the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
AWI-CM3 coupled climate model: description and evaluation experiments for a prototype post-CMIP6 model
Tido Semmler
Lorenzo Zampieri
Patrick Scholz
Miguel Andrés-Martínez
Nikolay Koldunov
Thomas Rackow
Joakim Kjellsson
Helge Goessling
Marylou Athanase
Qiang Wang
Jan Hegewald
Dmitry V. Sein
Longjiang Mu
Uwe Fladrich
Dirk Barbi
Paul Gierz
Sergey Danilov
Stephan Juricke
Gerrit Lohmann
Thomas Jung
Related authors
Our study examines the Atlantic Meridional Overturning Circulation (AMOC) during the Last Glacial Maximum (LGM), a period with higher tidal dissipation. Despite increased tidal mixing, our model simulations show that the AMOC remained relatively shallow, consistent with paleoproxy data and resolving previous inconsistencies between proxy data and model simulations. This research highlights the importance of strong ocean stratification during the LGM and its interaction with tidal mixing.
The East Siberian Sea has nearly 80% of the subsea permafrost worldwide. The cold layer with a temperature around −1.5 ºC above the sea floor prevents heat transporting from above to melt permafrost and release methane from sediments. However, we observed a warming trend at the seafloor caused by wave-induced vertical mixing in the shelf. The intensified mixing can transport enormous heat downward, leading to warming of more than 3 °C at the bottom, putting the subsea permafrost in high risk.
ocean eddies, which are the largest source of ocean variability and modulate the mixed-layer properties. We find that the mixed-layer depth is better represented in eddy-rich models but, unfortunately, not uniformly across the globe and not in all models.
time-dependentTRACMASS scheme. We would also like to dissuade the use of the more primitive
stepwise-stationaryscheme, since the velocity fields remain stationary for longer periods, creating abrupt discontinuities in the velocity fields and yielding inaccurate solutions.
Related subject area
Large volcanic eruptions deposit material in the upper atmosphere, which is capable of altering temperature and wind patterns of Earth's atmosphere for subsequent years. This research describes a new method of simulating these effects in an idealized, efficient atmospheric model. A volcanic eruption of sulfur dioxide is described with a simplified set of physical rules, which eventually cools the planetary surface. This model has been designed as a test bed for climate attribution studies.