slightly
different from the best-performing parameters, still resulted
in good agreement with observations.

3.2 Open source WBM model evaluation

We reviewed previously published WBM validations above.
As none of the prior versions of the WBM code have been
released under an open-source software license, it is impor-
tant to validate the exact model structure in this first open
source release. Previous versions of the WBM and related
model code (Table 7) all used the same underlying struc-
ture as WBM v.1.0.0 with regards to all the basic terrestrial
water balance variables: ET, soil moisture balance, surface
runoff generation, subsurface runoff (aka baseflow), shallow
groundwater recharge, and river routing. The most recent
WBM publications (since 2016) have included the same agri-
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cultural water use module as WBM v.1.0.0; tracking as de-
scribed here, was first implemented in Grogan et al. (2017).
Differences between prior publications and WBM v.1.0.0 as
described here are mainly in parameter values (here we use
all default values for a general model demonstration), and in
some cases, recent publications have implemented additional
region-specific modules not included in WBM v.1.0.0 (e.g.,
Zuidema et al., 2020).

In this section, we evaluate results from a global open
source WBM simulation that uses publicly available data in-
puts, and provides a comprehensive selection of tracking out-
puts. The simulation ran for 270 h on a Dell PowerEdge R510
with Intel Xeon processors (2.93 Gbps) and simulated 2.3 M
grid cells for 10 years following 10 years of spinup.

3.2.1 Model setup

Here, we use a global spatial resolution WBM simulation of
5 min for evaluation. The WBM is first initiated with a 10-
year spinup to bring stocks to an equilibrium state. Results
shown below are from simulated the years 2000–2009. All
model input datasets are listed in Table 4. All parameters are
set to default values. The model initialization file used for
this simulation is available from Grogan et al. (2022).

3.2.2 Evaluation data and methods

River discharge. We evaluate the WBM using default pa-
rameter values (Table 1) against daily and monthly river dis-
charge records from The Global Runoff Data Centre (2020)
which we downloaded in February of 2020. The GRDC’s
terms of agreement for users prohibit sharing of these data,
but the same data can be requested directly from the GRDC.
We also compare WBM global annual river discharge results
to other published global estimates (Table 5).

The GRDC stations were filtered based on three criteria:
(1) the station must have data within the simulation time
frame of years 2000–2009; (2) within the time frame, the
station must have at least 12 total observations for monthly
evaluation, or at least 365 total observations for daily eval-
uation; and (3) the GRDC-reported catchment area of a sta-
tion is compared to the catchment area of the best-matching
MERIT river network grid cell within a 3× 3 grid centered
on the latitude/longitude point defined by the GRDC station.
Only GRDC stations with catchment area differences of less
than 10 %, once the best area match within the 3× 3 grid is
identified, are included. Applying these criteria leaves 322
stations for daily and 344 stations for monthly evaluation.

We evaluate simulated daily and monthly average dis-
charge with the index of agreement, d , (Willmott, 1981):

d = 1−

n∑
i=1
(Oi −Pi)

2

n∑
i=1
(
∣∣Pi −O∣∣+ ∣∣Oi − O∣∣)2 , (35)

where Pi are predicted (i.e., simulated) discharge values, Oi
are observed discharge values, and n is the number of obser-
vations. The value of d can range from 0 for a model that is
not a better predictor than the mean observed value, to 1.0
for a perfect match of predictions to observations.

In order to measure systemic bias, we also calculate the
mean bias error (MBE):

MBE=
1
n

n∑
i=1

Pi −Oi . (36)

We additionally calculate the NSE (Nash and Sutcliffe, 1970)
and Kling–Gupta efficiency (KGE; Gupta et al., 2009) met-
rics, which are both classic skill scores that indicate whether
model skill is better than predicting the mean of the observa-
tions (value > 0 indicates better skill).

Irrigation water withdrawals. We compare WBM-
simulated irrigation water withdrawals by source to reported
country-level water withdrawal statistics from AQUASTAT
(FAO, 2016), as well as other model-based estimates of with-
drawal in the literature.

3.2.3 Results

Daily river discharge. Overall, global daily average dis-
charge is simulated with moderate agreement to observa-
tions; the average index of agreement over all stations is
0.56, and the average MBE is −0.07 mm d−1 (Fig. 4a and
e). We find that 43 % and 54 % of basins have values greater
than 0 for the NSE (Fig. 4c) and KGE (Fig. 4d) metrics, re-
spectively. However, there is substantial spatial variation in
these metrics, with the mean highly influenced by the rela-
tively large number of GRDC stations in the Americas com-
pared to other continents. The lowest single river discharge
MBE value is −5.5 mm d−1, which occurs in Southeast Asia
(Fig. 4b).

Monthly river discharge. Overall, global monthly average
discharge is simulated with good agreement to observations;
the average index of agreement over all stations is 0.69, and
the average MBE is −0.14 mm per month (Fig. 5a). We find
that 48 % and 58 % of basins have values greater than 0 for
the NSE (Fig. 5c) and KGE (Fig. 5d) metrics, respectively.
These results are consistent with Wisser et al. (2010a), even
though different climate inputs and simulation time series
were used.

Despite the global average good agreement, there is signif-
icant spatial variability, with lower MBE values across much
of South America and East Asia (Figs. 4e and 5e). There
are also notably large regions without any evaluation data
that meet the criteria for inclusion in this analysis, including
South Asia, northern Africa, and the Middle East. Further,
MBE values in arid regions will always appear small due to
the very low values in river discharge; relative bias metrics
are better evaluation tools for these regions.

