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Abstract. A new sea ice dynamical core, the Discrete El-
ement Model for Sea Ice (DEMSI), is under development
for use in coupled Earth system models. DEMSI is based on
the discrete element method, which models collections of ice
floes as interacting Lagrangian particles. In basin-scale sea
ice simulations the Lagrangian motion results in significant
convergence and ridging, which requires periodic remapping
of sea ice variables from a deformed particle configuration
back to an undeformed initial distribution. At the resolution
required for Earth system models we cannot resolve individ-
ual sea ice floes, so we adopt the sub-grid-scale thickness
distribution used in continuum sea ice models. This choice
leads to a series of hierarchical tracers depending on ice frac-
tional area or concentration that must be remapped consis-
tently. The circular discrete elements employed in DEMSI
help improve the computational efficiency at the cost of in-
creased complexity in the effective element area definitions
for sea ice cover that are required for the accurate enforce-
ment of conservation. An additional challenge is the accurate
remapping of element values along the ice edge, the location
of which varies due to the Lagrangian motion of the particles.
In this paper we describe a particle-to-particle remapping ap-
proach based on well-established geometric remapping ideas
that enforces conservation, bounds preservation, and com-
patibility between associated tracer quantities, while also ro-
bustly managing remapping at the ice edge. One element of
the remapping algorithm is a novel optimization-based flux
correction that enforces concentration bounds in the case of
nonuniform motion. We demonstrate the accuracy and utility
of the algorithm in a series of numerical test cases.

1 Introduction

Sea ice, the frozen surface of the ocean at high latitudes,
forms an important component of the Earth climate system.
Sea ice moderates the exchange of heat, mass, and momen-
tum between the ocean and the atmosphere. The high albedo
of sea ice has a significant effect on planetary reflectivity
and can help drive the polar amplification of climate change
through an albedo feedback mechanism (Ingram et al., 1989),
while the rejection of salt during sea ice formation helps
drive the thermohaline circulation (Killworth, 1983). The sea
ice components of current global climate models use a con-
tinuum Eulerian formulation and use either structured grids
(e.g., CICE: Hunke et al., 2015, or LIM3: Rousset et al.,
2015) or unstructured meshes (e.g., MPAS-Seaice: Petersen
et al., 2019). Continuum Lagrangian sea ice models have
also been developed, such as neXtSIM (Rampal et al., 2016),
which uses a moving triangulation as its mesh. The discrete
element method (DEM) is an alternate Lagrangian method
whereby the motion and contacts of finite-sized particles are
simulated. Several DEM sea ice models have been developed
for process-scale simulations, such as for sea ice ridging and
deformation (Hopkins, 1994), the interaction between sea ice
and solid structures (e.g., Tuhkuri and Polojärvi, 2018), the
interaction between sea ice and waves (e.g., Xu et al., 2012;
Herman, 2017), floe clustering (Herman, 2011), and channel
flow (e.g., Gutfraind and Savage, 1998). Basin-scale DEM
sea ice models have been developed as well (Hopkins, 2004)
and have been used to study the formation of the floe size dis-
tribution through fracture processes between elements (Hop-
kins and Thorndike, 2006).

Ice convergence and ridging present a unique set of is-
sues for sea ice DEM models that are not present in tradi-
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tional DEM applications. During ridging ice area is reduced
as ice thickness increases. Capturing the relevant physics of
this process using DEM sea ice models has proven to be
a challenge. Hopkins (1994) developed a two-dimensional
cross-sectional model of a single pressure ridge, which was
used by Hopkins (1996) to derive a contact model for a two-
dimensional DEM sea ice model representing the plastic de-
formation produced during ridge formation. This model was
then used to derive sea ice yield curves. Hopkins (2004)
used the same contact model in sea ice simulations in which
the ridging process was represented through a remapping
scheme of overlapping converging neighboring elements. In
this model, every 24 h the spatial distribution of elements
is remapped back to the initial distribution of elements. El-
ements that overlap thicken after remapping, representing
the ridging process. Without this remapping, element over-
lap would increase indefinitely, producing a highly interpen-
etrated element distribution for which determination of el-
ement contacts would be difficult, as would interpretation
of the sea ice state at any particular point. Alternatively, in-
stead of using overlapped elements to represent ridging, el-
ements could be made to shrink instead. Elements with ar-
bitrarily small radii, however, introduce computational chal-
lenges with regard to efficient contact searching, time step
size, and contact model formulation (Hopkins, 2004; Shire
et al., 2020). Both these considerations therefore require
long-duration DEM simulations of sea ice deformation to pe-
riodically perform a remapping of the model elements to an
undeformed distribution. A related recent development is the
non-smooth DEM (NDEM) sea ice model developed by van
den Berg et al. (2018, 2019), which for floes of any shape re-
produces realistic forces for compliant floe–floe interactions.

Computational performance is another important consid-
eration for long-duration DEM sea ice simulations. One of
the most computationally expensive parts of a DEM model is
the detection of contact between neighboring elements. Hop-
kins (2004) use polygonal elements and so require a compu-
tationally expensive algorithm (Preparata and Shamos, 1985)
to detect contact between elements and to calculate the con-
tact point. Contact detection between circular elements, on
the other hand, is much less computationally expensive since
for circular elements only a comparison between the ele-
ment separation and the element radii is needed to deter-
mine if elements are in contact. In this regard, in the work
which follows, we explore how to represent sea ice in a Hop-
kins (2004) type of DEM model using more computationally
efficient circular elements. Within this framework, we also
investigate how to perform proper remapping of elements,
which is necessitated by the ridging process and required for
the successful development of a global DEM sea ice model
performing long-duration simulations.

