Articles | Volume 15, issue 18
Geosci. Model Dev., 15, 7017–7030, 2022
https://doi.org/10.5194/gmd-15-7017-2022
Geosci. Model Dev., 15, 7017–7030, 2022
https://doi.org/10.5194/gmd-15-7017-2022
Development and technical paper
16 Sep 2022
Development and technical paper | 16 Sep 2022

RavenR v2.1.4: an open-source R package to support flexible hydrologic modelling

Robert Chlumsky et al.

Related authors

The Great Lakes Runoff Intercomparison Project Phase 4: the Great Lakes (GRIP-GL)
Juliane Mai, Hongren Shen, Bryan A. Tolson, Étienne Gaborit, Richard Arsenault, James R. Craig, Vincent Fortin, Lauren M. Fry, Martin Gauch, Daniel Klotz, Frederik Kratzert, Nicole O'Brien, Daniel G. Princz, Sinan Rasiya Koya, Tirthankar Roy, Frank Seglenieks, Narayan K. Shrestha, André G. T. Temgoua, Vincent Vionnet, and Jonathan W. Waddell
Hydrol. Earth Syst. Sci., 26, 3537–3572, https://doi.org/10.5194/hess-26-3537-2022,https://doi.org/10.5194/hess-26-3537-2022, 2022
Short summary
Long-term climate-influenced land cover change in discontinuous permafrost peatland complexes
Olivia Carpino, Kristine Haynes, Ryan Connon, James Craig, Élise Devoie, and William Quinton
Hydrol. Earth Syst. Sci., 25, 3301–3317, https://doi.org/10.5194/hess-25-3301-2021,https://doi.org/10.5194/hess-25-3301-2021, 2021
Short summary
Simultaneously determining global sensitivities of model parameters and model structure
Juliane Mai, James R. Craig, and Bryan A. Tolson
Hydrol. Earth Syst. Sci., 24, 5835–5858, https://doi.org/10.5194/hess-24-5835-2020,https://doi.org/10.5194/hess-24-5835-2020, 2020
A synthesis of three decades of hydrological research at Scotty Creek, NWT, Canada
William Quinton, Aaron Berg, Michael Braverman, Olivia Carpino, Laura Chasmer, Ryan Connon, James Craig, Élise Devoie, Masaki Hayashi, Kristine Haynes, David Olefeldt, Alain Pietroniro, Fereidoun Rezanezhad, Robert Schincariol, and Oliver Sonnentag
Hydrol. Earth Syst. Sci., 23, 2015–2039, https://doi.org/10.5194/hess-23-2015-2019,https://doi.org/10.5194/hess-23-2015-2019, 2019
Short summary

Related subject area

Hydrology
Developing a parsimonious canopy model (PCM v1.0) to predict forest gross primary productivity and leaf area index of deciduous broad-leaved forest
Bahar Bahrami, Anke Hildebrandt, Stephan Thober, Corinna Rebmann, Rico Fischer, Luis Samaniego, Oldrich Rakovec, and Rohini Kumar
Geosci. Model Dev., 15, 6957–6984, https://doi.org/10.5194/gmd-15-6957-2022,https://doi.org/10.5194/gmd-15-6957-2022, 2022
Short summary
Synergy between satellite observations of soil moisture and water storage anomalies for runoff estimation
Stefania Camici, Gabriele Giuliani, Luca Brocca, Christian Massari, Angelica Tarpanelli, Hassan Hashemi Farahani, Nico Sneeuw, Marco Restano, and Jérôme Benveniste
Geosci. Model Dev., 15, 6935–6956, https://doi.org/10.5194/gmd-15-6935-2022,https://doi.org/10.5194/gmd-15-6935-2022, 2022
Short summary
A physically based distributed karst hydrological model (QMG model-V1.0) for flood simulations
Ji Li, Daoxian Yuan, Fuxi Zhang, Jiao Liu, and Mingguo Ma
Geosci. Model Dev., 15, 6581–6600, https://doi.org/10.5194/gmd-15-6581-2022,https://doi.org/10.5194/gmd-15-6581-2022, 2022
Short summary
Modular Assessment of Rainfall–Runoff Models Toolbox (MARRMoT) v2.1: an object-oriented implementation of 47 established hydrological models for improved speed and readability
Luca Trotter, Wouter J. M. Knoben, Keirnan J. A. Fowler, Margarita Saft, and Murray C. Peel
Geosci. Model Dev., 15, 6359–6369, https://doi.org/10.5194/gmd-15-6359-2022,https://doi.org/10.5194/gmd-15-6359-2022, 2022
Short summary
CREST-VEC: a framework towards more accurate and realistic flood simulation across scales
Zhi Li, Shang Gao, Mengye Chen, Jonathan Gourley, Naoki Mizukami, and Yang Hong
Geosci. Model Dev., 15, 6181–6196, https://doi.org/10.5194/gmd-15-6181-2022,https://doi.org/10.5194/gmd-15-6181-2022, 2022
Short summary

Cited articles

Albers, S.: tidyhydat: Extract and Tidy Canadian Hydrometric Data, J. Open Source Softw., 2, 511, https://doi.org/10.21105/joss.00511, 2017. a
Anderson, E., Chlumsky, R., McCaffrey, D., Trubilowicz, J., Shook, K. R., and Whitfield, P. H.: R-functions for Canadian hydrologists: a Canada-wide collaboration, Can. Water Resour. J., 44, 108–112, 2018. a, b
Astagneau, P. C., Thirel, G., Delaigue, O., Guillaume, J. H. A., Parajka, J., Brauer, C. C., Viglione, A., Buytaert, W., and Beven, K. J.: Technical note: Hydrology modelling R packages – a unified analysis of models and practicalities from a user perspective, Hydrol. Earth Syst. Sci., 25, 3937–3973, https://doi.org/10.5194/hess-25-3937-2021, 2021. a, b
Brown, G. and Craig, J. R.: Structural calibration of an semi-distributed hydrological model of the Liard River basin, Can. Water Resour. J., 45, 287–303, https://doi.org/10.1080/07011784.2020.1803143, 2020. a, b, c, d, e, f, g, h, i
Budyko, M. I.: Climate and life, International Geophysics Series, English ed. edited by: Miller, D. H., Academic Press New York, 18, xvii, 508 p., ISBN 0121394506, 1974. a, b
Download
Short summary
We introduce the open-source RavenR package, which has been built to support the use of the hydrologic modelling framework Raven. The R package contains many functions that may be useful in each step of the model-building process, including preparing model input files, running the model, and analyzing the outputs. We present six reproducible use cases of the RavenR package for the Liard River basin in Canada to demonstrate how it may be deployed.