Articles | Volume 15, issue 5
https://doi.org/10.5194/gmd-15-1953-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-1953-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Geometric remapping of particle distributions in the Discrete Element Model for Sea Ice (DEMSI v0.0)
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
Kara J. Peterson
Sandia National Laboratories, Albuquerque, NM, USA
Dan Bolintineanu
Sandia National Laboratories, Albuquerque, NM, USA
Related authors
Mathieu Plante, Jean-François Lemieux, L. Bruno Tremblay, Adrienne Tivy, Joey Angnatok, François Roy, Gregory Smith, Frédéric Dupont, and Adrian K. Turner
The Cryosphere, 18, 1685–1708, https://doi.org/10.5194/tc-18-1685-2024, https://doi.org/10.5194/tc-18-1685-2024, 2024
Short summary
Short summary
We use a sea ice model to reproduce ice growth observations from two buoys deployed on coastal sea ice and analyze the improvements brought by new physics that represent the presence of saline liquid water in the ice interior. We find that the new physics with default parameters degrade the model performance, with overly rapid ice growth and overly early snow flooding on top of the ice. The performance is largely improved by simple modifications to the ice growth and snow-flooding algorithms.
Hyein Jeong, Adrian K. Turner, Andrew F. Roberts, Milena Veneziani, Stephen F. Price, Xylar S. Asay-Davis, Luke P. Van Roekel, Wuyin Lin, Peter M. Caldwell, Hyo-Seok Park, Jonathan D. Wolfe, and Azamat Mametjanov
The Cryosphere, 17, 2681–2700, https://doi.org/10.5194/tc-17-2681-2023, https://doi.org/10.5194/tc-17-2681-2023, 2023
Short summary
Short summary
We find that E3SM-HR reproduces the main features of the Antarctic coastal polynyas. Despite the high amount of coastal sea ice production, the densest water masses are formed in the open ocean. Biases related to the lack of dense water formation are associated with overly strong atmospheric polar easterlies. Our results indicate that the large-scale polar atmospheric circulation must be accurately simulated in models to properly reproduce Antarctic dense water formation.
Adrian K. Turner, William H. Lipscomb, Elizabeth C. Hunke, Douglas W. Jacobsen, Nicole Jeffery, Darren Engwirda, Todd D. Ringler, and Jonathan D. Wolfe
Geosci. Model Dev., 15, 3721–3751, https://doi.org/10.5194/gmd-15-3721-2022, https://doi.org/10.5194/gmd-15-3721-2022, 2022
Short summary
Short summary
We present the dynamical core of the MPAS-Seaice model, which uses a mesh consisting of a Voronoi tessellation with polygonal cells. Such a mesh allows variable mesh resolution in different parts of the domain and the focusing of computational resources in regions of interest. We describe the velocity solver and tracer transport schemes used and examine errors generated by the model in both idealized and realistic test cases and examine the computational efficiency of the model.
Milena Veneziani, Wieslaw Maslowski, Younjoo J. Lee, Gennaro D'Angelo, Robert Osinski, Mark R. Petersen, Wilbert Weijer, Anthony P. Craig, John D. Wolfe, Darin Comeau, and Adrian K. Turner
Geosci. Model Dev., 15, 3133–3160, https://doi.org/10.5194/gmd-15-3133-2022, https://doi.org/10.5194/gmd-15-3133-2022, 2022
Short summary
Short summary
We present an Earth system model (ESM) simulation, E3SM-Arctic-OSI, with a refined grid to better resolve the Arctic ocean and sea-ice system and low spatial resolution elsewhere. The configuration satisfactorily represents many aspects of the Arctic system and its interactions with the sub-Arctic, while keeping computational costs at a fraction of those necessary for global high-resolution ESMs. E3SM-Arctic can thus be an efficient tool to study Arctic processes on climate-relevant timescales.
Allen Hu, Ziming Ke, Xiaohong Liu, Benjamin Wagman, Hunter Brown, Zheng Lu, Mingxuan Wu, Hailong Wang, Qi Tang, Diana Bull, Kara Peterson, and Shaocheng Xie
Atmos. Chem. Phys., 25, 12137–12157, https://doi.org/10.5194/acp-25-12137-2025, https://doi.org/10.5194/acp-25-12137-2025, 2025
Short summary
Short summary
Volcanic eruptions have major effects on atmospheric temperature and can be studied as a proxy for geo-engineering. The original aerosol module in the Energy Exascale Earth System Model v2 (E3SMv2) has problems simulating volcanic aerosols. We alter the aerosol module to simulate the 1991 Pinatubo eruption and implement a more complex chemistry scheme, producing results that better agree with observations. Process analyses of the volcanic aerosols help explain how they grow in the stratosphere.
