Articles | Volume 15, issue 13
https://doi.org/10.5194/gmd-15-5371-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-5371-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The eWaterCycle platform for open and FAIR hydrological collaboration
Faculty of Civil Engineering and Geoscience, Delft University of Technology, Delft, the Netherlands
Niels Drost
Netherlands eScience Center, Amsterdam, the Netherlands
Nick van de Giesen
Faculty of Civil Engineering and Geoscience, Delft University of Technology, Delft, the Netherlands
Ben van Werkhoven
Netherlands eScience Center, Amsterdam, the Netherlands
Banafsheh Abdollahi
Faculty of Civil Engineering and Geoscience, Delft University of Technology, Delft, the Netherlands
Jerom Aerts
Faculty of Civil Engineering and Geoscience, Delft University of Technology, Delft, the Netherlands
Thomas Albers
Faculty of Civil Engineering and Geoscience, Delft University of Technology, Delft, the Netherlands
Fakhereh Alidoost
Netherlands eScience Center, Amsterdam, the Netherlands
Bouwe Andela
Netherlands eScience Center, Amsterdam, the Netherlands
Jaro Camphuijsen
Netherlands eScience Center, Amsterdam, the Netherlands
Yifat Dzigan
Netherlands eScience Center, Amsterdam, the Netherlands
Ronald van Haren
Netherlands eScience Center, Amsterdam, the Netherlands
currently at: Rijkswaterstaat, Utrecht, the Netherlands
Eric Hutton
Institute for Arctic and Alpine Research (INSTAAR), University of Colorado, Boulder, USA
Peter Kalverla
Netherlands eScience Center, Amsterdam, the Netherlands
Maarten van Meersbergen
Netherlands eScience Center, Amsterdam, the Netherlands
Gijs van den Oord
Netherlands eScience Center, Amsterdam, the Netherlands
Inti Pelupessy
Netherlands eScience Center, Amsterdam, the Netherlands
Stef Smeets
Netherlands eScience Center, Amsterdam, the Netherlands
Stefan Verhoeven
Netherlands eScience Center, Amsterdam, the Netherlands
Martine de Vos
Netherlands eScience Center, Amsterdam, the Netherlands
currently at: Information and Technology Services, Utrecht University, Utrecht, the Netherlands
Berend Weel
Netherlands eScience Center, Amsterdam, the Netherlands
Related authors
Luuk D. van der Valk, Miriam Coenders-Gerrits, Rolf W. Hut, Aart Overeem, Bas Walraven, and Remko Uijlenhoet
Atmos. Meas. Tech., 17, 2811–2832, https://doi.org/10.5194/amt-17-2811-2024, https://doi.org/10.5194/amt-17-2811-2024, 2024
Short summary
Short summary
Microwave links, often part of mobile phone networks, can be used to measure rainfall along the link path by determining the signal loss caused by rainfall. We use high-frequency data of multiple microwave links to recreate commonly used sampling strategies. For time intervals up to 1 min, the influence of sampling strategies on estimated rainfall intensities is relatively little, while for intervals longer than 5–15 min, the sampling strategy can have significant influences on the estimates.
Jerom P.M. Aerts, Jannis M. Hoch, Gemma Coxon, Nick C. van de Giesen, and Rolf W. Hut
EGUsphere, https://doi.org/10.5194/egusphere-2023-1156, https://doi.org/10.5194/egusphere-2023-1156, 2023
Short summary
Short summary
Hydrological model performance involves comparing simulated states and fluxes with observed counterparts. Often, it is overlooked that there is inherent uncertainty surrounding the observations. This can significantly impact the results. In this publication, we emphasize the significance of accounting for observation uncertainty in model comparison. We propose a practical method that is applicable for any observational time series with available uncertainty estimations.
Pau Wiersma, Jerom Aerts, Harry Zekollari, Markus Hrachowitz, Niels Drost, Matthias Huss, Edwin H. Sutanudjaja, and Rolf Hut
Hydrol. Earth Syst. Sci., 26, 5971–5986, https://doi.org/10.5194/hess-26-5971-2022, https://doi.org/10.5194/hess-26-5971-2022, 2022
Short summary
Short summary
We test whether coupling a global glacier model (GloGEM) with a global hydrological model (PCR-GLOBWB 2) leads to a more realistic glacier representation and to improved basin runoff simulations across 25 large-scale basins. The coupling does lead to improved glacier representation, mainly by accounting for glacier flow and net glacier mass loss, and to improved basin runoff simulations, mostly in strongly glacier-influenced basins, which is where the coupling has the most impact.
Jerom P. M. Aerts, Rolf W. Hut, Nick C. van de Giesen, Niels Drost, Willem J. van Verseveld, Albrecht H. Weerts, and Pieter Hazenberg
Hydrol. Earth Syst. Sci., 26, 4407–4430, https://doi.org/10.5194/hess-26-4407-2022, https://doi.org/10.5194/hess-26-4407-2022, 2022
Short summary
Short summary
In recent years gridded hydrological modelling moved into the realm of hyper-resolution modelling (<10 km). In this study, we investigate the effect of varying grid-cell sizes for the wflow_sbm hydrological model. We used a large sample of basins from the CAMELS data set to test the effect that varying grid-cell sizes has on the simulation of streamflow at the basin outlet. Results show that there is no single best grid-cell size for modelling streamflow throughout the domain.
Caitlyn A. Hall, Sheila M. Saia, Andrea L. Popp, Nilay Dogulu, Stanislaus J. Schymanski, Niels Drost, Tim van Emmerik, and Rolf Hut
Hydrol. Earth Syst. Sci., 26, 647–664, https://doi.org/10.5194/hess-26-647-2022, https://doi.org/10.5194/hess-26-647-2022, 2022
Short summary
Short summary
Impactful open, accessible, reusable, and reproducible hydrologic research practices are being embraced by individuals and the community, but taking the plunge can seem overwhelming. We present the Open Hydrology Principles and Practical Guide to help hydrologists move toward open science, research, and education. We discuss the benefits and how hydrologists can overcome common challenges. We encourage all hydrologists to join the open science community (https://open-hydrology.github.io).
Didier de Villiers, Marc Schleiss, Marie-Claire ten Veldhuis, Rolf Hut, and Nick van de Giesen
Atmos. Meas. Tech., 14, 5607–5623, https://doi.org/10.5194/amt-14-5607-2021, https://doi.org/10.5194/amt-14-5607-2021, 2021
Short summary
Short summary
Ground-based rainfall observations across the African continent are sparse. We present a new and inexpensive rainfall measuring instrument (the intervalometer) and use it to derive reasonably accurate rainfall rates. These are dependent on a fundamental assumption that is widely used in parameterisations of the rain drop size distribution. This assumption is tested and found to not apply for most raindrops but is still useful in deriving rainfall rates. The intervalometer shows good potential.
Rolf Hut, Thanda Thatoe Nwe Win, and Thom Bogaard
Geosci. Instrum. Method. Data Syst., 9, 435–442, https://doi.org/10.5194/gi-9-435-2020, https://doi.org/10.5194/gi-9-435-2020, 2020
Short summary
Short summary
GPS drifters that float down rivers are important tools in studying rivers, but they can be expensive. Recently, both GPS receivers and cellular modems have become available at lower prices to tinkering scientists due to the rise of open hardware and the Arduino. We provide detailed instructions on how to build a low-power GPS drifter with local storage and a cellular model that we tested in a fieldwork in Myanmar. These instructions allow fellow geoscientists to recreate the device.
Martine G. de Vos, Wilco Hazeleger, Driss Bari, Jörg Behrens, Sofiane Bendoukha, Irene Garcia-Marti, Ronald van Haren, Sue Ellen Haupt, Rolf Hut, Fredrik Jansson, Andreas Mueller, Peter Neilley, Gijs van den Oord, Inti Pelupessy, Paolo Ruti, Martin G. Schultz, and Jeremy Walton
Geosci. Commun., 3, 191–201, https://doi.org/10.5194/gc-3-191-2020, https://doi.org/10.5194/gc-3-191-2020, 2020
Short summary
Short summary
At the 14th IEEE International eScience Conference domain specialists and data and computer scientists discussed the road towards open weather and climate science. Open science offers manifold opportunities but goes beyond sharing code and data. Besides domain-specific technical challenges, we observed that the main challenges are non-technical and impact the system of science as a whole.
Rolf Hut, Casper Albers, Sam Illingworth, and Chris Skinner
Geosci. Commun., 2, 117–124, https://doi.org/10.5194/gc-2-117-2019, https://doi.org/10.5194/gc-2-117-2019, 2019
Short summary
Short summary
Game worlds in modern computer games, while they include very Earth-like landscapes, are ultimately fake. Since games can be used for learning, we wondered if people pick up wrong information from games. Using a survey we tested if people with a background in geoscience are better than people without such a background at distinguishing if game landscapes are realistic. We found that geoscientists are significantly better at this, but the difference is small and overall everyone is good at it.
Gemma J. Venhuizen, Rolf Hut, Casper Albers, Cathelijne R. Stoof, and Ionica Smeets
Hydrol. Earth Syst. Sci., 23, 393–403, https://doi.org/10.5194/hess-23-393-2019, https://doi.org/10.5194/hess-23-393-2019, 2019
Short summary
Short summary
Do experts attach the same meaning as laypeople to terms often used in hydrology such as "river", "flooding" and "downstream"? In this study a survey was completed by 34 experts and 119 laypeople to answer this question. We found that there are some profound differences between experts and laypeople: words like "river" and "river basin" turn out to have a different interpretation between the two groups. However, when using pictures there is much more agreement between the groups.
Stefanie R. Lutz, Andrea Popp, Tim van Emmerik, Tom Gleeson, Liz Kalaugher, Karsten Möbius, Tonie Mudde, Brett Walton, Rolf Hut, Hubert Savenije, Louise J. Slater, Anna Solcerova, Cathelijne R. Stoof, and Matthias Zink
Hydrol. Earth Syst. Sci., 22, 3589–3599, https://doi.org/10.5194/hess-22-3589-2018, https://doi.org/10.5194/hess-22-3589-2018, 2018
Short summary
Short summary
Media play a key role in the communication between scientists and the general public. However, the interaction between scientists and journalists is not always straightforward. In this opinion paper, we present insights from hydrologists and journalists into the benefits, aftermath and potential pitfalls of science–media interaction. We aim to encourage scientists to participate in the diverse and evolving media landscape, and we call on the scientific community to support scientists who do so.
Rolf Hut, Niels Drost, Maarten van Meersbergen, Edwin Sutanudjaja, Marc Bierkens, and Nick van de Giesen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-225, https://doi.org/10.5194/gmd-2016-225, 2016
Revised manuscript not accepted
Short summary
Short summary
A system that predicts the amount of water flowing in each river on earth, 9 days ahead, is build using existing parts of open source computer code build by different researchers in other projects.
The glue between all pre-existing parts are all open interfaces which means that the pieces system click together like a house of LEGOs. It is easy to remove a piece (a brick) and replace it with another, improved, piece.
The resulting predictions are available online at forecast.ewatercycle.org
Rolf Hut, Anne M. Land-Zandstra, Ionica Smeets, and Cathelijne R. Stoof
Hydrol. Earth Syst. Sci., 20, 2507–2518, https://doi.org/10.5194/hess-20-2507-2016, https://doi.org/10.5194/hess-20-2507-2016, 2016
Short summary
Short summary
To help geo-scientists prepare for TV appearances, we review the scientific literature on effective science communication related to TV. We identify six main themes: scientist motivation, target audience, narratives and storytelling, jargon and information transfer, relationship between scientists and journalists, and stereotypes of scientists on TV. We provide a detailed case study as illustration for each theme.
Rolf Hut, Scott Tyler, and Tim van Emmerik
Geosci. Instrum. Method. Data Syst., 5, 45–51, https://doi.org/10.5194/gi-5-45-2016, https://doi.org/10.5194/gi-5-45-2016, 2016
Short summary
Short summary
Temperature-sensor-incorporated waders worn by the public can give scientists an additional source of information on stream water-groundwater interaction. A pair of waders was equipped with a thermistor and calibrated in the lab. Field tests in a deep polder ditch with a known localized groundwater contribution showed that the waders are capable of identifying the boil location. This can be used to decide where the most interesting places are to do more detailed and more expensive research.
O. A. C. Hoes, R. W. Hut, N. C. van de Giesen, and M. Boomgaard
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-1-417-2013, https://doi.org/10.5194/nhessd-1-417-2013, 2013
Revised manuscript has not been submitted
Peter Kalverla, Imme Benedict, Chris Weijenborg, and Ruud J. van der Ent
EGUsphere, https://doi.org/10.5194/egusphere-2024-3401, https://doi.org/10.5194/egusphere-2024-3401, 2024
Short summary
Short summary
We introduce a new version of WAM2layers, a computer program that tracks how the weather brings water from one place to another. It uses data from weather and climate models, whose resolution is steadily increasing. Processing the latest data became a challenge, and the updates presented here ensure that WAM2layers runs smoothly again. We also made it easier to use the program and to understand its source code. This makes it more transparent and reliable, and easier to maintain.
Zengjing Song, Yijian Zeng, Yunfei Wang, Enting Tang, Danyang Yu, Fakhereh Alidoost, Mingguo Ma, Xujun Han, Xuguang Tang, Zhongjing Zhu, Yao Xiao, Debing Kong, and Zhongbo Su
EGUsphere, https://doi.org/10.5194/egusphere-2024-2940, https://doi.org/10.5194/egusphere-2024-2940, 2024
Short summary
Short summary
The exchange of water and carbon between the plant and the atmosphere is affected under water stress conditions. In this study, a leaf-water-potential-based water stress factor is considered in the STEMMUS-SCOPE (hereafter STEMMUS-SCOPE-PHS), to replace the conventional soil-moisture-based water stress factor. The results show that leaf water potential reflects the plant water stress well, and the STEMMUS-SCOPE-PHS outperforms STEMMUS-SCOPE in the dynamics of the water, energy and carbon fluxes.