Considerable research has gone into developing conserva-
tive and bounds-preserving remapping methods for transfer-
ring scalar quantities between two grids. In the geometric
approach, a reconstruction of the conserved quantity is in-

tegrated over intersections of overlapping cells between the
source and target mesh. In the climate modeling commu-
nity this class of algorithm has been specialized for remap-
ping between structured and unstructured spherical grids
(Jones, 1999; Ullrich et al., 2009). Similar remapping algo-
rithms have been developed for use in arbitrary Lagrangian–
Eulerian methods (Margolin and Shashkov, 2003) as well
as the remapping step of semi-Lagrangian or incremen-
tal remapping schemes for transport (Dukowicz and Baum-
gardner, 2000; Lipscomb and Hunke, 2001; Lipscomb and
Ringler, 2005; Lauritzen et al., 2010). For second-order and
higher remapping schemes, a form of limiting must be done
to preserve physical bounds on the remapped field. Bounds
preservation can be achieved through limiting the gradient
of the reconstruction (Dukowicz and Baumgardner, 2000;
van Leer, 1979), applying a flux correction algorithm (Liska
et al., 2010), or applying an optimization-based correction
(Bochev et al., 2013, 2014).

In this paper we present a remapping method that builds on
standard geometric remapping approaches while addressing
the unique challenges associated with remapping for a DEM
sea ice model using circular elements. These challenges in-
clude defining consistent areas for enforcing conservation,
addressing monotonicity errors due to element overlap un-
der nonuniform motion, and enabling accurate reconstruc-
tions at the ice edge. This remapping method forms part of
a new sea ice dynamical core, the Discrete Element Model
for Sea Ice (DEMSI), currently under development for use
in coupled Earth system models. The test cases used here
to illustrate the method use a greatly simplified DEM con-
tact model, which is sufficient to demonstrate the efficacy of
the remapping method. Work is ongoing to develop a contact
model for DEMSI representing sea ice dynamics and includ-
ing a representation of sea ice fracture and ridging. In Sect. 2
we describe the representation of sea ice in our model and
introduce an effective element area needed to represent sea
ice with 100 % ice concentration. In Sect. 3 we describe our
remapping algorithm including a novel optimization-based
flux correction for the case of nonuniform motion and meth-
ods for ensuring accurate remap at the ice edge. In Sect. 4 we
present numerical examples demonstrating that the method
is robust and achieves second-order accuracy, tracer compat-
ibility, conservation, and bounds preservation.

2 Representation of sea ice with circular elements

While using circular elements in DEM models is computa-
tionally efficient, they present a unique challenge for the rep-
resentation of sea ice. Unlike polygonal elements that can be
made to completely tessellate a region (e.g., with a Voronoi
tessellation), circular elements, in general, cannot completely
cover a region, preventing them from directly representing
sea ice cover with 100 % concentration. In order to repre-
sent 100 % ice cover with circular elements we associate an
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Figure 1. Example of an element distribution generated with the al-
gorithm of Liang et al. (2015) showing the circular elements (grey)
and the radical Voronoi tessellation (green).

effective area, e, with each element. This area, which is po-
tentially larger than the geometric area of the circular ele-
ment, represents the area of sea ice and open water associated
with that element. We determine this initial effective element
area from a radical Voronoi tessellation (Imai et al., 1985)
of the elements. Also called a power or Laguerre–Voronoi
diagram, this is a Voronoi tessellation weighted by the ele-
ment radius and with the element centers as the tessellation
generator points. This tessellation results in elements that are
contained completely within their polygons for element dis-
tributions that do not overlap (see Fig. 1). We take the ini-
tial effective area for an element as the area of the radical
Voronoi polygon associated with that element. Since the rad-
ical Voronoi tessellation covers the whole domain, the effec-
tive element area can represent 100 % ice cover. The radical
Voronoi polygon associated with an element is carried with
it as the element moves.

Over time sea ice deformation and ridging reduce sea ice
area (while increasing sea ice thickness and approximately
conserving sea ice volume). One way to represent this in
a DEM sea ice model is to allow elements to overlap as
they ridge and to concomitantly reduce the effective ele-
ment area as they do. The radical Voronoi polygon associ-
ated with an element, Pi , can then be handled in either of
two ways. Firstly, the size of the polygon associated with the
element, APi , can be kept constant. In this case e < APi in
general between remappings. Secondly, as the effective ele-
ment area of an element decreases during ridging the poly-
gon can be decreased in size so that its area remains equal
to the effective element area, i.e., e = APi , between remap-

pings. The remapping method described here will work with
either methodology. We will examine ridging in DEM sea
ice models in a later work but require the remapping scheme
described here to periodically remap the element distribution
back to the initial Voronoi tessellation to ameliorate the ef-
fect of the element overlap associated with ridging during
long-duration simulations.