Hunter York Brown, Benjamin Wagman, Diana Bull, Kara Peterson, Benjamin Hillman, Xiaohong Liu, Ziming Ke, and Lin Lin
Geosci. Model Dev., 17, 5087–5121, https://doi.org/10.5194/gmd-17-5087-2024, https://doi.org/10.5194/gmd-17-5087-2024, 2024
Short summary
Short summary
Explosive volcanic eruptions lead to long-lived, microscopic particles in the upper atmosphere which act to cool the Earth's surface by reflecting the Sun's light back to space. We include and test this process in a global climate model, E3SM. E3SM is tested against satellite and balloon observations of the 1991 eruption of Mt. Pinatubo, showing that with these particles in the model we reasonably recreate Pinatubo and its global effects. We also explore how particle size leads to these effects.
Mathieu Plante, Jean-François Lemieux, L. Bruno Tremblay, Adrienne Tivy, Joey Angnatok, François Roy, Gregory Smith, Frédéric Dupont, and Adrian K. Turner
The Cryosphere, 18, 1685–1708, https://doi.org/10.5194/tc-18-1685-2024, https://doi.org/10.5194/tc-18-1685-2024, 2024
Short summary
Short summary
We use a sea ice model to reproduce ice growth observations from two buoys deployed on coastal sea ice and analyze the improvements brought by new physics that represent the presence of saline liquid water in the ice interior. We find that the new physics with default parameters degrade the model performance, with overly rapid ice growth and overly early snow flooding on top of the ice. The performance is largely improved by simple modifications to the ice growth and snow-flooding algorithms.
Hyein Jeong, Adrian K. Turner, Andrew F. Roberts, Milena Veneziani, Stephen F. Price, Xylar S. Asay-Davis, Luke P. Van Roekel, Wuyin Lin, Peter M. Caldwell, Hyo-Seok Park, Jonathan D. Wolfe, and Azamat Mametjanov
The Cryosphere, 17, 2681–2700, https://doi.org/10.5194/tc-17-2681-2023, https://doi.org/10.5194/tc-17-2681-2023, 2023
Short summary
Short summary
We find that E3SM-HR reproduces the main features of the Antarctic coastal polynyas. Despite the high amount of coastal sea ice production, the densest water masses are formed in the open ocean. Biases related to the lack of dense water formation are associated with overly strong atmospheric polar easterlies. Our results indicate that the large-scale polar atmospheric circulation must be accurately simulated in models to properly reproduce Antarctic dense water formation.
Adrian K. Turner, William H. Lipscomb, Elizabeth C. Hunke, Douglas W. Jacobsen, Nicole Jeffery, Darren Engwirda, Todd D. Ringler, and Jonathan D. Wolfe
Geosci. Model Dev., 15, 3721–3751, https://doi.org/10.5194/gmd-15-3721-2022, https://doi.org/10.5194/gmd-15-3721-2022, 2022
Short summary
Short summary
We present the dynamical core of the MPAS-Seaice model, which uses a mesh consisting of a Voronoi tessellation with polygonal cells. Such a mesh allows variable mesh resolution in different parts of the domain and the focusing of computational resources in regions of interest. We describe the velocity solver and tracer transport schemes used and examine errors generated by the model in both idealized and realistic test cases and examine the computational efficiency of the model.
Milena Veneziani, Wieslaw Maslowski, Younjoo J. Lee, Gennaro D'Angelo, Robert Osinski, Mark R. Petersen, Wilbert Weijer, Anthony P. Craig, John D. Wolfe, Darin Comeau, and Adrian K. Turner
Geosci. Model Dev., 15, 3133–3160, https://doi.org/10.5194/gmd-15-3133-2022, https://doi.org/10.5194/gmd-15-3133-2022, 2022
Short summary
Short summary
We present an Earth system model (ESM) simulation, E3SM-Arctic-OSI, with a refined grid to better resolve the Arctic ocean and sea-ice system and low spatial resolution elsewhere. The configuration satisfactorily represents many aspects of the Arctic system and its interactions with the sub-Arctic, while keeping computational costs at a fraction of those necessary for global high-resolution ESMs. E3SM-Arctic can thus be an efficient tool to study Arctic processes on climate-relevant timescales.