Henry M. Zimba, Miriam Coenders-Gerrits, Kawawa E. Banda, Petra Hulsman, Nick van de Giesen, Imasiku A. Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 3633–3663, https://doi.org/10.5194/hess-28-3633-2024, https://doi.org/10.5194/hess-28-3633-2024, 2024
Short summary
Short summary
The fall and flushing of new leaves in the miombo woodlands co-occur in the dry season before the commencement of seasonal rainfall. The miombo species are also said to have access to soil moisture in deep soils, including groundwater in the dry season. Satellite-based evaporation estimates, temporal trends, and magnitudes differ the most in the dry season, most likely due to inadequate understanding and representation of the highlighted miombo species attributes in simulations.
Luuk D. van der Valk, Miriam Coenders-Gerrits, Rolf W. Hut, Aart Overeem, Bas Walraven, and Remko Uijlenhoet
Atmos. Meas. Tech., 17, 2811–2832, https://doi.org/10.5194/amt-17-2811-2024, https://doi.org/10.5194/amt-17-2811-2024, 2024
Short summary
Short summary
Microwave links, often part of mobile phone networks, can be used to measure rainfall along the link path by determining the signal loss caused by rainfall. We use high-frequency data of multiple microwave links to recreate commonly used sampling strategies. For time intervals up to 1 min, the influence of sampling strategies on estimated rainfall intensities is relatively little, while for intervals longer than 5–15 min, the sampling strategy can have significant influences on the estimates.
Tian Gan, Gregory E. Tucker, Eric W. H. Hutton, Mark D. Piper, Irina Overeem, Albert J. Kettner, Benjamin Campforts, Julia M. Moriarty, Brianna Undzis, Ethan Pierce, and Lynn McCready
Geosci. Model Dev., 17, 2165–2185, https://doi.org/10.5194/gmd-17-2165-2024, https://doi.org/10.5194/gmd-17-2165-2024, 2024
Short summary
Short summary
This study presents the design, implementation, and application of the CSDMS Data Components. The case studies demonstrate that the Data Components provide a consistent way to access heterogeneous datasets from multiple sources, and to seamlessly integrate them with various models for Earth surface process modeling. The Data Components support the creation of open data–model integration workflows to improve the research transparency and reproducibility.
Sneha Chevuru, Rens L. P. H. van Beek, Michelle T. H. van Vliet, Jerom P. M. Aerts, and Marc F. P. Bierkens
EGUsphere, https://doi.org/10.5194/egusphere-2024-465, https://doi.org/10.5194/egusphere-2024-465, 2024
Short summary
Short summary
This paper integrates PCR-GLOBWB 2 hydrological model with WOFOST crop growth model to analyze mutual feedbacks between hydrology and crop growth. It quantifies one-way and two-way feedbacks between hydrology and crop growth, revealing patterns in crop yield and irrigation water use. Dynamic interactions enhance understanding of climate variability impacts on food production, highlighting the importance of two-way model coupling for accurate assessments.
Jessica A. Eisma, Gerrit Schoups, Jeffrey C. Davids, and Nick van de Giesen
Hydrol. Earth Syst. Sci., 27, 3565–3579, https://doi.org/10.5194/hess-27-3565-2023, https://doi.org/10.5194/hess-27-3565-2023, 2023
Short summary
Short summary
Citizen scientists often submit high-quality data, but a robust method for assessing data quality is needed. This study develops a semi-automated program that characterizes the mistakes made by citizen scientists by grouping them into communities of citizen scientists with similar mistake tendencies and flags potentially erroneous data for further review. This work may help citizen science programs assess the quality of their data and can inform training practices.
Jerom P.M. Aerts, Jannis M. Hoch, Gemma Coxon, Nick C. van de Giesen, and Rolf W. Hut
EGUsphere, https://doi.org/10.5194/egusphere-2023-1156, https://doi.org/10.5194/egusphere-2023-1156, 2023
Short summary
Short summary
Hydrological model performance involves comparing simulated states and fluxes with observed counterparts. Often, it is overlooked that there is inherent uncertainty surrounding the observations. This can significantly impact the results. In this publication, we emphasize the significance of accounting for observation uncertainty in model comparison. We propose a practical method that is applicable for any observational time series with available uncertainty estimations.
Henry Zimba, Miriam Coenders-Gerrits, Kawawa Banda, Bart Schilperoort, Nick van de Giesen, Imasiku Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 1695–1722, https://doi.org/10.5194/hess-27-1695-2023, https://doi.org/10.5194/hess-27-1695-2023, 2023
Short summary
Short summary
Miombo woodland plants continue to lose water even during the driest part of the year. This appears to be facilitated by the adapted features such as deep rooting (beyond 5 m) with access to deep soil moisture, potentially even ground water. It appears the trend and amount of water that the plants lose is correlated more to the available energy. This loss of water in the dry season by miombo woodland plants appears to be incorrectly captured by satellite-based evaporation estimates.
Manuel Schlund, Birgit Hassler, Axel Lauer, Bouwe Andela, Patrick Jöckel, Rémi Kazeroni, Saskia Loosveldt Tomas, Brian Medeiros, Valeriu Predoi, Stéphane Sénési, Jérôme Servonnat, Tobias Stacke, Javier Vegas-Regidor, Klaus Zimmermann, and Veronika Eyring
Geosci. Model Dev., 16, 315–333, https://doi.org/10.5194/gmd-16-315-2023, https://doi.org/10.5194/gmd-16-315-2023, 2023
Short summary
Short summary
The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics tool for routine evaluation of Earth system models. Originally, ESMValTool was designed to process reformatted output provided by large model intercomparison projects like the Coupled Model Intercomparison Project (CMIP). Here, we describe a new extension of ESMValTool that allows for reading and processing native climate model output, i.e., data that have not been reformatted before.
Pau Wiersma, Jerom Aerts, Harry Zekollari, Markus Hrachowitz, Niels Drost, Matthias Huss, Edwin H. Sutanudjaja, and Rolf Hut
Hydrol. Earth Syst. Sci., 26, 5971–5986, https://doi.org/10.5194/hess-26-5971-2022, https://doi.org/10.5194/hess-26-5971-2022, 2022
Short summary
Short summary
We test whether coupling a global glacier model (GloGEM) with a global hydrological model (PCR-GLOBWB 2) leads to a more realistic glacier representation and to improved basin runoff simulations across 25 large-scale basins. The coupling does lead to improved glacier representation, mainly by accounting for glacier flow and net glacier mass loss, and to improved basin runoff simulations, mostly in strongly glacier-influenced basins, which is where the coupling has the most impact.
Jerom P. M. Aerts, Rolf W. Hut, Nick C. van de Giesen, Niels Drost, Willem J. van Verseveld, Albrecht H. Weerts, and Pieter Hazenberg
Hydrol. Earth Syst. Sci., 26, 4407–4430, https://doi.org/10.5194/hess-26-4407-2022, https://doi.org/10.5194/hess-26-4407-2022, 2022
Short summary
Short summary
In recent years gridded hydrological modelling moved into the realm of hyper-resolution modelling (<10 km). In this study, we investigate the effect of varying grid-cell sizes for the wflow_sbm hydrological model. We used a large sample of basins from the CAMELS data set to test the effect that varying grid-cell sizes has on the simulation of streamflow at the basin outlet. Results show that there is no single best grid-cell size for modelling streamflow throughout the domain.
Henry Zimba, Miriam Coenders-Gerrits, Kawawa Banda, Petra Hulsman, Nick van de Giesen, Imasiku Nyambe, and Hubert Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-114, https://doi.org/10.5194/hess-2022-114, 2022
Manuscript not accepted for further review
Short summary
Short summary
We compare performance of evaporation models in the Luangwa Basin located in a semi-arid and complex Miombo ecosystem in Africa. Miombo plants changes colour, drop off leaves and acquire new leaves during the dry season. In addition, the plant roots go deep in the soil and appear to access groundwater. Results show that evaporation models with structure and process that do not capture this unique plant structure and behaviour appears to have difficulties to correctly estimating evaporation.
Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Thomas Arsouze, Tommi Bergman, Raffaele Bernardello, Souhail Boussetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, François Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O'Donnell, Pirkka Ollinaho, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang
Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, https://doi.org/10.5194/gmd-15-2973-2022, 2022
Short summary
Short summary
The Earth system model EC-Earth3 is documented here. Key performance metrics show physical behavior and biases well within the frame known from recent models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
Paul C. Vermunt, Susan C. Steele-Dunne, Saeed Khabbazan, Jasmeet Judge, and Nick C. van de Giesen
Hydrol. Earth Syst. Sci., 26, 1223–1241, https://doi.org/10.5194/hess-26-1223-2022, https://doi.org/10.5194/hess-26-1223-2022, 2022
Short summary
Short summary
This study investigates the use of hydrometeorological sensors to reconstruct variations in internal vegetation water content of corn and relates these variations to the sub-daily behaviour of polarimetric L-band backscatter. The results show significant sensitivity of backscatter to the daily cycles of vegetation water content and dew, particularly on dry days and for vertical and cross-polarizations, which demonstrates the potential for using radar for studies on vegetation water dynamics.
Gregory E. Tucker, Eric W. H. Hutton, Mark D. Piper, Benjamin Campforts, Tian Gan, Katherine R. Barnhart, Albert J. Kettner, Irina Overeem, Scott D. Peckham, Lynn McCready, and Jaia Syvitski
Geosci. Model Dev., 15, 1413–1439, https://doi.org/10.5194/gmd-15-1413-2022, https://doi.org/10.5194/gmd-15-1413-2022, 2022
Short summary
Short summary
Scientists use computer simulation models to understand how Earth surface processes work, including floods, landslides, soil erosion, river channel migration, ocean sedimentation, and coastal change. Research benefits when the software for simulation modeling is open, shared, and coordinated. The Community Surface Dynamics Modeling System (CSDMS) is a US-based facility that supports research by providing community support, computing tools and guidelines, and educational resources.
Caitlyn A. Hall, Sheila M. Saia, Andrea L. Popp, Nilay Dogulu, Stanislaus J. Schymanski, Niels Drost, Tim van Emmerik, and Rolf Hut
Hydrol. Earth Syst. Sci., 26, 647–664, https://doi.org/10.5194/hess-26-647-2022, https://doi.org/10.5194/hess-26-647-2022, 2022
Short summary
Short summary
Impactful open, accessible, reusable, and reproducible hydrologic research practices are being embraced by individuals and the community, but taking the plunge can seem overwhelming. We present the Open Hydrology Principles and Practical Guide to help hydrologists move toward open science, research, and education. We discuss the benefits and how hydrologists can overcome common challenges. We encourage all hydrologists to join the open science community (https://open-hydrology.github.io).
Xavier Yepes-Arbós, Gijs van den Oord, Mario C. Acosta, and Glenn D. Carver
Geosci. Model Dev., 15, 379–394, https://doi.org/10.5194/gmd-15-379-2022, https://doi.org/10.5194/gmd-15-379-2022, 2022
Short summary
Short summary
Climate prediction models produce a large volume of simulated data that sometimes might not be efficiently managed. In this paper we present an approach to address this issue by reducing the computing time and storage space. As a case study, we analyse the output writing process of the ECMWF atmospheric model called IFS, and we integrate into it a data writing tool called XIOS. The results suggest that the integration between the two components achieves an adequate computational performance.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Didier de Villiers, Marc Schleiss, Marie-Claire ten Veldhuis, Rolf Hut, and Nick van de Giesen
Atmos. Meas. Tech., 14, 5607–5623, https://doi.org/10.5194/amt-14-5607-2021, https://doi.org/10.5194/amt-14-5607-2021, 2021
Short summary
Short summary
Ground-based rainfall observations across the African continent are sparse. We present a new and inexpensive rainfall measuring instrument (the intervalometer) and use it to derive reasonably accurate rainfall rates. These are dependent on a fundamental assumption that is widely used in parameterisations of the rain drop size distribution. This assumption is tested and found to not apply for most raindrops but is still useful in deriving rainfall rates. The intervalometer shows good potential.
Katja Weigel, Lisa Bock, Bettina K. Gier, Axel Lauer, Mattia Righi, Manuel Schlund, Kemisola Adeniyi, Bouwe Andela, Enrico Arnone, Peter Berg, Louis-Philippe Caron, Irene Cionni, Susanna Corti, Niels Drost, Alasdair Hunter, Llorenç Lledó, Christian Wilhelm Mohr, Aytaç Paçal, Núria Pérez-Zanón, Valeriu Predoi, Marit Sandstad, Jana Sillmann, Andreas Sterl, Javier Vegas-Regidor, Jost von Hardenberg, and Veronika Eyring
Geosci. Model Dev., 14, 3159–3184, https://doi.org/10.5194/gmd-14-3159-2021, https://doi.org/10.5194/gmd-14-3159-2021, 2021
Short summary
Short summary
This work presents new diagnostics for the Earth System Model Evaluation Tool (ESMValTool) v2.0 on the hydrological cycle, extreme events, impact assessment, regional evaluations, and ensemble member selection. The ESMValTool v2.0 diagnostics are developed by a large community of scientists aiming to facilitate the evaluation and comparison of Earth system models (ESMs) with a focus on the ESMs participating in the Coupled Model Intercomparison Project (CMIP).
Jerom P. M. Aerts, Steffi Uhlemann-Elmer, Dirk Eilander, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 20, 3245–3260, https://doi.org/10.5194/nhess-20-3245-2020, https://doi.org/10.5194/nhess-20-3245-2020, 2020
Short summary
Short summary
We compare and analyse flood hazard maps from eight global flood models that represent the current state of the global flood modelling community. We apply our comparison to China as a case study, and for the first time, we include industry models, pluvial flooding, and flood protection standards. We find substantial variability between the flood hazard maps in the modelled inundated area and exposed gross domestic product (GDP) across multiple return periods and in expected annual exposed GDP.
Moctar Dembélé, Bettina Schaefli, Nick van de Giesen, and Grégoire Mariéthoz
Hydrol. Earth Syst. Sci., 24, 5379–5406, https://doi.org/10.5194/hess-24-5379-2020, https://doi.org/10.5194/hess-24-5379-2020, 2020
Short summary
Short summary
This study evaluates 102 combinations of rainfall and temperature datasets from satellite and reanalysis sources as input to a fully distributed hydrological model. The model is recalibrated for each input dataset, and the outputs are evaluated with streamflow, evaporation, soil moisture and terrestrial water storage data. Results show that no single rainfall or temperature dataset consistently ranks first in reproducing the spatio-temporal variability of all hydrological processes.