Sea ice models used in current global climate models use
numerous interdependent tracer fields that form a complex
hierarchy with ice concentration, c, or the fractional area of
ice in an element, as the root tracer. Sea ice models typically
employ an ice thickness category distribution (e.g., Hunke
et al., 2015; Rousset et al., 2015), whereby grid cell ice area
is divided into a number of categories, each representing
sea ice of different thicknesses. The sum of fractional areas
in each thickness category is the total element ice concen-
tration. For ice concentration less than 100 %, the remain-
ing area is assumed to be open water. Within each category
the ice is further divided into vertical layers, each of which
contains tracer fields. Considering both categories and lay-
ers, MPAS-Seaice, for example, utilizes 23 different tracer
fields for a typical physics simulation without biogeochem-
istry. Biogeochemistry uses many more additional tracers.
Any remapping method must remap this complex tracer hier-
archy in a computationally efficient manner and ensure that
the sum of ice concentrations across thickness categories per
element after remapping is bounded between 0 and 1.

Another desirable property of the remapping scheme is
conservation of the appropriate conserved quantities. The ef-
fective area, e, provides a means to define conserved quan-
tities that is consistent for a representation of sea ice with
100 % ice concentration. For example, given ice concentra-
tion, c, ice thickness, h, and ice enthalpy, q, in element i
quantities that must be conserved during remapping are the
total ice area per ice thickness category,

Ak =

∑
i

eicik, (1)

the total ice volume per ice thickness category,

Vk =
∑
i

eicikhik, (2)

and the total ice energy per ice thickness category and ice
layer,

Qkl =

∑
i

eicikhikqikl, (3)

where each thickness category within an element is labeled
by the k index and ice layers within a thickness category by
the l index. In the remapping implementation we distinguish
between primitive tracer variables, such as thickness and en-
thalpy, and conserved quantities, such as volume and energy.
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3 Geometric remapping implementation

Several properties are desirable in tracer remapping schemes.

– Conservation. A remapping scheme should preserve
conservation of the appropriate quantities. Conserva-
tion of mass and energy is very important for long-term
global climate simulations.

– Accuracy. Since first-order schemes are very numeri-
cally diffusive, the method should be at least second-
order accurate in space.

– Monotonicity. The method should preserve monotonic-
ity of the tracer fields so no new extrema are generated
in these fields by remapping.

– Compatibility. The method should ensure that no new
extrema are created when the primitive tracer field is
diagnosed from the remapped conserved field; that is,
both the primitive and conserved variables are consis-
tently bounds-preserving.

– Computational efficiency. The method should be com-
putationally efficient for many tracers.

The geometrically based remapping scheme proposed here
satisfies all these requirements. The method proposed is
based partly on the incremental remapping transport algo-
rithm used for sea ice transport in CICE and MPAS-Seaice
(Dukowicz and Baumgardner, 2000; Lipscomb and Hunke,
2001). The scheme for remapping a source element distribu-
tion (indexed by i) to a destination element distribution (in-
dexed with j ) is described below. This remapping method
is used within a sea ice simulation to periodically remap
a deformed sea ice element (source) distribution to an un-
deformed (destination) distribution, after which the simula-
tion is restarted. Source element i has its effective area poly-
gon, Pi , advecting with it (including both translation and ro-
tation), while the fixed destination element j has its effective
area polygon, Pj , associated with it. Both polygons are con-
vex. The remapping method is based on the polygon, Pij ,
associated with the geometric overlap between the Pi and Pj
polygons, which is also convex, and consists of transfer-
ring quantities associated with Pij to Pj . Hence, a conserved
quantity Zi on the source polygons is remapped to Pj as

Zj =
∑
i

Zij , (4)

whereZij is the part ofZi in the intersection polygon Pij and
the sum is over the source element polygons, Pi , that overlap
the destination polygon, Pj . Since the destination polygons
tessellate the whole domain, every part of all the Zi values,
represented in the Zij values, is transferred to a destination
polygon ensuring conservation of Z.

For a first-order method in which a tracer, ti , is assumed
constant within the Pi polygons,

Zij = tieij , (5)

where eij is the effective area associated with the overlap
polygon Pij and is given by the fractional area of the overlap
as

eij = ei
APij

APi
, (6)

whereAPi denotes the area of the Pi polygon; recall that ei is
the effective area of element i based on tessellation of the ini-
tial element configuration. For a second-order method, with
the tracer ti(x) represented as a linear function of position,

Zij =
eij

APij

∫
APij

ti(x)dA. (7)

The set of source elements does not necessarily fill the en-
tire domain, as some portions of the domain can be made
up of open water. The set of destination polygons, however,
forms a complete tessellation of the domain without gaps or
overlap, since for conservation every part of the Pi polygons
must overlap with a Pj polygon exactly once.

The major steps of the remapping method are described
below.

1. Determine overlap polygons, Pij , between the
source (Pi) and destination (Pj ) polygons and remap
effective element area.

2. Compute linear reconstructions of average tracer fields
on source elements based on tracer values in neighbor-
ing elements. The gradients in the reconstruction are
limited to ensure monotonicity of the remapped fields
in the case of uniform motion.

3. Integrate the conserved variables over the intersection
polygons using the linear reconstructed tracer fields and
aggregate in the destination polygons.