Cited articles
Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F.:
Efficient Management of Parallelism in Object Oriented Numerical Software Libraries,
in: Modern Software Tools in Scientific Computing,
edited by: Arge, E., Bruaset, A. M., and Langtangen, H. P.,
Birkhäuser Press, Boston, MA, pp. 163–202, 1997. a
Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W. D., Karpeyev, D., Kaushik, D., Knepley, M. G., May, D. A., McInnes, L. C., Mills, R. T., Munson, T., Rupp, K., Sanan, P., Smith, B. F., Zampini, S., Zhang, H., and Zhang, H.:
PETSc Users Manual, Tech. Rep. ANL-95/11 – Revision 3.11,
Argonne National Laboratory, Lemont, IL, 2019. a
Bochev, P., Ridzal, D., and Shashkov, M.:
Fast optimization-based conservative remap of scalar fields through aggregate mass transfer,
J. Comput. Phys.,
246, 37–57, https://doi.org/10.1016/j.jcp.2013.03.040, 2013. a
Bochev, P., Ridzal, D., and Peterson, K.:
Optimization-based remap and transport: A divide and conquer strategy for feature-preserving discretizations,
J. Comp. Physics,
257, Part B, 1113–1139, https://doi.org/10.1016/j.jcp.2013.03.057, 2014. a
Dukowicz, J. K. and Baumgardner, J. R.:
Incremental Remapping as a Transport/Advection Algorithm,
J. Comput. Phys.,
160, 318–335, https://doi.org/10.1006/jcph.2000.6465, 2000. a, b, c
Dunavant, D. A.:
High degree efficient symmetrical Gaussian quadrature rules for the triangle,
Int. J. Numer. Meth. Eng.,
21, 1129–1148, https://doi.org/10.1002/nme.1620210612, 1985. a
Flato, G. M.:
A particle-in-cell sea-ice model,
Atmos.-Ocean,
31, 339–358, https://doi.org/10.1080/07055900.1993.9649475, 1993. a
Gutfraind, R. and Savage, S. B.:
Flow of fractured ice through wedge-shaped channels: smoothed particle hydrodynamics and discrete-element simulations,
Mech. Mater.,
29, 1–17, https://doi.org/10.1016/S0167-6636(97)00072-0, 1998. a
Hapla, V., Horák, D., Pospíšil, L., Čermák, M., Vašatová, A., and Sojka, R.:
Solving Contact Mechanics Problems with PERMON,
in: High Performance Computing in Science and Engineering, vol. 9611 of Lecture Notes in Computer Science,
edited by: Kozubek, T., Blaheta, R., Šístek, J., Rozložník, M., and Čermák, M.,
Springer International Publishing Switzerland, Cham, Switzerland, https://doi.org/10.1007/978-3-319-40361-8_7, pp. 101–115, 2016. a
Hapla, V., Horák, D., Kružík, J., Pecha, M., Pospíšil, L., Sojka, R., Vašatová, A., Čermák, M., Dostál, Z., and Markopoulos, A.:
PERMON Web page,
http://permon.vsb.cz/ (last access: 3 February 2021), 2021. a
Herman, A.:
Molecular-dynamics simulation of clustering processes in sea-ice floes,
Phys. Rev. E,
84, 056104, https://doi.org/10.1103/PhysRevE.84.056104, 2011. a
Herman, A.: Wave-induced stress and breaking of sea ice in a coupled hydrodynamic discrete-element wave–ice model, The Cryosphere, 11, 2711–2725, https://doi.org/10.5194/tc-11-2711-2017, 2017. a
Hibler, W. D.:
A Dynamic Thermodynamic Sea Ice Model,
J. Phys. Oceanogr.,
9, 815–846, https://doi.org/10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2, 1979. a
Hockney, R., Goel, S., and Eastwood, J.:
Quiet high-resolution computer models of a plasma,
J. Comput. Phys.,
14, 148–158, https://doi.org/10.1016/0021-9991(74)90010-2, 1974. a
Hopkins, M. A.:
On the ridging of intact lead ice,
J. Geophys. Res.-Oceans,
99, 16351–16360, https://doi.org/10.1029/94JC00996, 1994. a, b
Hopkins, M. A.:
On the mesoscale interaction of lead ice and floes,
J. Geophys. Res.-Oceans,
101, 18315–18326, https://doi.org/10.1029/96JC01689, 1996. a
Hopkins, M. A. and Thorndike, A. S.:
Floe formation in Arctic sea ice,
J. Geophys. Res.-Oceans,
111, C11S23, https://doi.org/10.1029/2005JC003352, 2006. a
Imai, H., Iri, M., and Murota, K.:
Voronoi Diagram in the Laguerre Geometry and Its Applications,