Rolf Hut, Thanda Thatoe Nwe Win, and Thom Bogaard
Geosci. Instrum. Method. Data Syst., 9, 435–442, https://doi.org/10.5194/gi-9-435-2020, https://doi.org/10.5194/gi-9-435-2020, 2020
Short summary
Short summary
GPS drifters that float down rivers are important tools in studying rivers, but they can be expensive. Recently, both GPS receivers and cellular modems have become available at lower prices to tinkering scientists due to the rise of open hardware and the Arduino. We provide detailed instructions on how to build a low-power GPS drifter with local storage and a cellular model that we tested in a fieldwork in Myanmar. These instructions allow fellow geoscientists to recreate the device.
Justus G. V. van Ramshorst, Miriam Coenders-Gerrits, Bart Schilperoort, Bas J. H. van de Wiel, Jonathan G. Izett, John S. Selker, Chad W. Higgins, Hubert H. G. Savenije, and Nick C. van de Giesen
Atmos. Meas. Tech., 13, 5423–5439, https://doi.org/10.5194/amt-13-5423-2020, https://doi.org/10.5194/amt-13-5423-2020, 2020
Short summary
Short summary
In this work we present experimental results of a novel actively heated fiber-optic (AHFO) observational wind-probing technique. We utilized a controlled wind-tunnel setup to assess both the accuracy and precision of AHFO under a range of operational conditions (wind speed, angles of attack and temperature differences). AHFO has the potential to provide high-resolution distributed observations of wind speeds, allowing for better spatial characterization of fine-scale processes.
Mark Schelbergen, Peter C. Kalverla, Roland Schmehl, and Simon J. Watson
Wind Energ. Sci., 5, 1097–1120, https://doi.org/10.5194/wes-5-1097-2020, https://doi.org/10.5194/wes-5-1097-2020, 2020
Short summary
Short summary
We have presented a methodology for including multiple wind profile shapes in a wind resource description that are identified using a data-driven approach. These shapes go beyond the height range for which conventional wind profile relationships are developed. Moreover, they include non-monotonic shapes such as low-level jets. We demonstrated this methodology for an on- and offshore reference location using DOWA data and efficiently estimated the annual energy production of a pumping AWE system.
Martine G. de Vos, Wilco Hazeleger, Driss Bari, Jörg Behrens, Sofiane Bendoukha, Irene Garcia-Marti, Ronald van Haren, Sue Ellen Haupt, Rolf Hut, Fredrik Jansson, Andreas Mueller, Peter Neilley, Gijs van den Oord, Inti Pelupessy, Paolo Ruti, Martin G. Schultz, and Jeremy Walton
Geosci. Commun., 3, 191–201, https://doi.org/10.5194/gc-3-191-2020, https://doi.org/10.5194/gc-3-191-2020, 2020
Short summary
Short summary
At the 14th IEEE International eScience Conference domain specialists and data and computer scientists discussed the road towards open weather and climate science. Open science offers manifold opportunities but goes beyond sharing code and data. Besides domain-specific technical challenges, we observed that the main challenges are non-technical and impact the system of science as a whole.
Veronika Eyring, Lisa Bock, Axel Lauer, Mattia Righi, Manuel Schlund, Bouwe Andela, Enrico Arnone, Omar Bellprat, Björn Brötz, Louis-Philippe Caron, Nuno Carvalhais, Irene Cionni, Nicola Cortesi, Bas Crezee, Edouard L. Davin, Paolo Davini, Kevin Debeire, Lee de Mora, Clara Deser, David Docquier, Paul Earnshaw, Carsten Ehbrecht, Bettina K. Gier, Nube Gonzalez-Reviriego, Paul Goodman, Stefan Hagemann, Steven Hardiman, Birgit Hassler, Alasdair Hunter, Christopher Kadow, Stephan Kindermann, Sujan Koirala, Nikolay Koldunov, Quentin Lejeune, Valerio Lembo, Tomas Lovato, Valerio Lucarini, François Massonnet, Benjamin Müller, Amarjiit Pandde, Núria Pérez-Zanón, Adam Phillips, Valeriu Predoi, Joellen Russell, Alistair Sellar, Federico Serva, Tobias Stacke, Ranjini Swaminathan, Verónica Torralba, Javier Vegas-Regidor, Jost von Hardenberg, Katja Weigel, and Klaus Zimmermann
Geosci. Model Dev., 13, 3383–3438, https://doi.org/10.5194/gmd-13-3383-2020, https://doi.org/10.5194/gmd-13-3383-2020, 2020
Short summary
Short summary
The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics tool designed to improve comprehensive and routine evaluation of earth system models (ESMs) participating in the Coupled Model Intercomparison Project (CMIP). It has undergone rapid development since the first release in 2016 and is now a well-tested tool that provides end-to-end provenance tracking to ensure reproducibility.
Katherine R. Barnhart, Eric W. H. Hutton, Gregory E. Tucker, Nicole M. Gasparini, Erkan Istanbulluoglu, Daniel E. J. Hobley, Nathan J. Lyons, Margaux Mouchene, Sai Siddhartha Nudurupati, Jordan M. Adams, and Christina Bandaragoda
Earth Surf. Dynam., 8, 379–397, https://doi.org/10.5194/esurf-8-379-2020, https://doi.org/10.5194/esurf-8-379-2020, 2020
Short summary
Short summary
Landlab is a Python package to support the creation of numerical models in Earth surface dynamics. Since the release of the 1.0 version in 2017, Landlab has grown and evolved: it contains 31 new process components, a refactored model grid, and additional utilities. This contribution describes the new elements of Landlab, discusses why certain backward-compatiblity-breaking changes were made, and reflects on the process of community open-source software development.
Mattia Righi, Bouwe Andela, Veronika Eyring, Axel Lauer, Valeriu Predoi, Manuel Schlund, Javier Vegas-Regidor, Lisa Bock, Björn Brötz, Lee de Mora, Faruk Diblen, Laura Dreyer, Niels Drost, Paul Earnshaw, Birgit Hassler, Nikolay Koldunov, Bill Little, Saskia Loosveldt Tomas, and Klaus Zimmermann
Geosci. Model Dev., 13, 1179–1199, https://doi.org/10.5194/gmd-13-1179-2020, https://doi.org/10.5194/gmd-13-1179-2020, 2020
Short summary
Short summary
This paper describes the second major release of ESMValTool, a community diagnostic and performance metrics tool for the evaluation of Earth system models. This new version features a brand new design, with an improved interface and a revised preprocessor. It takes advantage of state-of-the-art computational libraries and methods to deploy efficient and user-friendly data processing, improving the performance over its predecessor by more than a factor of 30.
Rolf Hut, Casper Albers, Sam Illingworth, and Chris Skinner
Geosci. Commun., 2, 117–124, https://doi.org/10.5194/gc-2-117-2019, https://doi.org/10.5194/gc-2-117-2019, 2019
Short summary
Short summary
Game worlds in modern computer games, while they include very Earth-like landscapes, are ultimately fake. Since games can be used for learning, we wondered if people pick up wrong information from games. Using a survey we tested if people with a background in geoscience are better than people without such a background at distinguishing if game landscapes are realistic. We found that geoscientists are significantly better at this, but the difference is small and overall everyone is good at it.
Peter C. Kalverla, James B. Duncan Jr., Gert-Jan Steeneveld, and Albert A. M. Holtslag
Wind Energ. Sci., 4, 193–209, https://doi.org/10.5194/wes-4-193-2019, https://doi.org/10.5194/wes-4-193-2019, 2019
Short summary
Short summary
A common assumption in the design of wind turbines and wind farms is that the wind field is quite uniform. This assumption is violated during so-called low-level jet events, when there is a distinct peak in the wind speed. Low-level jets modify loads on the turbines and also affect power production. To understand their impact and facilitate better planning and design, we present a detailed climatology of these events over the North Sea, based on offshore measurements and meteorological models.
Jeffrey C. Davids, Martine M. Rutten, Anusha Pandey, Nischal Devkota, Wessel David van Oyen, Rajaram Prajapati, and Nick van de Giesen
Hydrol. Earth Syst. Sci., 23, 1045–1065, https://doi.org/10.5194/hess-23-1045-2019, https://doi.org/10.5194/hess-23-1045-2019, 2019
Short summary
Short summary
Wise management of water resources requires data. Nevertheless, the amount of water data being collected continues to decline. We evaluated potential citizen science approaches for measuring flows of headwater streams and springs. After selecting salt dilution as the preferred approach, we partnered with Nepali students to cost-effectively measure flows and water quality with smartphones at 264 springs and streams which provide crucial water supplies to the rapidly expanding Kathmandu Valley.
Gemma J. Venhuizen, Rolf Hut, Casper Albers, Cathelijne R. Stoof, and Ionica Smeets
Hydrol. Earth Syst. Sci., 23, 393–403, https://doi.org/10.5194/hess-23-393-2019, https://doi.org/10.5194/hess-23-393-2019, 2019
Short summary
Short summary
Do experts attach the same meaning as laypeople to terms often used in hydrology such as "river", "flooding" and "downstream"? In this study a survey was completed by 34 experts and 119 laypeople to answer this question. We found that there are some profound differences between experts and laypeople: words like "river" and "river basin" turn out to have a different interpretation between the two groups. However, when using pictures there is much more agreement between the groups.
Tim van Emmerik, Susan Steele-Dunne, Pierre Gentine, Rafael S. Oliveira, Paulo Bittencourt, Fernanda Barros, and Nick van de Giesen
Biogeosciences, 15, 6439–6449, https://doi.org/10.5194/bg-15-6439-2018, https://doi.org/10.5194/bg-15-6439-2018, 2018
Short summary
Short summary
Trees are very important for the water and carbon cycles. Climate and weather models often assume constant vegetation parameters because good measurements are missing. We used affordable accelerometers to measure tree sway of 19 trees in the Amazon rainforest. We show that trees respond very differently to the same weather conditions, which means that vegetation parameters are dynamic. With our measurements trees can be accounted for more realistically, improving climate and weather models.
Stefanie R. Lutz, Andrea Popp, Tim van Emmerik, Tom Gleeson, Liz Kalaugher, Karsten Möbius, Tonie Mudde, Brett Walton, Rolf Hut, Hubert Savenije, Louise J. Slater, Anna Solcerova, Cathelijne R. Stoof, and Matthias Zink
Hydrol. Earth Syst. Sci., 22, 3589–3599, https://doi.org/10.5194/hess-22-3589-2018, https://doi.org/10.5194/hess-22-3589-2018, 2018
Short summary
Short summary
Media play a key role in the communication between scientists and the general public. However, the interaction between scientists and journalists is not always straightforward. In this opinion paper, we present insights from hydrologists and journalists into the benefits, aftermath and potential pitfalls of science–media interaction. We aim to encourage scientists to participate in the diverse and evolving media landscape, and we call on the scientific community to support scientists who do so.
Edwin H. Sutanudjaja, Rens van Beek, Niko Wanders, Yoshihide Wada, Joyce H. C. Bosmans, Niels Drost, Ruud J. van der Ent, Inge E. M. de Graaf, Jannis M. Hoch, Kor de Jong, Derek Karssenberg, Patricia López López, Stefanie Peßenteiner, Oliver Schmitz, Menno W. Straatsma, Ekkamol Vannametee, Dominik Wisser, and Marc F. P. Bierkens
Geosci. Model Dev., 11, 2429–2453, https://doi.org/10.5194/gmd-11-2429-2018, https://doi.org/10.5194/gmd-11-2429-2018, 2018
Short summary
Short summary
PCR-GLOBWB 2 is an integrated hydrology and water resource model that fully integrates water use simulation and consolidates all features that have been developed since PCR-GLOBWB 1 was introduced. PCR-GLOBWB 2 can have a global coverage at 5 arcmin resolution and supersedes PCR-GLOBWB 1, which has a resolution of 30 arcmin only. Comparing the 5 arcmin with 30 arcmin simulations using discharge data, we clearly find improvement in the model performance of the higher-resolution model.
Elena Cristiano, Marie-Claire ten Veldhuis, Santiago Gaitan, Susana Ochoa Rodriguez, and Nick van de Giesen
Hydrol. Earth Syst. Sci., 22, 2425–2447, https://doi.org/10.5194/hess-22-2425-2018, https://doi.org/10.5194/hess-22-2425-2018, 2018
Short summary
Short summary
In this work we investigate the influence rainfall and catchment scales have on hydrological response. This problem is quite relevant in urban areas, where the response is fast due to the high degree of imperviousness. We presented a new approach to classify rainfall variability in space and time and use this classification to investigate rainfall aggregation effects on urban hydrological response. This classification allows the spatial extension of the main core of the storm to be identified.
Koen Hilgersom, Marcel Zijlema, and Nick van de Giesen
Geosci. Model Dev., 11, 521–540, https://doi.org/10.5194/gmd-11-521-2018, https://doi.org/10.5194/gmd-11-521-2018, 2018
Short summary
Short summary
This study models the local inflow of groundwater at the bottom of a stream with large density gradients between the groundwater and surface water. Modelling salt and heat transport in a water body is very challenging, as it requires large computation times. Due to the circular local groundwater inflow and a negligible stream discharge, we assume axisymmetry around the inflow, which is easily implemented in an existing model, largely reduces the computation times, and still performs accurately.
Hubertus M. Coerver, Martine M. Rutten, and Nick C. van de Giesen
Hydrol. Earth Syst. Sci., 22, 831–851, https://doi.org/10.5194/hess-22-831-2018, https://doi.org/10.5194/hess-22-831-2018, 2018
Short summary
Short summary
Global hydrological models aim to model hydrological processes, like flows in a river, on a global scale, as opposed to traditional models which are regional. A big challenge in creating these models is the inclusion of impacts on the hydrological cycle caused by humans, for example by the operation of large (hydropower) dams. The presented study investigates a new way to include these impacts by dams into global hydrological models.
Inti Pelupessy, Ben van Werkhoven, Arjen van Elteren, Jan Viebahn, Adam Candy, Simon Portegies Zwart, and Henk Dijkstra
Geosci. Model Dev., 10, 3167–3187, https://doi.org/10.5194/gmd-10-3167-2017, https://doi.org/10.5194/gmd-10-3167-2017, 2017
Short summary
Short summary
Researchers from the Netherlands present OMUSE, a software package
developed from core technology originating in the astrophysical
community. Using OMUSE, oceanographic and climate researchers can
develop numerical models of the ocean and the interactions between
different parts of the ocean and the atmosphere. This provides a novel
way to investigate, for example, the local effects of climate change on
the ocean. OMUSE is freely available as open-source software.