4. Enforce bounds preservation for remapped effective
area and tracers using an optimization-based flux cor-
rection.

These steps are described in more detail in the following sec-
tions.

3.1 Polygon intersections and remapped area

In the first step of the algorithm, the intersection poly-
gons, Pij , are calculated using the algorithm of Preparata
and Shamos (1985). In order to avoid the large computational
cost of calculating the intersection polygon for every source
and destination polygon pair, only destination polygons that
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are close enough to source polygons to have potential over-
lap are included in the search. This is implemented with a
link-cell method (Hockney et al., 1974; Plimpton, 1995).

Unlike for the discrete element application described here,
when computing intersections between two well-defined
grids that cover the same domain, the sum of the intersections
will be equal to the domain area. Each destination grid cell
will also be entirely covered by source grid cells so that the
sum of the source intersections of a destination grid cell will
equal the destination grid cell area. For our discrete element
application, if the motion leading to the deformed element
distribution is nonuniform there may be gaps and overlaps
between the source polygons used to compute the intersec-
tions. Additionally, near the ice edge there will be destina-
tion polygons that are only partially covered by source poly-
gons. To account for this, we compute a remapped effective
area, ej , given by

ej =
∑
i

eij =
∑
i

APij

APi
ei . (8)

Recall that ei may not be equivalent to the effective poly-
gon area associated with element i due to area changes from
ridging. The remapped effective area ej will, in general, not
equal the destination element effective area APj and in some
cases may exceed the destination element effective area. The
optimization-based flux algorithm described in Sect. 3.4 is
used to correct the remapped effective area to ensure ej ≤
APj and correct tracer values with the computed area fluxes
to enforce monotonicity while maintaining conservation. In
the case of uniform motion there are no area changes due to
ridging, and the remapped effective area simplifies such that
ei is equal to APi and ej will only differ from APj along the
ice edge.

3.2 Linear tracer reconstruction

As the first step in remapping the tracers, a mean-preserving
linear reconstruction of the tracer fields, tp(r), is made in
each polygon of the source element distribution. For the con-
centration, c, thickness, h, and enthalpy, q, the reconstruc-
tions are

cp(r)= c+αc∇c · (r − r̄), (9)
hp(r)= h+αh∇h · (r − r̃), (10)

and

qp(r)= q +αq∇q · (r − r̂), (11)

where r = (x,y) is the position vector within the element
polygon, ∇c, ∇h, and ∇q are estimates of the tracer gradi-
ents for the c, h, and q tracers in the source polygons, and αc,
αh, and αq are limiting coefficients for the c, h, and q trac-
ers that enforce monotonicity. A linear tracer reconstruction
ensures second-order spatial accuracy of the remapping. To

satisfy conservation of A, V , and Q, the reconstructed tracer
fields must equal the known cell-averaged tracer values (c, h,
and q) when integrated over the source polygons so that

e
1
A

∫
A

cp(r)dA= ce, (12)

e
1
A

∫
A

cp(r)hp(r)dA= che, (13)

and

e
1
A

∫
A

cp(r)hp(r)qp(r)dA= chqe. (14)

This requires that (Lipscomb and Hunke, 2001)

r̄ =
1
A

∫
A

rdA, (15)

r̃ =
1
cA

∫
A

cp(r)rdA, (16)

and

r̂ =
1
chA

∫
A

cp(r)hp(r)rdA. (17)

Tracer gradients for a source element are calculated as a mul-
tivariate linear regression of the tracer values in that element
and the neighboring source elements. If two source polygons
jointly overlap with a particular destination polygon they are
defined as being neighboring source elements. For the nm
neighboring elements (including the element itself) the tracer
gradients are given by

∇x t =
(YY )(XT )− (XY)(YT )

(XX)(YY )− (XY)2
(18)

and

∇y t =
(XX)(YT )− (XY)(XT )

(XX)(YY )− (XY)2
, (19)

where

XX =
∑
m

xmxm−
1
nm

∑
m

xm
∑
m

xm, (20)

YY =
∑
m

ymym−
1
nm

∑
m

ym
∑
m

ym, (21)

XY =
∑
m

xmym−
1
nm

∑
m

xm
∑
m

ym, (22)

XT =
∑
m

xmtm−
1
nm

∑
m

xm
∑
m

tm, (23)

YT =
∑
m

ymtm−
1
nm

∑
m

ym
∑
m

tm. (24)

Neighboring element m has position (xm,ym) and tracer
value tm.
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Tracer gradients are limited with a form of van Leer lim-
iting (van Leer, 1979) to preserve monotonicity of the tracer
fields. Tracer gradients are limited so that the extrema val-
ues of the linear reconstructed tracer field, tp(r), within a
source polygon are within the range of tracer values for the
surrounding neighbor source elements. These neighbor ele-
ments are defined in the same way as for the gradient cal-
culation above. Since the extremal values of a linear recon-
structed tracer field for a polygon are at the corners of that
polygon, we use the minimum and maximum of the corner
polygon tracer values of the reconstructed field, tcmin

i and
tcmax
i , to perform the limiting. The gradients for a source el-

ement i are limited by multiplying them by a limiting coef-
ficient, αi , which lies in the range [0,1] and whose value is
given by