Annual discharge comparison. Many prior studies have es-
timated global river discharge (Table 5), providing a range of
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Table 4. Model input datasets for WBM simulations presented here.

Input data type Input data Download link or website Citation

River network MERIT 5-min river net-
work

http://hydro.iis.u-tokyo.ac.jp/~yamadai/
MERIT_Hydro/ (last access: 14 February
2021)

Yamazaki et al. (2019)

Precipitation (daily) MERRA 2 (prectotcorr
variable)

https://gmao.gsfc.nasa.gov/reanalysis/
MERRA-2/ (last access: 15 April 2021)

Gelaro et al. (2017)

Temperature (daily average) MERRA 2 https://gmao.gsfc.nasa.gov/reanalysis/
MERRA-2/ (last access: 14 April 2021)

Gelaro et al. (2017)

Dams and reservoirs HydroConDams v2.0
for the continental US,
and GrAND v1.3 for
outside the continental
US.

https://doi.org/10.7910/DVN/5YBWWI and
https://globaldamwatch.org/grand/ (last access:
10 January 2022)

Lehner et al. (2011),
Zuidema and Morrison
(2020)

Soil available water capacity Harmonized world soil
database v1.2

https://www.fao.org/soils-portal/
data-hub/soil-maps-and-databases/
harmonized-world-soil-database-v12/en/
(last access: 10 October 2014)

Fischer et al. (2008)

Root depth* Effective rooting
depth from Yang et al.
(2016), gap-filled with
the FAO/UNESCO
digital soil map of the
world v3.6

https://doi.org/10.4225/08/5837b3aa9cb90
and https://www.worldcat.org/title/digital-
soil-map-of-the-world-and-derived-soil-
properties/oclc/52200846 (last access: 14
December 2021)

FAO/UNESCO (2003);
Yang et al. (2016)

Glacier runoff, volume and area* GloGEM glacier model Huss and Hock (2015)

Crop maps and calendars* MIRCA2000 v1.1 https://www.uni-frankfurt.de/45218023/
MIRCA (last access: 13 January 2015)

Portmann et al. (2010)

SW :GW ratio* FAO AQUASTAT https://www.fao.org/aquastat/
statistics/query/index.html;jsessionid=
71F6F6340C470CFBE92D71489546AA39
(last access: 16 July 2015)

FAO (2015)

Irrigation Efficiency Rasterized data from
Table 1 of Döll and
Siebert (2002)

https://doi.org/10.1029/2001WR000355 Döll and Siebert (2002)

Rice paddy percolation rate* Derived from the
FAO/UNESCO soil
map of the world

https://www.fao.org/soils-portal/
soil-survey/soil-maps-and-databases/
faounesco-soil-map-of-the-world/en/ (last
access: 15 July 2015)

FAO/UNESCO (2003),
with derived data de-
scribed by Wisser et al.
(2008)

* Primary data were processed for formatting, gap-filling, or to generate a calculated product; the resulting formatted files are provided for download at https://wbm.unh.edu/ (last
access: 4 March 2022; Grogan et al., 2022) for simulation reproducibility.

values from as low as 29 485 km3 yr−1 (Oki et al., 2001) to
as high as 47 884 km3 yr−1 (Liang and Greene, 2020). Varia-
tion between estimates is caused by several factors, including
but not limited to model structure, model calibration, input
data, years simulated, simulation domain (e.g., some studies
exclude Greenland and/or Antarctica), and inclusion of an-
thropogenic impacts. See Müller Schmied et al. (2014) for a
review and analysis of GHM global discharge sensitivity and
calibration. Global annual river discharge as simulated by

WBM v.1.0.0 for the years 2000–2009 is 42 957 km3 yr−1,
which is within the range of prior studies (Table 5). Fewer
studies report the contribution of exorheic (basins that dis-
charge to the ocean) and endorheic (basins that discharge to
internal seas) discharge. The WBM v.1.0.0 estimates that ex-
orheic discharge is 40 248 km3 yr−1, and endorheic discharge
is 2709 km3 yr−1. The exorheic estimate falls within pub-
lished values, which range from 38 314–46 221 km3 yr−1.
The WBM v.1.0.0 estimates higher endorheic basin river dis-
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Table 5. Model estimates of global river discharge, ordered from lowest (based on the low end of a range, for models that report ranges) to
highest. Parentheses show the exorheic + endorheic discharge for studies that provide a separation of external and internal basin discharge.

Source Model name Year Value (km3 yr−1)

Oki et al. (2001) 11 LSMs + TRIP 1987–1988 29 485
Rost et al. (2008) LPJmL 1971–2000 35 355–37 119
Van Beek et al. (2011) PCR-GLOBWB 1958–2001 35 387–36 812
Nijssen et al. (2001) VIC 1980–1993 36 006
Döll et al. (2003) WaterGAP 2 1961–1990 36 687
Wisser et al. (2008) WBMplus 1901–2002 37 401
Dai and Trenberth (2002) WBM + RTM Mean from gauge record 37 288
Döll et al. (2009) WaterGAP 1961–1990 38 164–39 564
Widén-Nilsson (2007) WASMOD-M 1961–1990 38 605
Vörösmarty et al. (2000b) WBM 1961–1990 39 294
Fekete et al. (2002) WBM 1970–1980 39 307 (38314+ 993)
Fekete et al. (2000) WBM – 39 476 (38401+ 1075)
Müller Schmied et al. (2014) WaterGAP 1971–2000 40 002–46 822
Gerten et al. (2004) LPJ 1961–1990 40 143
Sutanudjaja et al. (2018) 2000–2015 42 393–43 978
This study WBM v.1.0.0 2000–2009 42 957 (40248+ 2709)
Liang and Green (2020) Empirical 1905–2016 47 884 (46221+ 1663)

charge than previous studies which report estimates of 993–
1603 km3 yr−1. It is possible that this higher estimate reflects
WBM v.1.0.0’s inclusion of Greenland, along with inclusion
of runoff from glaciers, which is not present in most previous
studies.

