Articles | Volume 15, issue 18
https://doi.org/10.5194/gmd-15-7017-2022
https://doi.org/10.5194/gmd-15-7017-2022
Development and technical paper
 | 
16 Sep 2022
Development and technical paper |  | 16 Sep 2022

RavenR v2.1.4: an open-source R package to support flexible hydrologic modelling

Robert Chlumsky, James R. Craig, Simon G. M. Lin, Sarah Grass, Leland Scantlebury, Genevieve Brown, and Rezgar Arabzadeh

Related authors

A reach-integrated hydraulic modelling approach for large-scale and real-time inundation mapping
Robert Chlumsky, James R. Craig, and Bryan A. Tolson
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-184,https://doi.org/10.5194/gmd-2024-184, 2024
Preprint under review for GMD
Short summary
Advancement of a blended hydrologic model for robust model performance
Robert Chlumsky, Juliane Mai, James R. Craig, and Bryan A. Tolson
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-69,https://doi.org/10.5194/hess-2023-69, 2023
Revised manuscript not accepted
Short summary

Related subject area

Hydrology
The global water resources and use model WaterGAP v2.2e: description and evaluation of modifications and new features
Hannes Müller Schmied, Tim Trautmann, Sebastian Ackermann, Denise Cáceres, Martina Flörke, Helena Gerdener, Ellen Kynast, Thedini Asali Peiris, Leonie Schiebener, Maike Schumacher, and Petra Döll
Geosci. Model Dev., 17, 8817–8852, https://doi.org/10.5194/gmd-17-8817-2024,https://doi.org/10.5194/gmd-17-8817-2024, 2024
Short summary
Generalised drought index: a novel multi-scale daily approach for drought assessment
João António Martins Careto, Rita Margarida Cardoso, Ana Russo, Daniela Catarina André Lima, and Pedro Miguel Matos Soares
Geosci. Model Dev., 17, 8115–8139, https://doi.org/10.5194/gmd-17-8115-2024,https://doi.org/10.5194/gmd-17-8115-2024, 2024
Short summary
Development and performance of a high-resolution surface wave and storm surge forecast model: application to a large lake
Laura L. Swatridge, Ryan P. Mulligan, Leon Boegman, and Shiliang Shan
Geosci. Model Dev., 17, 7751–7766, https://doi.org/10.5194/gmd-17-7751-2024,https://doi.org/10.5194/gmd-17-7751-2024, 2024
Short summary
Deep dive into hydrologic simulations at global scale: harnessing the power of deep learning and physics-informed differentiable models (δHBV-globe1.0-hydroDL)
Dapeng Feng, Hylke Beck, Jens de Bruijn, Reetik Kumar Sahu, Yusuke Satoh, Yoshihide Wada, Jiangtao Liu, Ming Pan, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 17, 7181–7198, https://doi.org/10.5194/gmd-17-7181-2024,https://doi.org/10.5194/gmd-17-7181-2024, 2024
Short summary
PyEt v1.3.1: a Python package for the estimation of potential evapotranspiration
Matevž Vremec, Raoul A. Collenteur, and Steffen Birk
Geosci. Model Dev., 17, 7083–7103, https://doi.org/10.5194/gmd-17-7083-2024,https://doi.org/10.5194/gmd-17-7083-2024, 2024
Short summary

Cited articles

Albers, S.: tidyhydat: Extract and Tidy Canadian Hydrometric Data, J. Open Source Softw., 2, 511, https://doi.org/10.21105/joss.00511, 2017. a
Anderson, E., Chlumsky, R., McCaffrey, D., Trubilowicz, J., Shook, K. R., and Whitfield, P. H.: R-functions for Canadian hydrologists: a Canada-wide collaboration, Can. Water Resour. J., 44, 108–112, 2018. a, b
Astagneau, P. C., Thirel, G., Delaigue, O., Guillaume, J. H. A., Parajka, J., Brauer, C. C., Viglione, A., Buytaert, W., and Beven, K. J.: Technical note: Hydrology modelling R packages – a unified analysis of models and practicalities from a user perspective, Hydrol. Earth Syst. Sci., 25, 3937–3973, https://doi.org/10.5194/hess-25-3937-2021, 2021. a, b
Brown, G. and Craig, J. R.: Structural calibration of an semi-distributed hydrological model of the Liard River basin, Can. Water Resour. J., 45, 287–303, https://doi.org/10.1080/07011784.2020.1803143, 2020. a, b, c, d, e, f, g, h, i
Budyko, M. I.: Climate and life, International Geophysics Series, English ed. edited by: Miller, D. H., Academic Press New York, 18, xvii, 508 p., ISBN 0121394506, 1974. a, b
Download
Short summary
We introduce the open-source RavenR package, which has been built to support the use of the hydrologic modelling framework Raven. The R package contains many functions that may be useful in each step of the model-building process, including preparing model input files, running the model, and analyzing the outputs. We present six reproducible use cases of the RavenR package for the Liard River basin in Canada to demonstrate how it may be deployed.