αi =min(1,αmin,αmax), (25)

where

αmin =

 max

(
0,
tmin
i − ti

tcmin
i − ti

)
, if |tcmin

i − ti |> |t
min
i − ti |

1, otherwise
(26)

and

αmax =

 max
(

0,
tmax
i − ti

tcmax
i − ti

)
, if |tcmax

i − ti |> |t
max
i − ti |

1, otherwise.
(27)

Here, tmin
i and tmax

i are the minimum and maximum, respec-
tively, of the tracer values of the surrounding neighbor source
elements to source element i. This method restricts recon-
structed tracer values of a given destination element, tj , to
be within the range of source tracer values for source ele-
ments that overlap with the destination element as well as
source element neighbors of those source elements, as in the
case for the incremental remapping algorithm. In addition,
in a similar way gradients of the concentration fields for all
the ice thickness categories are limited so that the sum of
the reconstructed concentration over thickness categories lies
within [0,1].

3.3 Integration over intersection polygons

With tracer gradients calculated and limited, conserved quan-
tities can now be calculated from integrals of the recon-
structed tracer fields across the intersection polygons. For
destination polygon j ,

Ajk =

∑
i

eij
1
APij

∫
APij

c
p
ik(r)dA, (28)

Vjk =
∑
i

eij
1
APij

∫
APij

c
p
ik(r)h

p
ik(r)dA, (29)

and

Qjkl =

∑
i

eij
1
APij

∫
APij

c
p
ik(r)h

p
ik(r)q

p
ikl(r)dA, (30)

where the sum is over source element distribution i, and
the integral is over the ij intersection polygon area. eij is
nonzero only when source polygon i overlaps destination
polygon j . Finally, new remapped tracer values for the desti-
nation elements are determined with

cjk =
Ajk

ej
, (31)

hjk =
Vjk
ej cjk

, (32)

and

qjkl =
Qjkl

ej cjkhjk
. (33)

Only destination elements with a remapped effective area
greater than zero then need to be kept for the continuing
DEM simulation. To ensure consistency for partially ice-
filled destination elements, before the final calculation of
tracer values in Eqs. (31) to (33), the effective area is set to
the polygon areaApj , decreasing the concentration of sea ice
calculated in Eq. (31). This is compatible with Eq. (8) since
the values of effective area and concentration are not unique
for representing the physically relevant quantity of sea ice
area within an element, given by Ai = ciei . Provided the area
of sea ice within an element remains fixed, 0≤ ci ≤ 1, and
0≤ ei ≤ Ap, the concentration and effective area can vary
together without affecting the physical representation.

Instead of directly calculating the integrals over the source
and intersection polygon area required by the remapping
method, the integrands of these integrals are expanded so that
only integrals of geometric quantities of the source polygons
are required. These quantities are calculated once for all trac-
ers, improving computational efficiency for simulations with
a large tracer number. For example, Eq. (16) once expanded
becomes

r̃x =
1
cA

[
(c−αc∇c · r̄)

∫
A

xdA+ (αc∇xc)
∫
A

x2dA

+ (αc∇yc)

∫
A

xydA
]

(34)

and

r̃y =
1
cA

[
(c−αc∇c · r̄)

∫
A

ydA+ (αc∇xc)
∫
A

xydA

+ (αc∇yc)

∫
A

y2dA
]
, (35)

and only source polygon integrals of x, y, x2, y2, and xy
are required. The integrals are calculated by breaking poly-
gons into triangles by connecting the polygon centroid to the
polygon vertices and using the Gaussian triangular quadra-
ture rules of Dunavant (1985).
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3.4 Optimization-based flux correction to remapping

For uniform motion of the elements there is no relative mo-
tion (either rectilinear or rotational) between elements, so
their polygons do not overlap during their motion. For gen-
eral motion, however, relative motion between elements re-
sults in element polygons overlapping. For the formulation
of effective area from Sect. 2, this would potentially result in
the remapped effective area exceeding the available geomet-
ric area of the destination polygons, resulting in remapped
concentrations greater than 1. To ameliorate this issue we im-
plement a flux-based optimization correction to the effective
area and tracer fields that is applied after the remapping dis-
cussed above. This optimization scheme determines a mini-
mal flux, fj1j2 , between polygons j1 and j2 of the destina-
tion element distribution that conservatively removes excess
effective area from destination polygons, so after the flux is
applied to the remapped effective area and tracer fields the
effective areas, ej1 and ej2 , are less than the destination poly-
gon areas, APj1 and APj2 , for all destination polygons. For a
given destination polygon Pj1 we require that the corrected
effective area, e′j1

, obey

0≤ e′j1
≤ APj1

. (36)

The corrected effective area is given by

e′j1
= ej1 +

∑
j2

Bj1j2fj1j2 , (37)

where Bj1j2 is the j1,j2 component of a sparse matrix with
entries of either 0 (if polygons j1 and j2 do not share an
edge), −1, or 1 (signifying whether the flux fj1j2 is into or
out of the polygon j1). Thus, the determination of the set
of fluxes, fj1j2 , can be cast in the following inequality con-
strained quadratic program:

minimize
1
2
f TPf

subject to l ≤ Bf ≤ u, (38)

where f is the vector of edge fluxes, fi1j2 , P is the identity
matrix, B is the matrix with components Bj1j2 , and u and l
are vectors defined by

lj =−ej (39)

and

uj = APj − ej . (40)