Irrigation water withdrawals. Simulated irrigation wa-
ter withdrawals fall on the high end of previously reported
GHM-simulated global irrigation water use (Table 6). Note
that Wisser et al. (2008) demonstrated a large uncertainty
in GHM-simulated global irrigation water withdrawals as a
function of input climate and crop-map data. The WBM sim-
ulations match well to AQUASTAT (FAO, 2016) country-
level statistics on agricultural water use (Fig. 6) for most
countries, with an R2 value of 0.84 on a linear regression
of country–year combinations included in both the AQUA-
STAT database and WBM simulations. However, the WBM
simulates 2 to 3 times higher irrigation water use in China
and Pakistan than reported by AQUASTAT, accounting for
most (up to 90 %) of the difference between the WBM and
the mean of other GHM-simulated global agricultural wa-
ter withdrawals (Table 6). As can be seen in Figs. 4 and 5,
river discharge across much of Asia is underestimated by this
WBM simulation, which may reflect a low bias in precipita-
tion inputs thereby contributing to the overestimation of irri-
gation water withdrawals in China and across much of Asia
(Fig. 6). Data from Grogan (2016) show that irrigation wa-
ter requirements can be highly sensitive to climate inputs,
especially in Asia; comparing six different climate inputs to
WBM, results for irrigation water requirements in China vary
from 615 km3 yr−1 (driven by the NCEP (Saha et al., 2014)
climate data) to 1276 km3 yr−1 (driven by the UDEL (Will-
mott and Matsuura, 2001) climate data).

4 Water source tracking module demonstration

The WBM’s unique water source tracking functions distin-
guish it from other GHMs. Here, we demonstrate the suite
of tracking options available to model users: primary source
tracking (Sect. 4.1), return flow tracking (Sect. 4.2), and land
surface label tracking (Sect. 4.3). Tracking output explains
how the model arrives at simulated water stocks and flows.
For example, river discharge is a collection of water flow-
ing from different sources. These tracking functions make
explicit what the sources are within the model that form
the simulated discharge. We caution that any model can ar-
rive at a well-validated result through erroneous assumptions
and aggregate errors. We find that the component tracking
increases the transparency of model assumptions; however,
evaluation data for these tracking functions are not avail-
able at this time, and we rely on evaluation of the stocks
and fluxes themselves (not the component composition) for
model evaluation. Future regional scale work could make use
of emerging datasets on DNA or geochemistry such as chlo-
ride (Zuidema et al., 2018) to evaluate return flows from hu-
man and agricultural uses (Plummer et al., 2000), and sta-
ble water isotopic methods may be able to distinguish rain,
snowmelt, and glacier water sources (Fekete et al., 2006; Fan
et al., 2016; St Amour et al., 2005).

Here, we use the same global, 5-min spatial resolution
WBM simulation as used for model evaluation to demon-
strate the first two tracking examples: primary source track-
ing and the return flow tracking, as multiple tracking func-
tions can be implemented within a single model run.

https://doi.org/10.5194/gmd-15-7287-2022 Geosci. Model Dev., 15, 7287–7323, 2022
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Figure 4. Frequency distribution of the index of Agreement (a), the mean bias error (b), the Nash–Sutcliffe efficiency (c), and the Kling–
Gupta efficiency (d) for daily average discharge. Panel (e) shows a map of mean bias error in daily discharge [mm d−1], illustrating the
spatial variation in bias. The average index of agreement is 0.56, and average mean bias error is −0.07 mm d−1.

4.1 Primary source tracking

The primary source tracking function identifies all water en-
tering the model system as originating from one of four cat-
egories: rain, snow, glacier runoff, or unsustainable ground-
water. Note that the shallow groundwater pool is filled with
water from one of these categories, hence shallow groundwa-

ter and baseflow are not primary source categories. Glacier
runoff, as taken from a glacier melt model such as GloGEM
(Huss and Hock, 2015) or the more recent PyGEM (Rounce
et al., 2020a), includes all the water fluxes that occur on the
glaciated area. This means that glacier runoff includes the
rain, snowmelt, and glacier ice melt from the glacier area.
Figures 8 and 9 show the fraction of average annual discharge

Geosci. Model Dev., 15, 7287–7323, 2022 https://doi.org/10.5194/gmd-15-7287-2022
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Figure 5. Frequency distribution of the index of agreement (a) the mean bias error (b), the Nash–Sutcliffe efficiency (c), and the Kling–Gupta
efficiency (d) for monthly average discharge. Panel (e) shows a map of mean bias error in monthly discharge [mm per month], illustrating
the spatial variation in bias. The average index of agreement is 0.69, and average mean bias error is −0.14 mm per month.