Natalie C. Ceperley, Theophile Mande, Nick van de Giesen, Scott Tyler, Hamma Yacouba, and Marc B. Parlange
Hydrol. Earth Syst. Sci., 21, 4149–4167, https://doi.org/10.5194/hess-21-4149-2017, https://doi.org/10.5194/hess-21-4149-2017, 2017
Short summary
Short summary
We relate land cover (savanna forest and agriculture) to evaporation in Burkina Faso, west Africa. We observe more evaporation and temperature movement over the savanna forest in the headwater area relative to the agricultural section of the watershed. We find that the fraction of available energy converted to evaporation relates to vegetation cover and soil moisture. From the results, evaporation can be calculated where ground-based measurements are lacking, frequently the case across Africa.
Elena Cristiano, Marie-Claire ten Veldhuis, and Nick van de Giesen
Hydrol. Earth Syst. Sci., 21, 3859–3878, https://doi.org/10.5194/hess-21-3859-2017, https://doi.org/10.5194/hess-21-3859-2017, 2017
Short summary
Short summary
In the last decades, new instruments were developed to measure rainfall and hydrological processes at high resolution. Weather radars are used, for example, to measure how rainfall varies in space and time. At the same time, new models were proposed to reproduce and predict hydrological response, in order to prevent flooding in urban areas. This paper presents a review of our current knowledge of rainfall and hydrological processes in urban areas, focusing on their variability in time and space.
Jordan M. Adams, Nicole M. Gasparini, Daniel E. J. Hobley, Gregory E. Tucker, Eric W. H. Hutton, Sai S. Nudurupati, and Erkan Istanbulluoglu
Geosci. Model Dev., 10, 1645–1663, https://doi.org/10.5194/gmd-10-1645-2017, https://doi.org/10.5194/gmd-10-1645-2017, 2017
Short summary
Short summary
OverlandFlow is a 2-dimensional hydrology component contained within the Landlab modeling framework. It can be applied in both hydrology and geomorphology applications across real and synthetic landscape grids, for both short- and long-term events. This paper finds that this non-steady hydrology regime produces different landscape characteristics when compared to more traditional steady-state hydrology and geomorphology models, suggesting that hydrology regime can impact resulting morphologies.
S.-E. Brunnabend, H. A. Dijkstra, M. A. Kliphuis, H. E. Bal, F. Seinstra, B. van Werkhoven, J. Maassen, and M. van Meersbergen
Ocean Sci., 13, 47–60, https://doi.org/10.5194/os-13-47-2017, https://doi.org/10.5194/os-13-47-2017, 2017
Short summary
Short summary
An important contribution to future changes in regional sea level extremes is due to the changes in intrinsic ocean variability, in particular ocean eddies. Here, we study a scenario of future dynamic sea level (DSL) extremes using a strongly eddying version of the Parallel Ocean Program. Changes in 10-year return time DSL extremes are very inhomogeneous over the globe and are related to changes in ocean currents and corresponding regional shifts in ocean eddy pathways.
Daniel E. J. Hobley, Jordan M. Adams, Sai Siddhartha Nudurupati, Eric W. H. Hutton, Nicole M. Gasparini, Erkan Istanbulluoglu, and Gregory E. Tucker
Earth Surf. Dynam., 5, 21–46, https://doi.org/10.5194/esurf-5-21-2017, https://doi.org/10.5194/esurf-5-21-2017, 2017
Short summary
Short summary
Many geoscientists use computer models to understand changes in the Earth's system. However, typically each scientist will build their own model from scratch. This paper describes Landlab, a new piece of open-source software designed to simplify creation and use of models of the Earth's surface. It provides off-the-shelf tools to work with models more efficiently, with less duplication of effort. The paper explains and justifies how Landlab works, and describes some models built with it.
Rolf Hut, Niels Drost, Maarten van Meersbergen, Edwin Sutanudjaja, Marc Bierkens, and Nick van de Giesen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-225, https://doi.org/10.5194/gmd-2016-225, 2016
Revised manuscript not accepted
Short summary
Short summary
A system that predicts the amount of water flowing in each river on earth, 9 days ahead, is build using existing parts of open source computer code build by different researchers in other projects.
The glue between all pre-existing parts are all open interfaces which means that the pieces system click together like a house of LEGOs. It is easy to remove a piece (a brick) and replace it with another, improved, piece.
The resulting predictions are available online at forecast.ewatercycle.org
Rolf Hut, Anne M. Land-Zandstra, Ionica Smeets, and Cathelijne R. Stoof
Hydrol. Earth Syst. Sci., 20, 2507–2518, https://doi.org/10.5194/hess-20-2507-2016, https://doi.org/10.5194/hess-20-2507-2016, 2016
Short summary
Short summary
To help geo-scientists prepare for TV appearances, we review the scientific literature on effective science communication related to TV. We identify six main themes: scientist motivation, target audience, narratives and storytelling, jargon and information transfer, relationship between scientists and journalists, and stereotypes of scientists on TV. We provide a detailed case study as illustration for each theme.
Koen Hilgersom, Tim van Emmerik, Anna Solcerova, Wouter Berghuijs, John Selker, and Nick van de Giesen
Geosci. Instrum. Method. Data Syst., 5, 151–162, https://doi.org/10.5194/gi-5-151-2016, https://doi.org/10.5194/gi-5-151-2016, 2016
Short summary
Short summary
Fibre optic distributed temperature sensing allows one to measure temperature patterns along a fibre optic cable with resolutions down to 25 cm. In geosciences, we sometimes wrap the cable to a coil to measure temperature at even smaller scales. We show that coils with narrow bends affect the measured temperatures. This also holds for the object to which the coil is attached, when heated by solar radiation. We therefore recommend the necessity to carefully design such distributed temperature probes.
Gregory E. Tucker, Daniel E. J. Hobley, Eric Hutton, Nicole M. Gasparini, Erkan Istanbulluoglu, Jordan M. Adams, and Sai Siddartha Nudurupati
Geosci. Model Dev., 9, 823–839, https://doi.org/10.5194/gmd-9-823-2016, https://doi.org/10.5194/gmd-9-823-2016, 2016
Short summary
Short summary
This paper presents a new Python-language software library, called CellLab-CTS, that enables rapid creation of continuous-time stochastic (CTS) cellular automata models. These models are quite useful for simulating the behavior of natural systems, but can be time-consuming to program. CellLab-CTS allows users to set up models with a minimum of effort, and thereby focus on the science rather than the software.
Rolf Hut, Scott Tyler, and Tim van Emmerik
Geosci. Instrum. Method. Data Syst., 5, 45–51, https://doi.org/10.5194/gi-5-45-2016, https://doi.org/10.5194/gi-5-45-2016, 2016
Short summary
Short summary
Temperature-sensor-incorporated waders worn by the public can give scientists an additional source of information on stream water-groundwater interaction. A pair of waders was equipped with a thermistor and calibrated in the lab. Field tests in a deep polder ditch with a known localized groundwater contribution showed that the waders are capable of identifying the boil location. This can be used to decide where the most interesting places are to do more detailed and more expensive research.
K. E. R. Pramana, M. W. Ertsen, and N. C. van de Giesen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-9489-2015, https://doi.org/10.5194/hessd-12-9489-2015, 2015
Revised manuscript not accepted
J. Hoogeveen, J.-M. Faurès, L. Peiser, J. Burke, and N. van de Giesen
Hydrol. Earth Syst. Sci., 19, 3829–3844, https://doi.org/10.5194/hess-19-3829-2015, https://doi.org/10.5194/hess-19-3829-2015, 2015
Short summary
Short summary
GlobWat is a freely distributed, global soil water balance model that is used by FAO to assess water use in irrigated agriculture, the main factor behind scarcity of freshwater in an increasing number of regions. The model is based on spatially distributed high-resolution data sets that are consistent at global level and is calibrated and validated against information published in global databases. The paper describes methodology, input and output data, calibration and validation of the model.
G. Bruni, R. Reinoso, N. C. van de Giesen, F. H. L. R. Clemens, and J. A. E. ten Veldhuis
Hydrol. Earth Syst. Sci., 19, 691–709, https://doi.org/10.5194/hess-19-691-2015, https://doi.org/10.5194/hess-19-691-2015, 2015
S. A. P. de Jong, J. D. Slingerland, and N. C. van de Giesen
Atmos. Meas. Tech., 8, 335–339, https://doi.org/10.5194/amt-8-335-2015, https://doi.org/10.5194/amt-8-335-2015, 2015
Short summary
Short summary
By using two cylindrical thermometers with different diameters, one can determine what temperature a zero diameter thermometer would have. Such a virtual thermometer would not be affected by solar heating and would take on the temperature of the surrounding air. We applied this principle to atmospheric temperature measurements with fiber optic cables using distributed temperature sensing (DTS). With two unshielded cable pairs, one black pair and one white pair, good results were obtained.
S.-E. Brunnabend, H. A. Dijkstra, M. A. Kliphuis, B. van Werkhoven, H. E. Bal, F. Seinstra, J. Maassen, and M. van Meersbergen
Ocean Sci., 10, 881–891, https://doi.org/10.5194/os-10-881-2014, https://doi.org/10.5194/os-10-881-2014, 2014
Short summary
Short summary
Regional sea surface height (SSH) changes due to an abrupt weakening of the Atlantic meridional overturning circulation (AMOC) are simulated with a high- and low-resolution model. A rapid decrease of the AMOC in the high-resolution version induces shorter return times of several specific regional and coastal extremes in North Atlantic SSH than in the low-resolution version. This effect is caused by a change in main eddy pathways associated with a change in separation latitude of the Gulf Stream.
B. van Werkhoven, J. Maassen, M. Kliphuis, H. A. Dijkstra, S. E. Brunnabend, M. van Meersbergen, F. J. Seinstra, and H. E. Bal
Geosci. Model Dev., 7, 267–281, https://doi.org/10.5194/gmd-7-267-2014, https://doi.org/10.5194/gmd-7-267-2014, 2014
S. V. Weijs, N. van de Giesen, and M. B. Parlange
Hydrol. Earth Syst. Sci., 17, 3171–3187, https://doi.org/10.5194/hess-17-3171-2013, https://doi.org/10.5194/hess-17-3171-2013, 2013
O. A. C. Hoes, R. W. Hut, N. C. van de Giesen, and M. Boomgaard
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-1-417-2013, https://doi.org/10.5194/nhessd-1-417-2013, 2013
Revised manuscript has not been submitted
Related subject area
Hydrology
Generalised drought index: a novel multi-scale daily approach for drought assessment
Development and performance of a high-resolution surface wave and storm surge forecast model: application to a large lake
Deep dive into hydrologic simulations at global scale: harnessing the power of deep learning and physics-informed differentiable models (δHBV-globe1.0-hydroDL)
PyEt v1.3.1: a Python package for the estimation of potential evapotranspiration
Prediction of hysteretic matric potential dynamics using artificial intelligence: application of autoencoder neural networks
Regionalization in global hydrological models and its impact on runoff simulations: a case study using WaterGAP3 (v 1.0.0)
STORM v.2: A simple, stochastic rainfall model for exploring the impacts of climate and climate change at and near the land surface in gauged watersheds
Fluvial flood inundation and socio-economic impact model based on open data
RoGeR v3.0.5 – a process-based hydrological toolbox model in Python
Coupling a large-scale glacier and hydrological model (OGGM v1.5.3 and CWatM V1.08) – towards an improved representation of mountain water resources in global assessments
An open-source refactoring of the Canadian Small Lakes Model for estimates of evaporation from medium-sized reservoirs
EvalHyd v0.1.2: a polyglot tool for the evaluation of deterministic and probabilistic streamflow predictions
Modelling water quantity and quality for integrated water cycle management with the Water Systems Integrated Modelling framework (WSIMOD) software
HGS-PDAF (version 1.0): a modular data assimilation framework for an integrated surface and subsurface hydrological model
Wflow_sbm v0.7.3, a spatially distributed hydrological model: from global data to local applications
Reservoir Assessment Tool version 3.0: a scalable and user-friendly software platform to mobilize the global water management community
HydroFATE (v1): a high-resolution contaminant fate model for the global river system
Validation of a new global irrigation scheme in the land surface model ORCHIDEE v2.2
GPEP v1.0: the Geospatial Probabilistic Estimation Package to support Earth science applications
GEMS v1.0: Generalizable Empirical Model of Snow Accumulation and Melt, based on daily snow mass changes in response to climate and topographic drivers
mesas.py v1.0: a flexible Python package for modeling solute transport and transit times using StorAge Selection functions
rSHUD v2.0: advancing the Simulator for Hydrologic Unstructured Domains and unstructured hydrological modeling in the R environment
GLOBGM v1.0: a parallel implementation of a 30 arcsec PCR-GLOBWB-MODFLOW global-scale groundwater model
Development of inter-grid-cell lateral unsaturated and saturated flow model in the E3SM Land Model (v2.0)
The global water resources and use model WaterGAP v2.2e: description and evaluation of modifications and new features
pyESDv1.0.1: an open-source Python framework for empirical-statistical downscaling of climate information
Representing the impact of Rhizophora mangroves on flow in a hydrodynamic model (COAWST_rh v1.0): the importance of three-dimensional root system structures
Dynamically weighted ensemble of geoscientific models via automated machine-learning-based classification
Enhancing the representation of water management in global hydrological models
NEOPRENE v1.0.1: a Python library for generating spatial rainfall based on the Neyman–Scott process
Uncertainty estimation for a new exponential-filter-based long-term root-zone soil moisture dataset from Copernicus Climate Change Service (C3S) surface observations
Validating the Nernst–Planck transport model under reaction-driven flow conditions using RetroPy v1.0
DynQual v1.0: a high-resolution global surface water quality model
Data space inversion for efficient uncertainty quantification using an integrated surface and sub-surface hydrologic model
Simulation of crop yield using the global hydrological model H08 (crp.v1)
How is a global sensitivity analysis of a catchment-scale, distributed pesticide transfer model performed? Application to the PESHMELBA model
iHydroSlide3D v1.0: an advanced hydrological–geotechnical model for hydrological simulation and three-dimensional landslide prediction
GEB v0.1: a large-scale agent-based socio-hydrological model – simulating 10 million individual farming households in a fully distributed hydrological model
Tracing and visualisation of contributing water sources in the LISFLOOD-FP model of flood inundation (within CAESAR-Lisflood version 1.9j-WS)
Continental-scale evaluation of a fully distributed coupled land surface and groundwater model, ParFlow-CLM (v3.6.0), over Europe
Evaluating a global soil moisture dataset from a multitask model (GSM3 v1.0) with potential applications for crop threats
SERGHEI (SERGHEI-SWE) v1.0: a performance-portable high-performance parallel-computing shallow-water solver for hydrology and environmental hydraulics
A simple, efficient, mass-conservative approach to solving Richards' equation (openRE, v1.0)
Customized deep learning for precipitation bias correction and downscaling
Implementation and sensitivity analysis of the Dam-Reservoir OPeration model (DROP v1.0) over Spain
Regional coupled surface–subsurface hydrological model fitting based on a spatially distributed minimalist reduction of frequency domain discharge data
Operational water forecast ability of the HRRR-iSnobal combination: an evaluation to adapt into production environments
Prediction of algal blooms via data-driven machine learning models: an evaluation using data from a well-monitored mesotrophic lake
UniFHy v0.1.1: a community modelling framework for the terrestrial water cycle in Python
Basin-scale gyres and mesoscale eddies in large lakes: a novel procedure for their detection and characterization, assessed in Lake Geneva
João António Martins Careto, Rita Margarida Cardoso, Ana Russo, Daniela Catarina André Lima, and Pedro Miguel Matos Soares
Geosci. Model Dev., 17, 8115–8139, https://doi.org/10.5194/gmd-17-8115-2024, https://doi.org/10.5194/gmd-17-8115-2024, 2024
Short summary
Short summary
This study proposes a new daily drought index, the generalised drought index (GDI). The GDI not only identifies the same events as established indices but is also capable of improving their results. The index is empirically based and easy to compute, not requiring fitting the data to a probability distribution. The GDI can detect flash droughts and longer-term events, making it a versatile tool for drought monitoring.