The quadratic program is solved in parallel by the Per-
monQP library (Hapla et al., 2016; Kružík et al., 2020; Hapla
et al., 2021), which uses the PETSc library (Balay et al.,
1997, 2019). The fluxes, fj1j2 , are then used to conserva-
tively transfer effective area and tracer quantities between
destination polygons, removing excess effective area. Since

the fluxes are fluxes of effective area, a conserved quan-
tity, Z, is corrected according to

Z′j1
= Zj1 −Zj1

fj1j2

ej
(41)

and

Z′j2
= Zj2 +Zj1

fj1j2

ej
(42)

for all values of f , where fj1j2 flows from element j1 to j2.
Another issue ameliorated by the flux correction is the

overlapping of source elements with coastal elements. Here
we represent coastlines through a series of immovable ele-
ments coincident with land. DEM models, however, model
compressive interaction through an overlap of elements, so
sea ice elements pushed by winds onto fixed coastal elements
will overlap slightly with those elements. During the remap-
ping described previously some sea ice will be remapped
onto the coastal elements. This can be fixed by moving this
remapped ice to the nearest destination element that is not
a coastal element before the flux correction is performed.
While moving this ice has the potential to increase the effec-
tive area of these elements to be larger than their geometric
area, the flux correction algorithm ameliorates this effect.

3.5 Effect of open water

One difference between particle and Eulerian methods that
causes potential issues for remapping is the treatment of open
water. In Eulerian methods, empty Eulerian cells, represent-
ing open water, can be included in the calculation of tracer
gradients and monotonicity limits. For DEM sea ice mod-
els, elements only exist where sea ice exists, with elements
that lose all their ice being removed from the simulation. One
advantage of this is that fewer elements are needed than Eu-
lerian cells (which must cover the whole domain), increas-
ing computational performance for the DEM model. Conse-
quently, there are no empty elements representing open water
to be included in tracer gradient calculations or in the neigh-
boring element tracer extrema used to limit those gradients.
A possible effect of this is that tracer values for ice concen-
tration and thickness, ti , for elements at the ice pack edge
are likely to be the minimum of the neighbor tracer values
so that ti = tmin

ij . From Eqs. (25) to (27) this would mean the
gradients would be limited to zero in these ice edge elements,
and the remapping here would revert to a highly diffusive
first-order method. To investigate the effect of this issue we
implement a method to account for open water in the tracer
gradient calculation and limiting. Firstly, for the neighboring
source elements,Ni , of a given source element (not including
the element itself) we calculate the total effective area, Ei ,
and the centroid of that effective area, rEi . These are given
by

Ei =

Ni∑
i

ei (43)
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Figure 2. (a) Final ice concentration for the one-dimensional top hat test case. No remapping (solid), low-order remapping, and higher-
order (dashed) remapping. (b) As (a) but with a logarithmic ordinate axis. Results for no remapping, low-order remapping, and higher-order
remapping are shown.

and

rEi =
1
E

Ni∑
i

eir i . (44)

If the Ei is below some limit we assume that there is
some open water surrounding the source element and in-
clude an additional open-water neighbor pseudo-element into
the gradient and gradient-limiting calculations. This pseudo-
element has zero concentration and a position on the opposite
side of the element to the centroid of the surrounding effec-
tive area (2r i − rEi ). The addition of a neighbor concentra-
tion value of zero would prevent the gradient at the ice edge
from being limited to zero. We include the zero concentration
pseudo-element if the sea ice surrounding the element of in-
terest is below a fraction (taken as 0.75) of an estimate of
the expected value of Ei for a fully covered pack, E′i . In two
dimensions we estimate E′i based on a hexagonal close pack-
ing of elements so that E′i ' 6ĀPj , where ĀPj is the mean
area of destination polygons. In one dimension each element
is only surrounded by two elements, so for one-dimensional
tests we use E′i ' 2ĀPj .

4 Computational results

We now test the remapping algorithm described in the previ-
ous section with a series of idealized test cases. Motion of the
elements between remapping is determined by the LAMMPS
(Plimpton, 1995) molecular dynamics code, which has the
capability to run DEM simulations, wherein particle interac-
tion forces are computed based on contacts and the equations

of motions are integrated in time. LAMMPS can either ex-
plicitly enforce the motion of elements (such as in uniform
rectilinear motion) or solve the equations of motion of the
elements with a modified velocity Verlet integrator (Swope
et al., 1982). For test cases involving solving the equations
of motion, we solve a simplified sea ice momentum equa-
tion, which in a DEM context reduces to a set of coupled
first-order equations for all elements:

mi
dui
dt
=

∑
j

F ij + τ a(xi)+ τw(xi), (45)

where mi is the mass of each element, ui is the element ve-
locity, F ij is the contact force on element i from neighbor-
ing element j , and τ a and τw are the atmospheric and ocean
stresses, respectively, evaluated at the location of the element
xi . To determine element rotation we also solve an angular
momentum equation given by

Ii
dωi
dt
=

∑
j

(r ij ×F ij ), (46)

where Ii is the moment of inertia of element i, ωi is the ele-
ment angular velocity, (r ij ×F ij ) is the torque on element i
produced by the contact force with element j , and r ij is the
contact position between elements i and j relative to the cen-
ter of mass of element i. The surface stresses have a quadratic
form given by