(Fig. 7) and shallow groundwater (Fig. 8), composed of each
of the primary sources, for each grid cell. Global discharge
is dominated by rain over most of the globe, with snowmelt
being an important contributor at high latitudes and high alti-
tudes, and both glacier runoff and unsustainable groundwater
important regionally. The composition of shallow groundwa-

ter mirrors that of discharge. Due to human redistribution,
water inputs into the land surface can support streamflow
and agriculture far from where they occurred, as can be seen
in Fig. 9, which shows the source, distribution, and use of
glacier runoff. As can be seen in Fig. 10, water sources like
glacier runoff and unsustainable groundwater contribute to

https://doi.org/10.5194/gmd-15-7287-2022 Geosci. Model Dev., 15, 7287–7323, 2022
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Table 6. Global estimates of total irrigation water withdrawal, including this study’s simulation.

Source Model Year Value (km3 yr−1)

Total global irrigation water withdrawal Döll and Siebert (2002) WaterGAP 1961–1990 2452
Wisser et al. (2008) WBMplus 2000 2000–4100
Rost et al. (2008) LPJmL 1971–2000 2555
Sulser et al. (2010) IMPACT 2000 3128
Wada et al. (2011) PCR-GLOBWB 1958–2001 2057
Pokhrel et al. (2012) MATSIRO 2000 2462 (±130)
Döll et al. (2014) WaterGAP 2003–2009 2400
Wada et al. (2014) PCR-GLOBWB 1979–2010 2217–2885
Hanasaki et al. (2018) H08 2000 2544 (±75)
Grogan et al. (2017) WBM 2000 3244 (±240)
Sutanudjaja et al. (2018) PCR-GLOBWB 2000–2015 2309–2735
AQUASTAT (FAO, 2016) Reported statistics 2000 2434
This study* WBM v.1.0.0 2000–2009 3889 (±126)

* Uncertainty estimate is the standard deviation of annual values from 2000–2009.

Figure 6. WBM-simulated irrigation water withdrawals compared
to FAO AQUASTAT-reported values, by country. The 1 : 1 line
is shown in gray. Countries with FAO-reported agricultural water
withdrawals< 100 km3 yr−1 are shown in the inset. Countries with
FAO-reported agricultural water withdrawals> 50 km3 yr−1 are la-
beled.

river flows, and therefore water resources, far downstream
from where glacier runoff or pumped unsustainable ground-
water is input into the river network. Figure 10 also shows
how tracking can identify different contributions of source
water to river flows through the year, as well as how glacier
runoff is an important component of water supply far down-
stream in the basin late in the year.

4.2 Return flow tracking

The return flow tracking function labels water that flows back
to the system after being extracted for irrigation, livestock
watering, domestic, or industrial use. Irrigation return flows
are identified separately from water returned by other human
uses; however, returns from domestic, industrial, and live-
stock uses are not tracked individually (but rather lumped
into one return category) for parsimony. These return flows
have water quality implications, and through this tracking
function, the WBM can identify when a body of water is in-
creasingly composed of water returned from anthropogenic
activities. At the beginning of a simulation, all water is con-
sidered relict, which assumes no knowledge of the source of
the water. New water entering the system during the simula-
tion period as precipitation or glacier runoff is tagged as pris-
tine water. This functionality was first published in Zuidema
et al. (2020).

Figure 11 shows the fraction of average annual discharge
composed of irrigation return flows, and Fig. 12 shows the
fraction of irrigation water withdrawals composed of irriga-
tion return flows (water re-use). These fractional values can-
not exceed 1, even as return flows are re-used multiple times;
when return flow water is extracted again for re-use, it sim-
ply retains its identity as return flow, and does not contain
any new information about the number of times it has been
extracted. Return flows from all human water uses contribute
to water quality issues, including excess nutrients from ir-
rigation returns and pathogens from domestic and livestock
returns, some proportion of which may be attenuated by the
river network depending on flow conditions (Huang et al.,
2022) before being used again. Further, re-use of return water
is an important consideration in studies evaluating the “effi-
ciency” of irrigation or other abstractions. Management ac-
tions that decrease returns in one region may reduce water
availability downstream, which may promote extraction of
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Figure 7. The fraction of average annual discharge composed of the four different primary source water components used in the primary
source tracking method.

Figure 8. The fraction of average annual shallow groundwater storage composed of the four different primary source water components used
in the primary source tracking method.

alternative and potentially less sustainable sources of water
(Grafton et al., 2018; Grogan et al., 2017).

4.3 Land surface attribute tracking

4.3.1 Model setup

Here, we use the same set of model inputs and parameters
as the global 5-min spatial resolution WBM simulation de-

scribed above, but reduce the spatial domain to only simulate
grid cells downstream of headwaters in the state of Wyoming,
United States. One additional model input is required for the
land surface attribute tracking: identification of which grid
cells are within each of the US states that intersect the spatial
domain. This input (which includes a gridded file and an ac-
companying attribute text file) allows the WBM to track wa-
ter that originates as runoff within each US state as it travels

https://doi.org/10.5194/gmd-15-7287-2022 Geosci. Model Dev., 15, 7287–7323, 2022
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Figure 9. Tracking glacier runoff (a) downstream through rivers (b) and irrigation water use (c) in High Mountain Asia, a region where
glacier meltwater is an important resource. While glacier water originates in the mountains, its use in agriculture is extensive due to re-use
through the river network and shallow groundwater stores, and retention in and distribution from large reservoirs. The boundary of all High
Mountain Asia basins with glaciers at their headwaters is shown in gray. Panel (a) also shows the Indus River basin boundaries for reference
to compare with Fig. 10.

downstream through four major river basins (the Mississippi,
Columbia, Colorado, and the Great Basin) which span both
sides of the continental divide. Applications of this technique
would be useful for research involving transboundary condi-
tions in river basins or using land-cover masks to understand
urban/rural or forest/non-forest effects in regional hydrology.