Laura L. Swatridge, Ryan P. Mulligan, Leon Boegman, and Shiliang Shan
Geosci. Model Dev., 17, 7751–7766, https://doi.org/10.5194/gmd-17-7751-2024, https://doi.org/10.5194/gmd-17-7751-2024, 2024
Short summary
Short summary
We develop an operational forecast system, Coastlines-LO, that can simulate water levels and surface waves in Lake Ontario driven by forecasts of wind speeds and pressure fields from an atmospheric model. The model has relatively low computational requirements, and results compare well with near-real-time observations, as well as with results from other existing forecast systems. Results show that with shorter forecast lengths, storm surge and wave predictions can improve in accuracy.
Dapeng Feng, Hylke Beck, Jens de Bruijn, Reetik Kumar Sahu, Yusuke Satoh, Yoshihide Wada, Jiangtao Liu, Ming Pan, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 17, 7181–7198, https://doi.org/10.5194/gmd-17-7181-2024, https://doi.org/10.5194/gmd-17-7181-2024, 2024
Short summary
Short summary
Accurate hydrologic modeling is vital to characterizing water cycle responses to climate change. For the first time at this scale, we use differentiable physics-informed machine learning hydrologic models to simulate rainfall–runoff processes for 3753 basins around the world and compare them with purely data-driven and traditional modeling approaches. This sets a benchmark for hydrologic estimates around the world and builds foundations for improving global hydrologic simulations.
Matevž Vremec, Raoul A. Collenteur, and Steffen Birk
Geosci. Model Dev., 17, 7083–7103, https://doi.org/10.5194/gmd-17-7083-2024, https://doi.org/10.5194/gmd-17-7083-2024, 2024
Short summary
Short summary
Geoscientists commonly use various potential evapotranpiration (PET) formulas for environmental studies, which can be prone to errors and sensitive to climate change. PyEt, a tested and open-source Python package, simplifies the application of 20 PET methods for both time series and gridded data, ensuring accurate and consistent PET estimations suitable for a wide range of environmental applications.
Nedal Aqel, Lea Reusser, Stephan Margreth, Andrea Carminati, and Peter Lehmann
Geosci. Model Dev., 17, 6949–6966, https://doi.org/10.5194/gmd-17-6949-2024, https://doi.org/10.5194/gmd-17-6949-2024, 2024
Short summary
Short summary
The soil water potential (SWP) determines various soil water processes. Since remote sensing techniques cannot measure it directly, it is often deduced from volumetric water content (VWC) information. However, under dynamic field conditions, the relationship between SWP and VWC is highly ambiguous due to different factors that cannot be modeled with the classical approach. Applying a deep neural network with an autoencoder enables the prediction of the dynamic SWP.
Jenny Kupzig, Nina Kupzig, and Martina Flörke
Geosci. Model Dev., 17, 6819–6846, https://doi.org/10.5194/gmd-17-6819-2024, https://doi.org/10.5194/gmd-17-6819-2024, 2024
Short summary
Short summary
Valid simulation results from global hydrological models (GHMs) are essential, e.g., to studying climate change impacts. Adapting GHMs to ungauged basins requires regionalization, enabling valid simulations. In this study, we highlight the impact of regionalization of GHMs on runoff simulations using an ensemble of regionalization methods for WaterGAP3. We have found that regionalization leads to temporally and spatially varying uncertainty, potentially reaching up to inter-model differences.
Manuel F. Rios Gaona, Katerina Michaelides, and Michael Bliss Singer
Geosci. Model Dev., 17, 5387–5412, https://doi.org/10.5194/gmd-17-5387-2024, https://doi.org/10.5194/gmd-17-5387-2024, 2024
Short summary
Short summary
STORM v.2 (short for STOchastic Rainfall Model version 2.0) is an open-source and user-friendly modelling framework for simulating rainfall fields over a basin. It also allows simulating the impact of plausible climate change either on the total seasonal rainfall or the storm’s maximum intensity.
Lukas Riedel, Thomas Röösli, Thomas Vogt, and David N. Bresch
Geosci. Model Dev., 17, 5291–5308, https://doi.org/10.5194/gmd-17-5291-2024, https://doi.org/10.5194/gmd-17-5291-2024, 2024
Short summary
Short summary
River floods are among the most devastating natural hazards. We propose a flood model with a statistical approach based on openly available data. The model is integrated in a framework for estimating impacts of physical hazards. Although the model only agrees moderately with satellite-detected flood extents, we show that it can be used for forecasting the magnitude of flood events in terms of socio-economic impacts and for comparing these with past events.
Robin Schwemmle, Hannes Leistert, Andreas Steinbrich, and Markus Weiler
Geosci. Model Dev., 17, 5249–5262, https://doi.org/10.5194/gmd-17-5249-2024, https://doi.org/10.5194/gmd-17-5249-2024, 2024
Short summary
Short summary
The new process-based hydrological toolbox model, RoGeR (https://roger.readthedocs.io/), can be used to estimate the components of the hydrological cycle and the related travel times of pollutants through parts of the hydrological cycle. These estimations may contribute to effective water resources management. This paper presents the toolbox concept and provides a simple example of providing estimations to water resources management.
Sarah Hanus, Lilian Schuster, Peter Burek, Fabien Maussion, Yoshihide Wada, and Daniel Viviroli
Geosci. Model Dev., 17, 5123–5144, https://doi.org/10.5194/gmd-17-5123-2024, https://doi.org/10.5194/gmd-17-5123-2024, 2024
Short summary
Short summary
This study presents a coupling of the large-scale glacier model OGGM and the hydrological model CWatM. Projected future increase in discharge is less strong while future decrease in discharge is stronger when glacier runoff is explicitly included in the large-scale hydrological model. This is because glacier runoff is projected to decrease in nearly all basins. We conclude that an improved glacier representation can prevent underestimating future discharge changes in large river basins.
M. Graham Clark and Sean K. Carey
Geosci. Model Dev., 17, 4911–4922, https://doi.org/10.5194/gmd-17-4911-2024, https://doi.org/10.5194/gmd-17-4911-2024, 2024
Short summary
Short summary
This paper provides validation of the Canadian Small Lakes Model (CSLM) for estimating evaporation rates from reservoirs and a refactoring of the original FORTRAN code into MATLAB and Python, which are now stored in GitHub repositories. Here we provide direct observations of the surface energy exchange obtained with an eddy covariance system to validate the CSLM. There was good agreement between observations and estimations except under specific atmospheric conditions when evaporation is low.
Thibault Hallouin, François Bourgin, Charles Perrin, Maria-Helena Ramos, and Vazken Andréassian
Geosci. Model Dev., 17, 4561–4578, https://doi.org/10.5194/gmd-17-4561-2024, https://doi.org/10.5194/gmd-17-4561-2024, 2024
Short summary
Short summary
The evaluation of the quality of hydrological model outputs against streamflow observations is widespread in the hydrological literature. In order to improve on the reproducibility of published studies, a new evaluation tool dedicated to hydrological applications is presented. It is open source and usable in a variety of programming languages to make it as accessible as possible to the community. Thus, authors and readers alike can use the same tool to produce and reproduce the results.
Barnaby Dobson, Leyang Liu, and Ana Mijic
Geosci. Model Dev., 17, 4495–4513, https://doi.org/10.5194/gmd-17-4495-2024, https://doi.org/10.5194/gmd-17-4495-2024, 2024
Short summary
Short summary
Water management is challenging when models don't capture the entire water cycle. We propose that using integrated models facilitates management and improves understanding. We introduce a software tool designed for this task. We discuss its foundation, how it simulates water system components and their interactions, and its customisation. We provide a flexible way to represent water systems, and we hope it will inspire more research and practical applications for sustainable water management.
Qi Tang, Hugo Delottier, Wolfgang Kurtz, Lars Nerger, Oliver S. Schilling, and Philip Brunner
Geosci. Model Dev., 17, 3559–3578, https://doi.org/10.5194/gmd-17-3559-2024, https://doi.org/10.5194/gmd-17-3559-2024, 2024
Short summary
Short summary
We have developed a new data assimilation framework by coupling an integrated hydrological model HydroGeoSphere with the data assimilation software PDAF. Compared to existing hydrological data assimilation systems, the advantage of our newly developed framework lies in its consideration of the physically based model; its large selection of different assimilation algorithms; and its modularity with respect to the combination of different types of observations, states and parameters.
Willem J. van Verseveld, Albrecht H. Weerts, Martijn Visser, Joost Buitink, Ruben O. Imhoff, Hélène Boisgontier, Laurène Bouaziz, Dirk Eilander, Mark Hegnauer, Corine ten Velden, and Bobby Russell
Geosci. Model Dev., 17, 3199–3234, https://doi.org/10.5194/gmd-17-3199-2024, https://doi.org/10.5194/gmd-17-3199-2024, 2024
Short summary
Short summary
We present the wflow_sbm distributed hydrological model, recently released by Deltares, as part of the Wflow.jl open-source modelling framework in the programming language Julia. Wflow_sbm has a fast runtime, making it suitable for large-scale modelling. Wflow_sbm models can be set a priori for any catchment with the Python tool HydroMT-Wflow based on globally available datasets, which results in satisfactory to good performance (without much tuning). We show this for a number of specific cases.
Sanchit Minocha, Faisal Hossain, Pritam Das, Sarath Suresh, Shahzaib Khan, George Darkwah, Hyongki Lee, Stefano Galelli, Konstantinos Andreadis, and Perry Oddo
Geosci. Model Dev., 17, 3137–3156, https://doi.org/10.5194/gmd-17-3137-2024, https://doi.org/10.5194/gmd-17-3137-2024, 2024
Short summary
Short summary
The Reservoir Assessment Tool (RAT) merges satellite data with hydrological models, enabling robust estimation of reservoir parameters like inflow, outflow, surface area, and storage changes around the world. Version 3.0 of RAT lowers the barrier of entry for new users and achieves scalability and computational efficiency. RAT 3.0 also facilitates open-source development of functions for continuous improvement to mobilize and empower the global water management community.
Heloisa Ehalt Macedo, Bernhard Lehner, Jim Nicell, and Günther Grill
Geosci. Model Dev., 17, 2877–2899, https://doi.org/10.5194/gmd-17-2877-2024, https://doi.org/10.5194/gmd-17-2877-2024, 2024
Short summary
Short summary
Treated and untreated wastewaters are sources of contaminants of emerging concern. HydroFATE, a new global model, estimates their concentrations in surface waters, identifying streams that are most at risk and guiding monitoring/mitigation efforts to safeguard aquatic ecosystems and human health. Model predictions were validated against field measurements of the antibiotic sulfamethoxazole, with predicted concentrations exceeding ecological thresholds in more than 400 000 km of rivers worldwide.
Pedro Felipe Arboleda-Obando, Agnès Ducharne, Zun Yin, and Philippe Ciais
Geosci. Model Dev., 17, 2141–2164, https://doi.org/10.5194/gmd-17-2141-2024, https://doi.org/10.5194/gmd-17-2141-2024, 2024
Short summary
Short summary
We show a new irrigation scheme included in the ORCHIDEE land surface model. The new irrigation scheme restrains irrigation due to water shortage, includes water adduction, and represents environmental limits and facilities to access water, due to representing infrastructure in a simple way. Our results show that the new irrigation scheme helps simulate acceptable land surface conditions and fluxes in irrigated areas, even if there are difficulties due to shortcomings and limited information.
Guoqiang Tang, Andrew W. Wood, Andrew J. Newman, Martyn P. Clark, and Simon Michael Papalexiou
Geosci. Model Dev., 17, 1153–1173, https://doi.org/10.5194/gmd-17-1153-2024, https://doi.org/10.5194/gmd-17-1153-2024, 2024
Short summary
Short summary
Ensemble geophysical datasets are crucial for understanding uncertainties and supporting probabilistic estimation/prediction. However, open-access tools for creating these datasets are limited. We have developed the Python-based Geospatial Probabilistic Estimation Package (GPEP). Through several experiments, we demonstrate GPEP's ability to estimate precipitation, temperature, and snow water equivalent. GPEP will be a useful tool to support uncertainty analysis in Earth science applications.