SIAM J. Comput.,
14, 93–105, https://doi.org/10.1137/0214006, 1985. a
Ingram, W. J., Wilson, C. A., and Mitchell, J. F. B.:
Modeling climate change: An assessment of sea ice and surface albedo feedbacks,
J. Geophys. Res.-Atmos.,
94, 8609–8622, https://doi.org/10.1029/JD094iD06p08609, 1989. a
Jones, P. W.:
First- and Second-Order Conservative Remapping Schemes for Grids in Spherical Coordinates,
Mon. Weather Rev.,
127, 2204–2210, https://doi.org/10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2, 1999. a
Killworth, P. D.:
Deep convection in the World Ocean,
Rev. Geophys.,
21, 1–26, https://doi.org/10.1029/RG021i001p00001, 1983. a
Kim, J. G., Hunke, E. C., and Lipscomb, W. H.:
Sensitivity analysis and parameter tuning scheme for global sea-ice modeling,
Ocean Model.,
14, 61–80, https://doi.org/10.1016/j.ocemod.2006.03.003, 2006. a
Kružík, J., Horák, D., Čermák, M., Pospíšil, L., and Pecha, M.:
Active set expansion strategies in MPRGP algorithm,
Adv. Eng. Softw.,
149, 102895, https://doi.org/10.1016/j.advengsoft.2020.102895, 2020. a
Lauritzen, P. H., Nair, R. D., and Ullrich, P. A.:
A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed-sphere grid,
J. Comput. Phys.,
229, 1401–1424, https://doi.org/10.1016/j.jcp.2009.10.036, 2010. a
Liang, G., Lu, L., Chen, Z., and Yang, C.:
Poisson disk sampling through disk packing,
Comp. Visual Media,
1, 17–26, https://doi.org/10.1007/s41095-015-0003-7, 2015. a, b, c
Lipscomb, W. H. and Ringler, T. D.:
An Incremental Remapping Transport Scheme on a Spherical Geodesic Grid,
Mon. Weather Rev.,
133, 2335–2350, https://doi.org/10.1175/MWR2983.1, 2005. a, b, c
Lipscomb, W. H., Hunke, E. C., Maslowski, W., and Jakacki, J.:
Ridging, strength, and stability in high-resolution sea ice models,
J. Geophys. Res.-Oceans,
112, C03S91, https://doi.org/10.1029/2005JC003355, 2007. a
Liska, R., Shashkov, M., Váchal, P., and Wendroff, B.:
Optimization-based synchronized flux-corrected conservative interpolation (remapping) of mass and momentum for arbitrary Lagrangian–Eulerian methods,
J. Comput. Phys.,
229, 1467–1497, https://doi.org/10.1016/j.jcp.2009.10.039, 2010. a
Lloyd, S.:
Least squares quantization in PCM,
IEEE T. Inform. Theory,
28, 129–137, https://doi.org/10.1109/TIT.1982.1056489, 1982. a
Margolin, L. G. and Shashkov, M.:
Second-order sign-preserving conservative interpolation (remapping) on general grids,
J. Comput. Phys.,
184, 266–298, https://doi.org/10.1016/S0021-9991(02)00033-5, 2003. a
Petersen, M. R., Asay-Davis, X. S., Berres, A. S., Chen, Q., Feige, N., Hoffman, M. J., Jacobsen, D. W., Jones, P. W., Maltrud, M. E., Price, S. F., Ringler, T. D., Streletz, G. J., Turner, A. K., Van Roekel, L. P., Veneziani, M., Wolfe, J. D., Wolfram, P. J., and Woodring, J. L.:
An Evaluation of the Ocean and Sea Ice Climate of E3SM Using MPAS and Interannual CORE-II Forcing,
J. Adv. Model. Earth Sy.,
11, 1438–1458, https://doi.org/10.1029/2018MS001373, 2019. a
Plimpton, S.:
Fast Parallel Algorithms for Short-Range Molecular Dynamics,
J. Comput. Phys.,
117, 1–19, https://doi.org/10.1006/jcph.1995.1039, 1995. a, b
Preparata, F. P. and Shamos, M. I.:
Computational Geometry: An introduction,
Springer-Verlag, Berlin, https://doi.org/10.1007/978-1-4612-1098-6, 1985. a, b
Rampal, P., Bouillon, S., Ólason, E., and Morlighem, M.: neXtSIM: a new Lagrangian sea ice model, The Cryosphere, 10, 1055–1073, https://doi.org/10.5194/tc-10-1055-2016, 2016. a
Rousset, C., Vancoppenolle, M., Madec, G., Fichefet, T., Flavoni, S., Barthélemy, A., Benshila, R., Chanut, J., Levy, C., Masson, S., and Vivier, F.: The Louvain-La-Neuve sea ice model LIM3.6: global and regional capabilities, Geosci. Model Dev., 8, 2991–3005, https://doi.org/10.5194/gmd-8-2991-2015, 2015.