4.3.2 Results

Tracking runoff generated by different US states demon-
strates how the land surface attribute tracking can be used
to identify contributions of water from any user-identified
spatial attributes. The basins simulated here all contain cities
and both extensive and intensive irrigated areas; the land sur-
face attribute tracking maintains the US state identification
of all surface and shallow groundwater withdrawals and re-
turn flows as water travels through the system from headwa-
ters to river outlets. Figure 13a illustrates how this tracking is
useful for identifying multiple land attribute contributors to
river discharge at a point. Figure 13b demonstrates the spatial
distribution of water from one land attribute through many
downstream systems. Particularly in Fig. 13b, we can see
how human extractions of water – which can occur across
grid cells – spreads the tracked land attribute’s contributed
water across the landscape.

5 Model code

Brief history of model code development. The WBM was
originally written in FORTRAN, and first published in
Vörösmarty et al. (1989). The first publication described the
WBM as a continental-scale model of water balance and flu-
vial transport, and presented an application to South Amer-
ica. The first global applications were published in Vörös-

marty et al. (1998, 2000a). Throughout its 30+ year history
of development, the WBM has been re-written in several pro-
gramming languages, and branches have been developed for
specific applications (Table 7). Table 7 describes each branch
of the WBM, with its abbreviation (e.g., WBM vs. PWBM),
the application for which the branch was developed, and key
publications. Many of the branches are still in use by a variety
of research groups, including researchers at the University of
New Hampshire (WBM v.1.0.0), City College of New York
(WBM), University of Alabama (WBMsed), and University
of Massachusetts (PWBM).

WBM Open Source code. The WBM version described
here is written in Perl/PDL. The coding language was
changed from C++ to Perl/PDL by the University of New
Hampshire research group in 2010 to make use of the fol-
lowing PDL functionality that was unique to that language at
the time:

1. efficient parallel processing of matrix operations on
large spatial matrices allowing increased computational
performance similar to C or Fortran through the use of
binary PDL operators/functions and multithreading;

2. adding pre-compiled custom functions written in inline
C (PDL PP modules); and

3. fully integrating the river transport module with the
land surface component of the WBM to simulate the
full downstream effects of water withdrawals from the
rivers. Prior versions of the WBM resolved the time
component prior to the spatial component of the model;
this prevented implementation of water extractions and
inter-basin transfers.

The open source Perl/PDL version of the WBM described
here includes all the functionality of the original FORTRAN

Geosci. Model Dev., 15, 7287–7323, 2022 https://doi.org/10.5194/gmd-15-7287-2022
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Table 7. Major WBM code branches, along with their history of new functionality and whether the code branch is still in use.

Model full name Abbreviation Language New functions Key publications In use

Water balance model WBM FORTRAN Original: continental-
to-global scale water
balance

D’Almeida et al. (2006);
Vörösmarty et al. (1989)

No

Water balance model WBM C/C++ Original: continental-
to-global scale water
balance

Fekete et al. (2002);
Vörösmarty et al. (1998, 2000b,
2005, 2010)

Yes

Pan-Arctic water bal-
ance model

P/WBM and PWBM FORTRAN Added permafrost
functions for pan-
Arctic applications

Rawlins et al. (2003, 2005,
2006a, b, 2021), Rawlins
(2021)

Yes

Framework for aquatic
modeling of the Earth
system

FrAMES C++ Constituent fluxes into
river systems, account-
ing for transport and
fate of nitrogen, chlo-
ride, and E. coli
water temperature

Miara et al. (2017);
Miara and Vörösmarty (2013);
Mineau et al. (2015);
Samal et al. (2017);
Stewart et al. (2011, 2013);
Wollheim et al. (2008a, b,
2015);
Zuidema et al. (2018)
Huang et al. (2022)

Yes

Water balance model
plus

WBMplus C++ Irrigated agriculture
and reservoirs

Wisser et al. (2008, 2010a, b) No

WBM sediment WBMsed C++ Sediment transport Cohen et al. (2013, 2014);
Dunn et al. (2019)

Yes

Water balance model WBM Perl/PDL Added rainfed agricul-
ture, other land-cover
types, inter-basin trans-
fers, domestic and live-
stock water demand,
tracking;
includes FrAMES
functionality, and water
temperature

Grogan (2016);
Grogan et al. (2015, 2017,
2020);
Haqiqi et al. (2021)
Liu et al. (2017);
Mishra et al. (2020);
Webster et al. (2022)
Zaveri et al. (2016);
Zuidema et al. (2020)
Grogan et al. (2022)

Yes

Water balance model
v.1.0.0*

WBM v.1.0.0 Perl/PDL Code released open
source

This publication Yes

* This version of WBM is the open source model described in this paper.

WBM model, the WBMplus model, and some aspects of the
FrAMES model. All model branches run on Linux operat-
ing systems. The open source WBM code described here
is composed of three main files: (1) wbm.pl, which is the
main model script; (2) WBM.pm, a module providing WBM-
specific functionality; and (3) RIMS.pm, a module providing
geospatial and temporal transformation utilities. The entire
modeling framework is dependent on other software: Perl,
PDL, GDAL, ogr, and NetCDF. The model input data repos-
itory (https://wbm.unh.edu/, last access: 4 March 2022, Gro-
gan et al., 2022) also includes a singularity container which
has pre-installed the required operating system and software

dependencies for ease of model use by the research commu-
nity.