Atabek Umirbekov, Richard Essery, and Daniel Müller
Geosci. Model Dev., 17, 911–929, https://doi.org/10.5194/gmd-17-911-2024, https://doi.org/10.5194/gmd-17-911-2024, 2024
Short summary
Short summary
We present a parsimonious snow model which simulates snow mass without the need for extensive calibration. The model is based on a machine learning algorithm that has been trained on diverse set of daily observations of snow accumulation or melt, along with corresponding climate and topography data. We validated the model using in situ data from numerous new locations. The model provides a promising solution for accurate snow mass estimation across regions where in situ data are limited.
Ciaran J. Harman and Esther Xu Fei
Geosci. Model Dev., 17, 477–495, https://doi.org/10.5194/gmd-17-477-2024, https://doi.org/10.5194/gmd-17-477-2024, 2024
Short summary
Short summary
Over the last 10 years, scientists have developed StorAge Selection: a new way of modeling how material is transported through complex systems. Here, we present some new, easy-to-use, flexible, and very accurate code for implementing this method. We show that, in cases where we know exactly what the answer should be, our code gets the right answer. We also show that our code is closer than some other codes to the right answer in an important way: it conserves mass.
Lele Shu, Paul Ullrich, Xianhong Meng, Christopher Duffy, Hao Chen, and Zhaoguo Li
Geosci. Model Dev., 17, 497–527, https://doi.org/10.5194/gmd-17-497-2024, https://doi.org/10.5194/gmd-17-497-2024, 2024
Short summary
Short summary
Our team developed rSHUD v2.0, a toolkit that simplifies the use of the SHUD, a model simulating water movement in the environment. We demonstrated its effectiveness in two watersheds, one in the USA and one in China. The toolkit also facilitated the creation of the Global Hydrological Data Cloud, a platform for automatic data processing and model deployment, marking a significant advancement in hydrological research.
Jarno Verkaik, Edwin H. Sutanudjaja, Gualbert H. P. Oude Essink, Hai Xiang Lin, and Marc F. P. Bierkens
Geosci. Model Dev., 17, 275–300, https://doi.org/10.5194/gmd-17-275-2024, https://doi.org/10.5194/gmd-17-275-2024, 2024
Short summary
Short summary
This paper presents the parallel PCR-GLOBWB global-scale groundwater model at 30 arcsec resolution (~1 km at the Equator). Named GLOBGM v1.0, this model is a follow-up of the 5 arcmin (~10 km) model, aiming for a higher-resolution simulation of worldwide fresh groundwater reserves under climate change and excessive pumping. For a long transient simulation using a parallel prototype of MODFLOW 6, we show that our implementation is efficient for a relatively low number of processor cores.
Han Qiu, Gautam Bisht, Lingcheng Li, Dalei Hao, and Donghui Xu
Geosci. Model Dev., 17, 143–167, https://doi.org/10.5194/gmd-17-143-2024, https://doi.org/10.5194/gmd-17-143-2024, 2024
Short summary
Short summary
We developed and validated an inter-grid-cell lateral groundwater flow model for both saturated and unsaturated zone in the ELMv2.0 framework. The developed model was benchmarked against PFLOTRAN, a 3D subsurface flow and transport model and showed comparable performance with PFLOTRAN. The developed model was also applied to the Little Washita experimental watershed. The spatial pattern of simulated groundwater table depth agreed well with the global groundwater table benchmark dataset.
Hannes Müller Schmied, Tim Trautmann, Sebastian Ackermann, Denise Cáceres, Martina Flörke, Helena Gerdener, Ellen Kynast, Thedini Asali Peiris, Leonie Schiebener, Maike Schumacher, and Petra Döll
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-213, https://doi.org/10.5194/gmd-2023-213, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
Assessing water availability and water use at the global scale is challenging but essential for a range of purposes. We describe the newest version of the global hydrological model WaterGAP which has been used for numerous water resources assessments since 1996. We show the effects of new model features and model evaluations against observed streamflow and water storage anomalies as well as water abstractions statistics. The publically available model output for several variants is described.
Daniel Boateng and Sebastian G. Mutz
Geosci. Model Dev., 16, 6479–6514, https://doi.org/10.5194/gmd-16-6479-2023, https://doi.org/10.5194/gmd-16-6479-2023, 2023
Short summary
Short summary
We present an open-source Python framework for performing empirical-statistical downscaling of climate information, such as precipitation. The user-friendly package comprises all the downscaling cycles including data preparation, model selection, training, and evaluation, designed in an efficient and flexible manner, allowing for quick and reproducible downscaling products. The framework would contribute to climate change impact assessments by generating accurate high-resolution climate data.
Masaya Yoshikai, Takashi Nakamura, Eugene C. Herrera, Rempei Suwa, Rene Rollon, Raghab Ray, Keita Furukawa, and Kazuo Nadaoka
Geosci. Model Dev., 16, 5847–5863, https://doi.org/10.5194/gmd-16-5847-2023, https://doi.org/10.5194/gmd-16-5847-2023, 2023
Short summary
Short summary
Due to complex root system structures, representing the impacts of Rhizophora mangroves on flow in hydrodynamic models has been challenging. This study presents a new drag and turbulence model that leverages an empirical model for root systems. The model can be applied without rigorous measurements of root structures and showed high performance in flow simulations; this may provide a better understanding of hydrodynamics and related transport processes in Rhizophora mangrove forests.
Hao Chen, Tiejun Wang, Yonggen Zhang, Yun Bai, and Xi Chen
Geosci. Model Dev., 16, 5685–5701, https://doi.org/10.5194/gmd-16-5685-2023, https://doi.org/10.5194/gmd-16-5685-2023, 2023
Short summary
Short summary
Effectively assembling multiple models for approaching a benchmark solution remains a long-standing issue for various geoscience domains. We here propose an automated machine learning-assisted ensemble framework (AutoML-Ens) that attempts to resolve this challenge. Results demonstrate the great potential of AutoML-Ens for improving estimations due to its two unique features, i.e., assigning dynamic weights for candidate models and taking full advantage of AutoML-assisted workflow.
Guta Wakbulcho Abeshu, Fuqiang Tian, Thomas Wild, Mengqi Zhao, Sean Turner, A. F. M. Kamal Chowdhury, Chris R. Vernon, Hongchang Hu, Yuan Zhuang, Mohamad Hejazi, and Hong-Yi Li
Geosci. Model Dev., 16, 5449–5472, https://doi.org/10.5194/gmd-16-5449-2023, https://doi.org/10.5194/gmd-16-5449-2023, 2023
Short summary
Short summary
Most existing global hydrologic models do not explicitly represent hydropower reservoirs. We are introducing a new water management module to Xanthos that distinguishes between the operational characteristics of irrigation, hydropower, and flood control reservoirs. We show that this explicit representation of hydropower reservoirs can lead to a significantly more realistic simulation of reservoir storage and releases in over 44 % of the hydropower reservoirs included in this study.
Javier Diez-Sierra, Salvador Navas, and Manuel del Jesus
Geosci. Model Dev., 16, 5035–5048, https://doi.org/10.5194/gmd-16-5035-2023, https://doi.org/10.5194/gmd-16-5035-2023, 2023
Short summary
Short summary
NEOPRENE is an open-source, freely available library allowing scientists and practitioners to generate synthetic time series and maps of rainfall. These outputs will help to explore plausible events that were never observed in the past but may occur in the near future and to generate possible future events under climate change conditions. The paper shows how to use the library to downscale daily precipitation and how to use synthetic generation to improve our characterization of extreme events.
Adam Pasik, Alexander Gruber, Wolfgang Preimesberger, Domenico De Santis, and Wouter Dorigo
Geosci. Model Dev., 16, 4957–4976, https://doi.org/10.5194/gmd-16-4957-2023, https://doi.org/10.5194/gmd-16-4957-2023, 2023
Short summary
Short summary
We apply the exponential filter (EF) method to satellite soil moisture retrievals to estimate the water content in the unobserved root zone globally from 2002–2020. Quality assessment against an independent dataset shows satisfactory results. Error characterization is carried out using the standard uncertainty propagation law and empirically estimated values of EF model structural uncertainty and parameter uncertainty. This is followed by analysis of temporal uncertainty variations.
Po-Wei Huang, Bernd Flemisch, Chao-Zhong Qin, Martin O. Saar, and Anozie Ebigbo
Geosci. Model Dev., 16, 4767–4791, https://doi.org/10.5194/gmd-16-4767-2023, https://doi.org/10.5194/gmd-16-4767-2023, 2023
Short summary
Short summary
Water in natural environments consists of many ions. Ions are electrically charged and exert electric forces on each other. We discuss whether the electric forces are relevant in describing mixing and reaction processes in natural environments. By comparing our computer simulations to lab experiments in literature, we show that the electric interactions between ions can play an essential role in mixing and reaction processes, in which case they should not be neglected in numerical modeling.
Edward R. Jones, Marc F. P. Bierkens, Niko Wanders, Edwin H. Sutanudjaja, Ludovicus P. H. van Beek, and Michelle T. H. van Vliet
Geosci. Model Dev., 16, 4481–4500, https://doi.org/10.5194/gmd-16-4481-2023, https://doi.org/10.5194/gmd-16-4481-2023, 2023
Short summary
Short summary
DynQual is a new high-resolution global water quality model for simulating total dissolved solids, biological oxygen demand and fecal coliform as indicators of salinity, organic pollution and pathogen pollution, respectively. Output data from DynQual can supplement the observational record of water quality data, which is highly fragmented across space and time, and has the potential to inform assessments in a broad range of fields including ecological, human health and water scarcity studies.
Hugo Delottier, John Doherty, and Philip Brunner
Geosci. Model Dev., 16, 4213–4231, https://doi.org/10.5194/gmd-16-4213-2023, https://doi.org/10.5194/gmd-16-4213-2023, 2023
Short summary
Short summary
Long run times are usually a barrier to the quantification and reduction of predictive uncertainty with complex hydrological models. Data space inversion (DSI) provides an alternative and highly model-run-efficient method for uncertainty quantification. This paper demonstrates DSI's ability to robustly quantify predictive uncertainty and extend the methodology to provide practical metrics that can guide data acquisition and analysis to achieve goals of decision-support modelling.
Zhipin Ai and Naota Hanasaki
Geosci. Model Dev., 16, 3275–3290, https://doi.org/10.5194/gmd-16-3275-2023, https://doi.org/10.5194/gmd-16-3275-2023, 2023
Short summary
Short summary
Simultaneously simulating food production and the requirements and availability of water resources in a spatially explicit manner within a single framework remains challenging on a global scale. Here, we successfully enhanced the global hydrological model H08 that considers human water use and management to simulate the yields of four major staple crops: maize, wheat, rice, and soybean. Our improved model will be beneficial for advancing global food–water nexus studies in the future.
Emilie Rouzies, Claire Lauvernet, Bruno Sudret, and Arthur Vidard
Geosci. Model Dev., 16, 3137–3163, https://doi.org/10.5194/gmd-16-3137-2023, https://doi.org/10.5194/gmd-16-3137-2023, 2023
Short summary
Short summary
Water and pesticide transfer models are complex and should be simplified to be used in decision support. Indeed, these models simulate many spatial processes in interaction, involving a large number of parameters. Sensitivity analysis allows us to select the most influential input parameters, but it has to be adapted to spatial modelling. This study will identify relevant methods that can be transposed to any hydrological and water quality model and improve the fate of pesticide knowledge.
Guoding Chen, Ke Zhang, Sheng Wang, Yi Xia, and Lijun Chao
Geosci. Model Dev., 16, 2915–2937, https://doi.org/10.5194/gmd-16-2915-2023, https://doi.org/10.5194/gmd-16-2915-2023, 2023
Short summary
Short summary
In this study, we developed a novel modeling system called iHydroSlide3D v1.0 by coupling a modified a 3D landslide model with a distributed hydrology model. The model is able to apply flexibly different simulating resolutions for hydrological and slope stability submodules and gain a high computational efficiency through parallel computation. The test results in the Yuehe River basin, China, show a good predicative capability for cascading flood–landslide events.
Jens A. de Bruijn, Mikhail Smilovic, Peter Burek, Luca Guillaumot, Yoshihide Wada, and Jeroen C. J. H. Aerts
Geosci. Model Dev., 16, 2437–2454, https://doi.org/10.5194/gmd-16-2437-2023, https://doi.org/10.5194/gmd-16-2437-2023, 2023
Short summary
Short summary
We present a computer simulation model of the hydrological system and human system, which can simulate the behaviour of individual farmers and their interactions with the water system at basin scale to assess how the systems have evolved and are projected to evolve in the future. For example, we can simulate the effect of subsidies provided on investment in adaptation measures and subsequent effects in the hydrological system, such as a lowering of the groundwater table or reservoir level.
Matthew D. Wilson and Thomas J. Coulthard
Geosci. Model Dev., 16, 2415–2436, https://doi.org/10.5194/gmd-16-2415-2023, https://doi.org/10.5194/gmd-16-2415-2023, 2023
Short summary
Short summary
During flooding, the sources of water that inundate a location can influence impacts such as pollution. However, methods to trace water sources in flood events are currently only available in complex, computationally expensive hydraulic models. We propose a simplified method which can be added to efficient, reduced-complexity model codes, enabling an improved understanding of flood dynamics and its impacts. We demonstrate its application for three sites at a range of spatial and temporal scales.
Bibi S. Naz, Wendy Sharples, Yueling Ma, Klaus Goergen, and Stefan Kollet
Geosci. Model Dev., 16, 1617–1639, https://doi.org/10.5194/gmd-16-1617-2023, https://doi.org/10.5194/gmd-16-1617-2023, 2023
Short summary
Short summary
It is challenging to apply a high-resolution integrated land surface and groundwater model over large spatial scales. In this paper, we demonstrate the application of such a model over a pan-European domain at 3 km resolution and perform an extensive evaluation of simulated water states and fluxes by comparing with in situ and satellite data. This study can serve as a benchmark and baseline for future studies of climate change impact projections and for hydrological forecasting.
Jiangtao Liu, David Hughes, Farshid Rahmani, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 16, 1553–1567, https://doi.org/10.5194/gmd-16-1553-2023, https://doi.org/10.5194/gmd-16-1553-2023, 2023
Short summary
Short summary
Under-monitored regions like Africa need high-quality soil moisture predictions to help with food production, but it is not clear if soil moisture processes are similar enough around the world for data-driven models to maintain accuracy. We present a deep-learning-based soil moisture model that learns from both in situ data and satellite data and performs better than satellite products at the global scale. These results help us apply our model globally while better understanding its limitations.