a, b
Shire, T., Hanley, K. J., and Stratford, K.:
DEM simulations of polydisperse media: efficient contact detection applied to investigate the quasi-static limit,
Computational Particle Mechanics,
8, 653–663, https://doi.org/10.1007/s40571-020-00361-2, 2020. a
Swope, W. C., Andersen, H. C., Berens, P. H., and Wilson, K. R.:
A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters,
J. Chem. Phys.,
76, 637–649, https://doi.org/10.1063/1.442716, 1982. a
Tuhkuri, J. and Polojärvi, A.:
A review of discrete element simulation of ice–structure interaction,
Philos. T. R. Soc. A,
376, 20170335, https://doi.org/10.1098/rsta.2017.0335, 2018. a
Turner, A. K., Peterson, K. J., Bolintineanu, D., Kuberry, P. A. , Clemmer, J. T., and Nikolov, S.: DEMSI release v0.0.1 (0.0.1), Zenodo [code], https://doi.org/10.5281/zenodo.5800083, 2021. a
Turner, A. K., Peterson, K. J., Bolintineanu, D., Kuberry, P. A., Clemmer, J. T., and Nikolov, S.: DEMSI v0.0.1 input data (0.0.1), Zenodo [data set], https://doi.org/10.5281/zenodo.6226411, 2022. a
Ullrich, P. A., Lauritzen, P. H., and Jablonowski, C.:
Geometrically Exact Conservative Remapping (GECoRe): Regular latitude–longitude and cubed–sphere grids,
Mon. Weather Rev.,
137, 1721–1741, https://doi.org/10.1175/2008MWR2817.1, 2009. a
van den Berg, M., Lubbad, R., and Loset, S.:
An implicit time-stepping scheme and an improved contact model for ice–structure interaction simulations,
Cold Reg. Sci. Technol.,
155, 193–213, https://doi.org/10.1016/j.coldregions.2018.07.001, 2018. a
van den Berg, M., Lubbad, R., and Løset, S.:
The effect of ice floe shape on the load experienced by vertical-sided structures interacting with a broken ice field,
Mar. Struct.,
65, 229–248, https://doi.org/10.1016/j.marstruc.2019.01.011, 2019. a
van Leer, B.:
Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method,
J. Comput. Phys.,
32, 101–136, https://doi.org/10.1016/0021-9991(79)90145-1, 1979. a, b
Xu, Z., Tartakovsky, A. M., and Pan, W.:
Discrete-element model for the interaction between ocean waves and sea ice,
Phys. Rev. E,
85, 016703, https://doi.org/10.1103/PhysRevE.85.016703, 2012. a
Short summary
We developed a technique to remap sea ice tracer quantities between circular discrete element distributions. This is needed for a global discrete element method sea ice model being developed jointly by Los Alamos National Laboratory and Sandia National Laboratories that has the potential to better utilize newer supercomputers with graphics processing units and better represent sea ice dynamics. This new remapping technique ameliorates the effect of element distortion created by sea ice ridging.
We developed a technique to remap sea ice tracer quantities between circular discrete element...