The WBM can run high-density grids in a simulation do-
main up to about 3 million active grid cells on an average
rack system server and utilize CPU parallelization (multi-
threading) for a performance boost. Smaller spatial domains
can be run on a personal desktop or laptop computer.

Code implementation. WBM is rasterized and generally
used with uniformly spaced gridded data (typically in geo-
graphic coordinates, but accepting any GDAL-readable for-
mat), keeping values of grid-cell area in memory for flux
calculations. The model is modular, with many options to
turn irrigation and other human water extractions on or off.

https://doi.org/10.5194/gmd-15-7287-2022 Geosci. Model Dev., 15, 7287–7323, 2022
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Figure 10. Monthly discharge by primary source component at two
points (A shown in panel a, B shown in panel b) along the Indus
River (basin shown in inset). Point A is in the headwaters, with sub-
stantial contributions from snowmelt and glacier runoff. Point B is
the river mouth. The mouth of the Indus River runs dry in this simu-
lation due to both the seasonality of precipitation in the monsoonal
region, and the large amounts of water extracted from the river for
use. This use and re-use of water can be seen in the distribution of
primary water sources remaining at the mouth of the river, which
include unsustainable groundwater (purple) that was pumped from
upstream sources, as well as snowmelt (blue) and glacier runoff
(red), both of which are generated far upstream of the river mouth.

Options are controlled by the user through a selection of di-
rect inputs, on/off flags, and output variables requested of the
model. Stocks and fluxes including irrigation demand, ET,
and runoff generation are calculated in the first portion of the
time-step loop utilizing vectorized and efficient array utili-
ties of PDL. Water entering stream reaches throughout the
network is then submitted to a routing function that traverses
a directed, noncyclical graph of all grid cells that ensures an
upstream-to-downstream calculation order, written in an in-
line, pre-compiled format to maximize computational effi-
ciency. In a number of areas, the model makes use of split-
operator solutions to facilitate both tracking functionality and
the complex interactions between human water withdrawals
and natural systems. This simple method allows the WBM to
recalculate water stocks and fluxes after water extraction oc-
curs and again after return flows, such that the final stock and
flux values at the end of a time step are modified from the first

instance of calculation at the beginning of the time step. As
noted by others, leveraging of split-operator solutions for hy-
drologic models provides a tradeoff between efficiency and
accuracy in numerical solutions, which is warranted in some
cases (Clark et al., 2015).

How to use WBM. The WBM workflow involves 5 basic
steps:

1. Prepare input data, metadata, and parameter files;

2. Write a model setup file with the extension “*.init”;

3. Test setup file by running the WBM with flags “-test”,
“-noRun”, and “-err”;

4. Execute the model code (wbm.pl);

5. Perform post-processing, if needed, with automatically
generated utilities for temporal aggregation of select or
all output variables.

A detailed instruction manual is included in the model’s
Github repository, along with Perl utilities commonly used
in Steps 1 and 5.

In Step 1, the model user must collect all input data re-
quired for the given model simulation. Each spatial dataset
and database must be described in a metadata file with the
extension “.init”. All data and model input “.init” files are
simple text files with formatting that conforms to a Perl hash.
Input file unit conversions (e.g., converting temperature data
from ◦C to ◦F) do not need to be performed prior to running
the WBM. Instead, the user can define a conversion slope
and intercept for linear transformations within the metadata
“.init” files, and the WBM will automatically calculate the
new units through the RIMS.pm module.

In Step 2, the model user writes a model setup file with the
extension “.init” that lists all model inputs as well as other
key parameters such as the start year, end year, list of output
variables to save, and output directory location. This setup
file points directly to the input data “.init” metadata files, and
includes options to directly define parameter values and set
binary on/off flags for particular modules. Most important is
the identification of the digital river network. The input river
network file determines the model simulation grid spatial res-
olution, spatial extent, projection, and defines non-land grid
cells (which are set to a no-data value). Other input datasets
will automatically be clipped (extent reduced) and re-gridded
(either through resampling or aggregation) to match the ex-
tent and grid-cell resolution of the input river network file.
This means that the model user does not need to do these
spatial transformations prior to starting the model.

In Step 3, the user tests the model setup and produces
an optional input data pre-processing script. Test mode and
“noRun” mode call the input data reading functions from
RIMS.pm and set up the model run’s output directory. This
step is used to identify any errors in the model setup; these
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Figure 11. Fraction of average annual discharge composed of irrigation return flow water, simulated by the return flow tracking function.
The large fraction of irrigation return flows in northern India and Pakistan results from this region being one of the most intensively irri-
gated regions in the world, combined with very low (∼ 30 %) classical irrigation efficiency (Zaveri et al., 2016; Grogan et al., 2017). This
combination means that large volumes of water are extracted for irrigation, and nearly two-thirds of that water returns to the system.