Daniel Caviedes-Voullième, Mario Morales-Hernández, Matthew R. Norman, and Ilhan Özgen-Xian
Geosci. Model Dev., 16, 977–1008, https://doi.org/10.5194/gmd-16-977-2023, https://doi.org/10.5194/gmd-16-977-2023, 2023
Short summary
Short summary
This paper introduces the SERGHEI framework and a solver for shallow-water problems. Such models, often used for surface flow and flood modelling, are computationally intense. In recent years the trends to increase computational power have changed, requiring models to adapt to new hardware and new software paradigms. SERGHEI addresses these challenges, allowing surface flow simulation to be enabled on the newest and upcoming consumer hardware and supercomputers very efficiently.
Andrew M. Ireson, Raymond J. Spiteri, Martyn P. Clark, and Simon A. Mathias
Geosci. Model Dev., 16, 659–677, https://doi.org/10.5194/gmd-16-659-2023, https://doi.org/10.5194/gmd-16-659-2023, 2023
Short summary
Short summary
Richards' equation (RE) is used to describe the movement and storage of water in a soil profile and is a component of many hydrological and earth-system models. Solving RE numerically is challenging due to the non-linearities in the properties. Here, we present a simple but effective and mass-conservative solution to solving RE, which is ideal for teaching/learning purposes but also useful in prototype models that are used to explore alternative process representations.
Fang Wang, Di Tian, and Mark Carroll
Geosci. Model Dev., 16, 535–556, https://doi.org/10.5194/gmd-16-535-2023, https://doi.org/10.5194/gmd-16-535-2023, 2023
Short summary
Short summary
Gridded precipitation datasets suffer from biases and coarse resolutions. We developed a customized deep learning (DL) model to bias-correct and downscale gridded precipitation data using radar observations. The results showed that the customized DL model can generate improved precipitation at fine resolutions where regular DL and statistical methods experience challenges. The new model can be used to improve precipitation estimates, especially for capturing extremes at smaller scales.
Malak Sadki, Simon Munier, Aaron Boone, and Sophie Ricci
Geosci. Model Dev., 16, 427–448, https://doi.org/10.5194/gmd-16-427-2023, https://doi.org/10.5194/gmd-16-427-2023, 2023
Short summary
Short summary
Predicting water resource evolution is a key challenge for the coming century.
Anthropogenic impacts on water resources, and particularly the effects of dams and reservoirs on river flows, are still poorly known and generally neglected in global hydrological studies. A parameterized reservoir model is reproduced to compute monthly releases in Spanish anthropized river basins. For global application, an exhaustive sensitivity analysis of the model parameters is performed on flows and volumes.
Nicolas Flipo, Nicolas Gallois, and Jonathan Schuite
Geosci. Model Dev., 16, 353–381, https://doi.org/10.5194/gmd-16-353-2023, https://doi.org/10.5194/gmd-16-353-2023, 2023
Short summary
Short summary
A new approach is proposed to fit hydrological or land surface models, which suffer from large uncertainties in terms of water partitioning between fast runoff and slow infiltration from small watersheds to regional or continental river basins. It is based on the analysis of hydrosystem behavior in the frequency domain, which serves as a basis for estimating water flows in the time domain with a physically based model. It opens the way to significant breakthroughs in hydrological modeling.
Joachim Meyer, John Horel, Patrick Kormos, Andrew Hedrick, Ernesto Trujillo, and S. McKenzie Skiles
Geosci. Model Dev., 16, 233–250, https://doi.org/10.5194/gmd-16-233-2023, https://doi.org/10.5194/gmd-16-233-2023, 2023
Short summary
Short summary
Freshwater resupply from seasonal snow in the mountains is changing. Current water prediction methods from snow rely on historical data excluding the change and can lead to errors. This work presented and evaluated an alternative snow-physics-based approach. The results in a test watershed were promising, and future improvements were identified. Adaptation to current forecast environments would improve resilience to the seasonal snow changes and helps ensure the accuracy of resupply forecasts.
Shuqi Lin, Donald C. Pierson, and Jorrit P. Mesman
Geosci. Model Dev., 16, 35–46, https://doi.org/10.5194/gmd-16-35-2023, https://doi.org/10.5194/gmd-16-35-2023, 2023
Short summary
Short summary
The risks brought by the proliferation of algal blooms motivate the improvement of bloom forecasting tools, but algal blooms are complexly controlled and difficult to predict. Given rapid growth of monitoring data and advances in computation, machine learning offers an alternative prediction methodology. This study tested various machine learning workflows in a dimictic mesotrophic lake and gave promising predictions of the seasonal variations and the timing of algal blooms.
Thibault Hallouin, Richard J. Ellis, Douglas B. Clark, Simon J. Dadson, Andrew G. Hughes, Bryan N. Lawrence, Grenville M. S. Lister, and Jan Polcher
Geosci. Model Dev., 15, 9177–9196, https://doi.org/10.5194/gmd-15-9177-2022, https://doi.org/10.5194/gmd-15-9177-2022, 2022
Short summary
Short summary
A new framework for modelling the water cycle in the land system has been implemented. It considers the hydrological cycle as three interconnected components, bringing flexibility in the choice of the physical processes and their spatio-temporal resolutions. It is designed to foster collaborations between land surface, hydrological, and groundwater modelling communities to develop the next-generation of land system models for integration in Earth system models.
Seyed Mahmood Hamze-Ziabari, Ulrich Lemmin, Frédéric Soulignac, Mehrshad Foroughan, and David Andrew Barry
Geosci. Model Dev., 15, 8785–8807, https://doi.org/10.5194/gmd-15-8785-2022, https://doi.org/10.5194/gmd-15-8785-2022, 2022
Short summary
Short summary
A procedure combining numerical simulations, remote sensing, and statistical analyses is developed to detect large-scale current systems in large lakes. By applying this novel procedure in Lake Geneva, strategies for detailed transect field studies of the gyres and eddies were developed. Unambiguous field evidence of 3D gyre/eddy structures in full agreement with predictions confirmed the robustness of the proposed procedure.
Cited articles
Addor, N. and Melsen, L. A.: Legacy, Rather Than Adequacy, Drives the
Selection of Hydrological Models, Water Resour. Res., 55,
378–390, https://doi.org/10.1029/2018WR022958, 2019. a, b
Aerts, J. P. M., Hut, R. W., van de Giesen, N. C., Drost, N., van Verseveld, W. J., Weerts, A. H., and Hazenberg, P.: Large-sample assessment of spatial scaling effects of the distributed wflow_sbm hydrological model shows that finer spatial resolution does not necessarily lead to better streamflow estimates, Hydrol. Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-2021-605, in review, 2021. a
Albers, T.: Hydrologisch model PCR-GLOBWB 2 Forceren met verdamping,
Bachelor Thesis, Delft University of Technology, 2020. a
Bárdossy, A.: Calibration of hydrological model parameters for ungauged catchments, Hydrol. Earth Syst. Sci., 11, 703–710, https://doi.org/10.5194/hess-11-703-2007, 2007. a
Bárdossy, A. and Singh, S. K.: Robust estimation of hydrological model parameters, Hydrol. Earth Syst. Sci., 12, 1273–1283, https://doi.org/10.5194/hess-12-1273-2008, 2008. a, b
Beven, K.: How far can we go in distributed hydrological modelling?, Hydrol. Earth Syst. Sci., 5, 1–12, https://doi.org/10.5194/hess-5-1-2001, 2001. a
Bierkens, M. F. P.: Global hydrology 2015: State, trends, and directions,
Water Resour. Res., 51, 4923–4947, https://doi.org/10.1002/2015WR017173, 2015. a
Brauer, C. C., Teuling, A. J., Torfs, P. J. J. F., and Uijlenhoet, R.: The Wageningen Lowland Runoff Simulator (WALRUS): a lumped rainfall–runoff model for catchments with shallow groundwater, Geosci. Model Dev., 7, 2313–2332, https://doi.org/10.5194/gmd-7-2313-2014, 2014. a
Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods,
R. A., Freer, J. E., Gutmann, E. D., Wood, A. W., Brekke, L. D., Arnold,
J. R., Gochis, D. J., and Rasmussen, R. M.: A unified approach for
process-based hydrologic modeling: 1. Modeling concept, Water Resour.
Res., 51, 2498–2514, https://doi.org/10.1002/2015WR017198, 2015. a, b
Craig, J. R., Brown, G., Chlumsky, R., Jenkinson, R. W., Jost, G., Lee, K.,
Mai, J., Serrer, M., Sgro, N., Shafii, M., Snowdon, A. P., and Tolson, B. A.:
Flexible watershed simulation with the Raven hydrological modelling
framework, Environ. Modell. Softw., 129, 104728,
https://doi.org/10.1016/j.envsoft.2020.104728, 2020. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart,
F.: The ERA-Interim reanalysis: configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828,
2011. a
Elshafei, Y., Coletti, J. Z., Sivapalan, M., and Hipsey, M. R.: A model of the
socio-hydrologic dynamics in a semiarid catchment: Isolating feedbacks in
the coupled human-hydrology system, Water Resour. Res., 51, 6442–6471,
https://doi.org/10.1002/2015WR017048, 2015. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a, b
Gan, T., Tarboton, D. G., Dash, P., Gichamo, T. Z., and Horsburgh, J. S.:
Integrating hydrologic modeling web services with online data sharing to
prepare, store, and execute hydrologic models, Environ. Modell.
Softw., 130, 104731, https://doi.org/10.1016/j.envsoft.2020.104731, 2020. a
Gao, H., Hrachowitz, M., Fenicia, F., Gharari, S., and Savenije, H. H. G.: Testing the realism of a topography-driven model (FLEX-Topo) in the nested catchments of the Upper Heihe, China, Hydrol. Earth Syst. Sci., 18, 1895–1915, https://doi.org/10.5194/hess-18-1895-2014, 2014. a
Gichamo, T. Z., Sazib, N. S., Tarboton, D. G., and Dash, P.: HydroDS: Data
services in support of physically based, distributed hydrological models,
Environ. Modell. Softw., 125, 104623,
https://doi.org/10.1016/j.envsoft.2020.104623, 2020. a
Hall, C. A., Saia, S. M., Popp, A. L., Dogulu, N., Schymanski, S. J., Drost, N., van Emmerik, T., and Hut, R.: A hydrologist's guide to open science, Hydrol. Earth Syst. Sci., 26, 647–664, https://doi.org/10.5194/hess-26-647-2022, 2022. a, b
Hancock, G. and Willgoose, G.: The interaction between hydrology and
geomorphology in a landscape simulator experiment, Hydrol. Process.,
15, 115–133, https://doi.org/10.1002/hyp.143, 2001. a
Hansen, N., yoshihikoueno, ARF1, Nozawa, K., Chan, M., Akimoto, Y., and
Brockhoff, D.: CMA-ES/pycma: r3.1.0, Zenodo [code], https://doi.org/10.5281/zenodo.5002422, 2021. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G. D., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P. d.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146,
1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b
Hoogeveen, J., Faurès, J.-M., Peiser, L., Burke, J., and van de Giesen, N.: GlobWat – a global water balance model to assess water use in irrigated agriculture, Hydrol. Earth Syst. Sci., 19, 3829–3844, https://doi.org/10.5194/hess-19-3829-2015, 2015. a
Horsburgh, J. S., Morsy, M. M., Castronova, A. M., Goodall, J. L., Gan, T., Yi, H.,
Stealey, M. J., and Tarboton, D. G.: HydroShare: Sharing Diverse
Environmental Data Types and Models as Social Objects with
Application to the Hydrology Domain, J. Am. Water
Resour. As., 52, 873–889, https://doi.org/10.1111/1752-1688.12363, 2015. a, b
Hut, R.: The eWaterCycle platform for Open and FAIR Hydrological
collaboration Video Abstract, Zenodo [video], https://doi.org/10.5281/zenodo.5556433, 2021. a, b
Hut, R. W., van de Giesen, N. C., and Drost, N.: Comment on “Most
computational hydrology is not reproducible, so is it really science?” by
Christopher Hutton et al.: Let hydrologists learn the latest computer
science by working with Research Software Engineers (RSEs) and not
reinvent the waterwheel ourselves, Water Resour. Res., 53, 4524–4526,
https://doi.org/10.1002/2017WR020665, 2017. a, b, c
Hut, R., Drost, N., Alidoost, F., Verhoeven, S., Smeets, S., Kalverla, P.,
Vreede, B., Aerts, J., van Werkhoven, B., and van de Giesen, N.:
eWaterCycle tech paper example notebooks, Zenodo [code], https://doi.org/10.5281/zenodo.5543899,
2021. a, b, c
Hutton, C., Wagener, T., Freer, J., Han, D., Duffy, C., and Arheimer, B.: Most
computational hydrology is not reproducible, so is it really science?, Water
Resour. Res., 52, 7548–7555, https://doi.org/10.1002/2016WR019285, 2016. a, b, c
Hutton, E., Piper, M., and Tucker, G.: The Basic Model Interface 2.0: A
standard interface for coupling numerical models in the geosciences, Journal
of Open Source Software, 5, 2317, https://doi.org/10.21105/joss.02317, 2020. a, b
Kirchner, J. W.: Getting the right answers for the right reasons: Linking
measurements, analyses, and models to advance the science of hydrology, Water
Resour. Res., 42, W03S04, https://doi.org/10.1029/2005WR004362, 2006. a
Knoben, W. J. M., Freer, J. E., Fowler, K. J. A., Peel, M. C., and Woods, R. A.: Modular Assessment of Rainfall–Runoff Models Toolbox (MARRMoT) v1.2: an open-source, extendable framework providing implementations of 46 conceptual hydrologic models as continuous state-space formulations, Geosci. Model Dev., 12, 2463–2480, https://doi.org/10.5194/gmd-12-2463-2019, 2019. a, b, c
Lindström, G., Pers, C., Rosberg, J., Strömqvist, J., and Arheimer, B.:
Development and testing of the HYPE (Hydrological Predictions for the
Environment) water quality model for different spatial scales, Hydrol.