τ = eca,wρa,w|U a,w−u|(U a,w−u), (47)

where e is the effective element area, ca,w is a drag coef-
ficient, ρa,w is the fluid density, U a,w is the fluid velocity,
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Figure 3. (a) Detail of ice concentration for the top hat test case showing the higher-order remapping results with and without taking into
account the effect of open water. (b) As (a) but with a logarithmic ordinate axis. The inset shows detail of the differences at the extreme of
the distribution.

subscript a refers to air, and subscript w refers to water. This
momentum equation is discretized in time as

m
un−un−1

1t
= F n−1+ ecaρa

∣∣∣U a−u
n−1

∣∣∣(U a−u
n−1

)
+ ecwρw

∣∣∣Uw−u
n−1

∣∣∣ (Uw−u
n
)
,

(48)

where superscripts n and n− 1 signify the current and previ-
ous time steps, respectively, and the ocean velocity is treated
partly implicitly for stability. For the test cases considered
here a simple Hookean elastic repulsion contact model is em-
ployed with velocity damping in both the normal and tangen-
tial contact directions. While the Hookean contact model has
several limitations, such as sensitivity to the time step and
to the time stepping method used, it is sufficient to demon-
strate the efficacy of the remapping method. The air drag
coefficient, ca, and air density, ρa, are given by 0.0012 and
1.3 kgm−3, respectively (Hibler, 1979), while the ocean drag
coefficient, cw, and water density, ρw, are given by 0.00536
and 1026 kgm−3 (Kim et al., 2006), respectively.

4.1 One-dimensional uniform motion

The first test we perform is a simple one-dimensional test
case with uniform motion and a “top hat” initial ice concen-
tration distribution. The destination element distribution con-
sists of uniform elements with radius, r , of 500 m arranged in
the x direction across a domain 1000 km long. The domain
accommodates a single element in the y direction and is 1 km
wide. The initial source distribution is a subset of the destina-
tion distribution consisting of the 100 elements between 100

and 200 km in the x direction. Initial ice concentration, c0(x),
is given by

c0(x)=

{
1, for x1 ≤ x ≤ x2

0, otherwise,
(49)

where x1 and x2 are 100 and 200 km, respectively.
These elements have an initial effective area of a square of

side 2r , a sea ice concentration of 1, and a sea ice thickness
of 1 m. The elements undergo uniform motion in the positive
x direction for a total of 100 km of translation, whereupon
the final source distribution is examined. Figure 2 shows this
final distribution for three situations. The first situation (“no
remap” in Fig. 2) has no remapping performed during the
uniform motion so that the final distribution of ice concentra-
tion and thickness is the same as the initial one, other than be-
ing translated 100 km in the positive x direction. For the sec-
ond situation (“low order” in Fig. 2) the source distribution
elements move half their diameter (500 m) before remap-
ping and undergo a total of 200 remappings, resulting in the
100 km total translation. Tracer gradients are set to zero so
that the remapping algorithm becomes a low-order method.
The final situation (“higher order” in Fig. 2) is the same as the
low-order situation except tracer gradients are not set to zero,
making the remapping a more accurate higher-order method.
The no remap situation is useful for demonstrating the final
distribution that a perfect remapping scheme, with no numer-
ical diffusion, would produce. Figure 2 shows that the higher-
order method produces significantly less numerical diffusion
of the concentration profile than the low-order method.

We now use this test case to explore the effect of taking
account of open water in the tracer gradient and limiting, as
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Figure 4. One-dimensional compatibility test case. (a, b) No remapping, (c, d) low-order remapping, (e, f) higher-order remapping. (a, c,
e) Ice concentration and volume; (b, d, f) ice thickness.

described in Sect. 3.5. We rerun the higher-order simulation
with and without the effects of open water taken into account
(see Fig. 3). As can be seen in Fig. 3 the effect of the absence
of open-water elements appears negligible with only a very
minor amount of extra numerical diffusion present at the very
edge of the ice due to this absence (see inset in Fig. 3b). Sim-
ilar results were found with the two-dimensional simulations
described next. Based on these results we neglect the effect
of the absence of open-water elements for the remainder of
this work.

The next one-dimensional test case is based on that found
in Lipscomb and Hunke (2001) and is used to test how well
the remapping algorithm preserves the compatibility of the
particle tracers. The test case is the same as the previous one-

dimensional test case, except for the initial distribution of
ice concentration, thickness, and volume. These initial dis-
tributions are more complex than the previous test case (see
Fig. 4a and b) and provide a harder test of compatibility. Ini-
tial ice concentration, c0(x), and thickness, h0(x), are given
by

c0(x)=


x−x1
x3−x1

, for x1 ≤ x ≤ x3

1, for x3 ≤ x ≤ x5

0, otherwise

(50)

and

h0(x)=

{
0.25, for x2 ≤ x ≤ x4
1, for (x1 ≤ x < x2) or (x4 < x ≤ x5),

(51)
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Figure 5. Final ice concentration (fraction of elements covered in sea ice) for the two-dimensional remapping test case with an initial cosine
bell (CB: a–c) and slotted cylinder (SC: d–f) particle distribution. (a, d) No remapping, (b, e) low-order remapping, and (c, f) higher-order
remapping.