Figure 12. Fraction of average annual irrigation withdrawals composed of prior irrigation returns simulated by the return flow tracking
function.

are commonly issues such as incorrect file paths, syntax er-
rors in the “.init” files, or formatting errors in the raw data
files. Executing wbm.pl in test and noRun mode also auto-
matically generates a custom build_spool.pl script (written
to the model run’s output directory) that can optionally be
executed prior to Step 4 to pre-process all input data files

that require requisite spatial clipping, re-gridding, or unit
conversions. If build_spool.pl is executed, the results of in-
put data pre-processing are saved as binary files that are
read directly by the WBM; these files can also optionally
be saved as netCDF files for ease of analysis, so the user
can evaluate the results of the processing step. If the cus-
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Figure 13. Demonstration of the WBM’s land surface attribute tracking function. (a) Discharge at the mouth of the Colorado River basin
(basin mouth point shown in panel (b). Colors show contribution of water from seven different US states, accounting for the movement,
storage, and cycles of extraction occurring across the basin’s many upstream water uses. (b) Fraction of Wyoming (WY) waters in river
discharge on 1 July 2009. Basins in the study domain are outlined in black; gray regions are not simulated; the state of WY is outlined in
light gray. The state of WY appears dark in (b) because nearly all river discharge within the state of WY is > 80 % WY-origin water. Where
rivers enter WY, such as the North Platte River, the color lightens as a larger portion of non-WY water enters the state boundaries; as more
WY-sourced water is added to those rivers, the color becomes progressively darker.

tom build_spool.pl script is not executed prior to starting the
model in Step 4, pre-processing will automatically be exe-
cuted in the model’s run time. Note that this automatic option
only produces binary files and does not output any netCDF
files. The build_spool.pl utility can leverage multiple CPUs
to efficiently build binary input files; the automatic option
processes all binary files in a single process with a steep re-
duction in model simulation time.

In Step 4, the model user executes wbm.pl via direct com-
mand line entry. The code wbm.pl has several flag options,
including -h for help, -v for verbose mode, and others de-
scribed in the instruction manual. The model setup file is
the only required argument to wbm.pl. Under the verbose
mode, detailed statistics of model run time, domain aggre-
gate water balances, and water supply metrics are reported
to the user during each time step, with more complete ac-
counting of water balances reported at the end of each year
of the simulation. Model-run state files are written at the end
of spinup, and at the end of each year, and (optionally) more
frequently. This frequent saving of state files enables users to
restart simulations in the event of an interruption (e.g., from
power loss) without losing significant wall time. Model out-
put files are written in the same spatial resolution and domain
as the input digital river network.

Step 5 is the most application- and user-specific step. The
raw daily model output is rarely the final product of analysis;
temporal and spatial aggregation or point-location time series
extraction are most commonly required to evaluate output
and produce research results. The model automatically gen-

erates daily-to-monthly and daily-to-yearly temporal aggre-
gations, and the setup file has a binary on/off option that en-
ables automatic temporal aggregation to climatology (daily,
monthly and yearly) averages using either the entire simu-
lation period or specified year groups for averaging; there is
also an input field for automatic spatial aggregation. The Perl
utilities for these operations are included in the model Github
repository.

6 Discussion

The WBM’s simulation of global hydrologic fluxes are sim-
ilar to many other GHMs (Tables 5 and 6). Global estimates
of discharge are in line with other GHM estimates, and cor-
respondence with observations is globally reasonable and
error-prone in specific locations. Model performance (Figs. 4
and 5) is best in North America, where observational data
density is high, climate reanalysis data used as input data to
the WBM have greater observational density to draw from
(Gelaro et al., 2017), and the majority of historic regional cal-
ibration activities were focused (Stewart et al., 2011; Samal
et al., 2017; Zuidema et al., 2018, 2020; Grogan et al., 2020).
Low biases in discharge throughout Asia may reflect biases
in input precipitation fields (Grogan, 2016), or that glob-
ally assumed parameters are unrepresentative of these land-
scapes. Estimates of discharge predicted by the WBM that
are higher than several prior estimates (Table 5) likely reflect
a combination of an increased rate of precipitation during re-
cent decades (Blunden and Arndt, 2020), and more advanced
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estimates of global precipitation (Gelaro et al., 2017). The
distribution of model performance metrics presented here
(Figs. 5 and 6) are comparable to other recent global syn-
theses (Lin et al., 2019; Harrigan et al., 2020). While the de-
fault parameterization can miss key distinguishing features
of local hydrologic responses, the inclusion of anthropogenic
processes is a critical feature for providing sufficient hydro-
logic simulations (Zaherpour et al., 2018). Irrigation with-
drawals predicted by WBM v.1.0.0 reflect country-specific
estimates from AQUASTAT over most of the globe (Fig. 6).
High biases for irrigation water withdrawals in Asia, partic-
ularly China and Pakistan, correspond spatially with low bi-
ases in discharge and may reflect both data and parameteriza-
tion issues that should be resolved in work focusing on these
specific regions. Considering the high degree of flexibility in
WBM parameters and the broad range of modern meteoro-
logical input data, reasonable hydrologic simulations should
be attainable within any region of the globe. However, it is
important for model users to use a spatial resolution appro-
priate for regional study domains, and to use local data to
parameterize and evaluate the model for each new study do-
main.

The tracking functionality of the WBM opens unique op-
tions for model-based experimentation with potentially im-
portant management implications within a GHM. Often-
times, hydrologic modeling studies provide insight into the
relative importance or effect of a particular hydrologic pro-
cess by switching processes on and off, thereby creating
slightly different systems. These studies identify the role of
a specific process in a system by comparing two or more
structural or parametric model configurations with and with-
out representation of a particular process. Such analogies are
most powerful when used to understand the effect of hydro-
logic fluxes which are expected to fundamentally change,
such as glacial melt (Rounce et al., 2020a), or have been
historically absent in previous hydrologic modeling such as
surface depressions (Rajib et al., 2020). Similar approaches
may test the effectiveness of different management strate-
gies, such as the effect of managed aquifer recharge on
aquifer head and river flow (Niswonger et al., 2017; Tran et
al., 2019; Van Kirk et al., 2020; Zuidema et al., 2020). In
other cases, this approach has been used to assess the differ-
ence between a hypothetical natural system (with no human
impacts) and a human-impacted system (Wada et al., 2016).