Res., 41, 295–319, https://doi.org/10.2166/nh.2010.007, 2010. a
McMillan, H., Montanari, A., Cudennec, C., Savenije, H., Kreibich, H., Krueger,
T., Liu, J., Mejia, A., Loon, A. V., Aksoy, H., Baldassarre, G. D., Huang,
Y., Mazvimavi, D., Rogger, M., Sivakumar, B., Bibikova, T., Castellarin, A.,
Chen, Y., Finger, D., Gelfan, A., Hannah, D. M., Hoekstra, A. Y., Li, H.,
Maskey, S., Mathevet, T., Mijic, A., Acuña, A. P., Polo, M. J., Rosales, V.,
Smith, P., Viglione, A., Srinivasan, V., Toth, E., van Nooyen, R., and Xia,
J.: Panta Rhei 2013–2015: global perspectives on hydrology, society and
change, Hydrolog. Sci. J., 65, 1174–1191,
https://doi.org/10.1080/02626667.2016.1159308, 2020. a
Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah,
Y.-W., Poindexter, C., Chen, J., Elbashandy, A., Humphrey, M., Isaac, P.,
Polidori, D., Reichstein, M., Ribeca, A., van Ingen, C., Vuichard, N., Zhang,
L., Amiro, B., Ammann, C., Arain, M. A., Ardö, J., Arkebauer, T., Arndt,
S. K., Arriga, N., Aubinet, M., Aurela, M., Baldocchi, D., Barr, A.,
Beamesderfer, E., Marchesini, L. B., Bergeron, O., Beringer, J., Bernhofer,
C., Berveiller, D., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G.,
Boike, J., Bolstad, P. V., Bonal, D., Bonnefond, J.-M., Bowling, D. R.,
Bracho, R., Brodeur, J., Brümmer, C., Buchmann, N., Burban, B., Burns,
S. P., Buysse, P., Cale, P., Cavagna, M., Cellier, P., Chen, S., Chini, I.,
Christensen, T. R., Cleverly, J., Collalti, A., Consalvo, C., Cook, B. D.,
Cook, D., Coursolle, C., Cremonese, E., Curtis, P. S., D’Andrea, E.,
da Rocha, H., Dai, X., Davis, K. J., Cinti, B. D., Grandcourt, A. d., Ligne,
A. D., De Oliveira, R. C., Delpierre, N., Desai, A. R., Di Bella, C. M.,
Tommasi, P. d., Dolman, H., Domingo, F., Dong, G., Dore, S., Duce, P.,
Dufrêne, E., Dunn, A., Dušek, J., Eamus, D., Eichelmann, U., ElKhidir, H.
A. M., Eugster, W., Ewenz, C. M., Ewers, B., Famulari, D., Fares, S.,
Feigenwinter, I., Feitz, A., Fensholt, R., Filippa, G., Fischer, M., Frank,
J., Galvagno, M., Gharun, M., Gianelle, D., Gielen, B., Gioli, B., Gitelson,
A., Goded, I., Goeckede, M., Goldstein, A. H., Gough, C. M., Goulden, M. L.,
Graf, A., Griebel, A., Gruening, C., Grünwald, T., Hammerle, A., Han, S.,
Han, X., Hansen, B. U., Hanson, C., Hatakka, J., He, Y., Hehn, M., Heinesch,
B., Hinko-Najera, N., Hörtnagl, L., Hutley, L., Ibrom, A., Ikawa, H.,
Jackowicz-Korczynski, M., Janouš, D., Jans, W., Jassal, R., Jiang, S., Kato,
T., Khomik, M., Klatt, J., Knohl, A., Knox, S., Kobayashi, H., Koerber, G.,
Kolle, O., Kosugi, Y., Kotani, A., Kowalski, A., Kruijt, B., Kurbatova, J.,
Kutsch, W. L., Kwon, H., Launiainen, S., Laurila, T., Law, B., Leuning, R.,
Li, Y., Liddell, M., Limousin, J.-M., Lion, M., Liska, A. J., Lohila, A.,
López-Ballesteros, A., López-Blanco, E., Loubet, B., Loustau, D.,
Lucas-Moffat, A., Lüers, J., Ma, S., Macfarlane, C., Magliulo, V., Maier,
R., Mammarella, I., Manca, G., Marcolla, B., Margolis, H. A., Marras, S.,
Massman, W., Mastepanov, M., Matamala, R., Matthes, J. H., Mazzenga, F.,
McCaughey, H., McHugh, I., McMillan, A. M. S., Merbold, L., Meyer, W.,
Meyers, T., Miller, S. D., Minerbi, S., Moderow, U., Monson, R. K.,
Montagnani, L., Moore, C. E., Moors, E., Moreaux, V., Moureaux, C., Munger,
J. W., Nakai, T., Neirynck, J., Nesic, Z., Nicolini, G., Noormets, A.,
Northwood, M., Nosetto, M., Nouvellon, Y., Novick, K., Oechel, W., Olesen,
J. E., Ourcival, J.-M., Papuga, S. A., Parmentier, F.-J., Paul-Limoges, E.,
Pavelka, M., Peichl, M., Pendall, E., Phillips, R. P., Pilegaard, K., Pirk,
N., Posse, G., Powell, T., Prasse, H., Prober, S. M., Rambal, S., Rannik, Ã.,
Raz-Yaseef, N., Rebmann, C., Reed, D., Dios, V. R. d., Restrepo-Coupe, N.,
Reverter, B. R., Roland, M., Sabbatini, S., Sachs, T., Saleska, S. R.,
Sánchez-Cañete, E. P., Sanchez-Mejia, Z. M., Schmid, H. P., Schmidt, M.,
Schneider, K., Schrader, F., Schroder, I., Scott, R. L., Sedlák, P.,
Serrano-Ortíz, P., Shao, C., Shi, P., Shironya, I., Siebicke, L., Šigut,
L., Silberstein, R., Sirca, C., Spano, D., Steinbrecher, R., Stevens, R. M.,
Sturtevant, C., Suyker, A., Tagesson, T., Takanashi, S., Tang, Y., Tapper,
N., Thom, J., Tomassucci, M., Tuovinen, J.-P., Urbanski, S., Valentini, R.,
van der Molen, M., van Gorsel, E., van Huissteden, K., Varlagin, A.,
Verfaillie, J., Vesala, T., Vincke, C., Vitale, D., Vygodskaya, N., Walker,
J. P., Walter-Shea, E., Wang, H., Weber, R., Westermann, S., Wille, C.,
Wofsy, S., Wohlfahrt, G., Wolf, S., Woodgate, W., Li, Y., Zampedri, R.,
Zhang, J., Zhou, G., Zona, D., Agarwal, D., Biraud, S., Torn, M., and Papale,
D.: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy
covariance data, Scientific Data, 7, 225, https://doi.org/10.1038/s41597-020-0534-3, 2020. a, b
Petrie, R., Denvil, S., Ames, S., Levavasseur, G., Fiore, S., Allen, C., Antonio, F., Berger, K., Bretonnière, P.-A., Cinquini, L., Dart, E., Dwarakanath, P., Druken, K., Evans, B., Franchistéguy, L., Gardoll, S., Gerbier, E., Greenslade, M., Hassell, D., Iwi, A., Juckes, M., Kindermann, S., Lacinski, L., Mirto, M., Nasser, A. B., Nassisi, P., Nienhouse, E., Nikonov, S., Nuzzo, A., Richards, C., Ridzwan, S., Rixen, M., Serradell, K., Snow, K., Stephens, A., Stockhause, M., Vahlenkamp, H., and Wagner, R.: Coordinating an operational data distribution network for CMIP6 data, Geosci. Model Dev., 14, 629–644, https://doi.org/10.5194/gmd-14-629-2021, 2021. a
Righi, M., Andela, B., Eyring, V., Lauer, A., Predoi, V., Schlund, M., Vegas-Regidor, J., Bock, L., Brötz, B., de Mora, L., Diblen, F., Dreyer, L., Drost, N., Earnshaw, P., Hassler, B., Koldunov, N., Little, B., Loosveldt Tomas, S., and Zimmermann, K.: Earth System Model Evaluation Tool (ESMValTool) v2.0 – technical overview, Geosci. Model Dev., 13, 1179–1199, https://doi.org/10.5194/gmd-13-1179-2020, 2020. a, b, c, d
Roberts, W., Williams, G. P., Jackson, E., Nelson, E. J., and Ames, D. P.:
Hydrostats: A Python Package for Characterizing Errors between
Observed and Predicted Time Series, Hydrology, 5, 66,
https://doi.org/10.3390/hydrology5040066, 2018. a
Samaniego, L., Brenner, J., Craven, J., Cuntz, M., Dalmasso, G., Demirel,
C. M., Jing, M., Kaluza, M., Kumar, R., Langenberg, B., Mai, J., Müller, S.,
Musuuza, J., Prykhodko, V., Rakovec, O., Schäfer, D., Schneider, C.,
Schrön, M., Schüler, L., Schweppe, R., Shrestha, P. K., Spieler, D.,
Stisen, S., Thober, S., Zink, M., and Attinger, S.: mesoscale Hydrologic
Model – mHM v5.11.1, Zenodo [code], https://doi.org/10.5281/zenodo.4575390, 2021. a
Schellekens, J., Verseve, Visser, M., Hcwinsemius, Tanjaeuser, Laurenebouaziz,
Sandercdevries, Cthiange, Hboisgon, DirkEilander, Baart, F., Aweerts,
DanielTollenaar, Pieter9011, Ctenvelden, Arthur-Lutz, Jansen, M., and
Imme1992: openstreams/wflow: Bug fix release for 2020.1, Zenodo [code],
https://doi.org/10.5281/ZENODO.593510, 2020. a, b
Sutanudjaja, E. H., van Beek, R., Wanders, N., Wada, Y., Bosmans, J. H. C., Drost, N., van der Ent, R. J., de Graaf, I. E. M., Hoch, J. M., de Jong, K., Karssenberg, D., López López, P., Peßenteiner, S., Schmitz, O., Straatsma, M. W., Vannametee, E., Wisser, D., and Bierkens, M. F. P.: PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model, Geosci. Model Dev., 11, 2429–2453, https://doi.org/10.5194/gmd-11-2429-2018, 2018. a
Tarboton, D., Idaszak, R., Horsburgh, J., Heard, J., Ames, D., Goodall, J.,
Band, L., Merwade, V., Couch, A., Arrigo, J., Hooper, R., Valentine, D., and
Maidment, D.: HydroShare: Advancing Collaboration through Hydrologic
Data and Model Sharing, in: International Congress on Environmental
Modelling and Software, San Diego, California, USA, 15–19 June 2014,
https://scholarsarchive.byu.edu/iemssconference/2014/Stream-A/7 (last access: 28 June 2022),
2014.
a
Tucker, G. E., Hutton, E. W. H., Piper, M. D., Campforts, B., Gan, T., Barnhart, K. R., Kettner, A. J., Overeem, I., Peckham, S. D., McCready, L., and Syvitski, J.: CSDMS: a community platform for numerical modeling of Earth surface processes, Geosci. Model Dev., 15, 1413–1439, https://doi.org/10.5194/gmd-15-1413-2022, 2022. a, b
Van Der Knijff, J. M., Younis, J., and De Roo, A. P. J.: LISFLOOD: a
GIS-based distributed model for river basin scale water balance and flood
simulation, Int. J. Geogr. Inf. Sci., 24,
189–212, https://doi.org/10.1080/13658810802549154, 2010. a
van Haren, R., Camphuijsen, J., Dzigan, Y., Drost, N., Alidoost, F., Andela,
B., Aerts, J., Weel, B., and Hut, R.: era5cli, Zenodo [code], https://doi.org/10.5281/ZENODO.3351405,
2019. a, b
Venhuizen, G. J., Hut, R., Albers, C., Stoof, C. R., and Smeets, I.: Flooded by jargon: how the interpretation of water-related terms differs between hydrology experts and the general audience, Hydrol. Earth Syst. Sci., 23, 393–403, https://doi.org/10.5194/hess-23-393-2019, 2019. a
Verhoeven, S., Drost, N., Weel, B., Kalverla, P., Alidoost, F., and Andela, B.:
eWaterCycle infra, Zenodo [code], https://doi.org/10.5281/zenodo.5356689, 2021a. a, b
Verhoeven, S., Drost, N., Weel, B., Smeets, S., Kalverla, P., Alidoost, F., Vreede, B., Hut, R., Aerts, J., van Werkhoven, B., and van de Giesen, N.: eWaterCycle Python package, Zenodo [code], https://doi.org/10.5281/zenodo.5119389, 2022. a
Wilkinson, M., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M.,
Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E.,
Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O.,
Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J. G.,
Groth, P., Goble, C., Grethe, J. S., Heringa, J., 't Hoen, P. A. C., Hooft,
R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A.,
Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R.,
Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz,
M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J.,
Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.:
The FAIR Guiding Principles for scientific data management and
stewardship, Sci. Data, 3, 160018, https://doi.org/10.1038/sdata.2016.18, 2016. a, b, c
Wood, E. F., Roundy, J. K., Troy, T. J., Beek, L. P. H. v., Bierkens, M. F. P.,
Blyth, E., Roo, A. d., Döll, P., Ek, M., Famiglietti, J., Gochis, D.,
van de Giesen, N., Houser, P., Jaffé, P. R., Kollet, S., Lehner, B.,
Lettenmaier, D. P., Peters-Lidard, C., Sivapalan, M., Sheffield, J., Wade,
A., and Whitehead, P.: Hyperresolution global land surface modeling:
Meeting a grand challenge for monitoring Earth's terrestrial water, Water
Resour. Res., 47, W05301, https://doi.org/10.1029/2010WR010090, 2011. a
Executive editor
This work removes the massive specialist-knowledge barrier to running hydrological models, making them usable by a much broader swath of scientific community -- and potentially beyond.
This work removes the massive specialist-knowledge barrier to running hydrological models,...
Short summary
With the eWaterCycle platform, we are providing the hydrological community with a platform to conduct their research that is fully compatible with the principles of both open science and FAIR science. The eWatercyle platform gives easy access to well-known hydrological models, big datasets and example experiments. Using eWaterCycle hydrologists can easily compare the results from different models, couple models and do more complex hydrological computational research.
With the eWaterCycle platform, we are providing the hydrological community with a platform to...