By using the tracking methods described here, it is pos-
sible to attribute a portion of water flows to a specific pro-
cess, location, water source, or flow path, without altering
the represented system from an existing or experimental con-
figuration. This is fundamentally different from the on/off
method of evaluating process or source importance that has
been more commonly used in the literature. WBM’s tracking
module achieves this by attributing a composition of sources
or prior influential processes to the water stored and mov-
ing within each grid cell. For example, this tracking func-
tion facilitates the calculation of irrigation returns in fu-

ture withdrawals that make the estimation of effective irriga-
tion efficiency (Haie and Keller, 2008) possible under suites
of hypothetical management configurations (Zuidema et al.,
2020). As there are no equivalent empirical analogues, evalu-
ating the tracking component compositions of any flux is not
presently possible; however, tracking functionality creates a
more transparent representation of the assumptions that drive
model results.

As described in Weiler et al. (2018), several different wa-
ter tracking methods have been employed by regional hy-
drologic models, though as of the time of this writing, no
GHM other than the WBM employs these types of track-
ing methods. Tracking methods of regional hydrologic mod-
els include synthetic scalar transport, solute transport, parti-
cle tracking, and the “effective tracking” used in HBV-Light
(Stahl et al., 2017; Weiler et al., 2018). The WBM’s tracking
fits into the class of effective tracking methods described by
Weiler et al. (2018), and is a simplified version of the syn-
thetic scalar transport method, analogous to solute transport
where mixing within compartments of the model is substi-
tuted for a full calculation of the advection-dispersion equa-
tion. Insights provided by effective tracking into the sources
of discharge and water provisioning are most relevant for
evaluating human water resources (Weiler et al., 2018).

7 Conclusions and future work

The open source GHM, WBM v.1.0.0, represents not only
the natural terrestrial hydrologic system, but also human in-
teractions with water resources. These interactions include
hydro-infrastructure and water extractions for use by irriga-
tion, livestock, domestic, and industrial sectors. The WBM
v.1.0.0 provides a novel water component tracking function-
ality that enables GHMs to attribute the influence of differ-
ent water sources and flow paths on stocks and fluxes for the
first time, such as river discharge or irrigation water supply.
Tracking illustrates the importance of teleconnections be-
tween input sources and human uses, such as the withdrawal
of glacier water far downstream, or the extraction of agricul-
tural returns for subsequent re-use. It does this by calculating
the impact of water introduced by a flux without the need
to estimate the effects by altering the system through their
absence, which is critical for understanding how we inter-
pret the system to be, rather than how a similar system might
be. Evaluation of the global model shows good agreement
with observed river discharge and water extractions, though
the evaluation metrics have large spatial variability that high-
lights the need for parameter calibration when using WBM
v.1.0.0 for regional analyses. Ongoing development of the
WBM focuses on modules that improve the representation
of human interactions with the water cycle, increased tempo-
ral resolution options, and data-assimilation functionality for
use in operational forecasts.
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Appendix A

Table A1. Examples of WBM applications over different regions
across the globe.

Region Citations

Global Fekete et al. (2006), Grogan (2016),
Grogan et al. (2017), Liu et al. (2017),
Schewe et al. (2014), Vörösmarty et
al. (2000a, 2010), Wisser et al. (2008,
2010a, b)

Arctic Bring et al. (2017), Rawlins et al. (2003,
2005, 2019, 2006a, b), Shiklomanov et
al. (2013)

Asia Douglas et al. (2006a), Grogan et
al. (2015), Groisman et al. (2020)
Mishra et al. (2020), Zaveri et al. (2016)

Africa Vörösmarty et al. (2005)

South America D’Almeida et al. (2006), Vörösmarty et
al. (1989)

North America Grogan et al. (2020), Rougé et
al. (2021), Samal et al. (2017), Stew-
art et al. (2011, 2013), Vörösmarty
et al. (1998), Webster et al. (2022),
Zuidema et al. (2018, 2020)

Tropics Douglas et al. (2005, 2006b)

Code and data availability. WBM v.1.0.0 is open source and dis-
tributed under the terms of the GNU Public License version 3, as
published by the Free Software Foundation. Model code is provided
in a GitHub repository: https://github.com/wsag/WBM (last access:
10 March 2022), and release v.1.0.0 is archived on Zenodo (Gro-
gan and Zuidema, 2022, https://doi.org/10.5281/zenodo.6263097).
Input data required to reproduce the simulations presented here
that cannot be downloaded directly from other sources due to ei-
ther lack of availability or substantial pre-processing requirements
for use in WBM v.1.0.0 (see Table 4) are provided for download
here: https://wbm.unh.edu/ (last access: 4 March 2022; Grogan et
al., 2022, https://doi.org/10.34051/d/2022.2). The GitHub reposi-
tory will be updated as bug fixes, new modules, and further devel-
opment occurs. Development and maintenance of the main branch
of the WBM continues at the University of New Hampshire, and we
welcome contributions from other parties.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-15-7287-2022-supplement.
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