Figure 6. Cross section (y= 50 km) of ice concentration for the two-dimensional test case for the initial (a) cosine bell and (b) slotted
cylinder particle distributions. Results for no remapping, low-order remapping, and higher-order remapping are shown.

where x1, x2, x3, x4, and x5 are given by 100, 112.5, 150,
187.5, and 200 km, respectively. As before we perform three
separate simulations: one with no remapping (Fig. 4a and b),
one with low-order remapping (Fig. 4c and d), and one with
higher-order remapping (Fig. 4e and f). As before both the
low- and higher-order remapping schemes are capable of
remapping the initial particle distribution, with the higher-

order scheme producing much less numerical diffusion. Fig-
ure 4d and f also clearly show that the thickness tracer pre-
serves monotonicity as well as the concentration and volume,
clearly demonstrating compatibility of the method.
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4.2 Two-dimensional uniform motion

The next test case we examine involves a two-dimensional
domain of size 300 km in the x direction and 100 km size
in the y direction. The destination and initial source element
distributions consist of a random arrangement of circular ele-
ments with a distribution of element radius, with mean radius
∼ 513 m. To create the tightly packed initial element distri-
bution we use the method of Liang et al. (2015). This method
uses a Lloyd (1982) type of iteration of the radical Voronoi
tessellation of an initial random set of generator points each
with an assigned radius drawn from a distribution. During
each iteration the generator locations are moved to the cen-
ters of the largest inscribed circles within the radical Voronoi
polygons (see Fig. 1 for an example element distribution
generated with this method). We explore two different ini-
tial source element distributions discussed in Lipscomb and
Ringler (2005). The first is a cosine bell distribution with an
initial ice concentration, c0(x,y), given by

c0(x,y)=

{
1
2

(
1+ cos

(
πr
r0

))
, r < r0

0, otherwise,
(52)

where r =
√
(x− x0)2+ (y− x0)2, (x0,y0) is the center of

the cosine bell at (25 km, 50 km), and r0 is the radius of the
cosine bell with size 15 km. The second is a slotted cylinder
with an initial ice concentration, c0(x,y), given by

c0(x,y)=


1, (r < r0) and not(

(|x− x0|<
1
6 r0) and (y− y0) >−

2
3 r0)

)
0, otherwise,

(53)

where x0, y0, and r0 are the same as for the cosine bell dis-
tribution. Elements on the edge of the slotted cylinder are
assigned an initial concentration according to their areal frac-
tion within the slotted cylinder. The element distributions
are moved uniformly in the x direction and examined after
100 km of translation. As before we perform three simula-
tions (one with no remapping, one with low-order remap-
ping, and one with higher-order remapping), with remap-
ping performed every 500 m of translation for a total of 200
remappings. Spatial maps of the element concentration at the
end of the simulation are shown in Fig. 5. The higher-order
remapping scheme is able to preserve the approximate shape
of the initial concentration distributions, while high numer-
ical diffusion with the low-order remapping scheme leaves
the final element distribution more spread out with any struc-
ture of the slotted cylinder lost. The difference in numerical
diffusion of the two remapping methods is evident in cross
sections of final ice concentration through the middle of the
distributions, as shown in Fig. 6. As can be seen almost no
trace of the slot in the slotted cylinder is present for the low-
order scheme, while the slot is preserved well for the higher-
order method.

Figure 7. L2 error norm versus mean particle radius for the cosine
bell (CB) and slotted cylinder (SC) two-dimensional test cases with
both low- and higher-order remapping. First- and second-order con-
vergence gradients are also shown as the dotted lines.

Next we study the error scaling properties of the remap-
ping method. To do this we create various initial element dis-
tributions with different mean particle radii but the same rel-
ative distribution of radii. We rerun the simulations for these
element distributions and record the L2 error norm for each
simulation. We calculate the L2 error norm as

L2 =

∑
iei

√
c2
i − c

02
i∑

iei

√
c02
i

, (54)

where the sum is over the final element distribution, ei and
ci are the effective area and concentration of the final distri-
bution, and c0

i is the ice concentration for no remapping. In
Fig. 7, the values of the L2 error norm are plotted against
the mean radius of the element distribution for both the co-
sine bell and slotted cylinder initial distributions as well as
the low- and higher-order remapping methods. As can be
seen from the figure the higher-order method has signifi-
cantly lower errors than the low-order method for both ini-
tial distributions. The gradient of the slope for the smooth
cosine bell distribution is also much higher than the slotted
cylinder with its sharp discontinuities. It is also apparent that
for the smooth cosine bell distribution the remapping method
is approximately second-order accurate for the higher-order
method.

4.3 Flux correction tests

Having demonstrated in Sects. 4.1 and 4.2 that the higher-
order remapping method for uniform motion is capable of
remapping the particle distribution with low numerical dif-
fusion while preserving compatibility, we next turn to exam-
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Figure 8. Stationary two-dimensional remapping test case with randomization of element orientations for cosine bell (CB: a–c) and slotted
cylinder (SC: d–f) initial distributions. Shown are the initial sea ice concentration distributions (a and d), results without flux correction
(b and e), and results with flux correction (c and f).

Figure 9. Cross section (y= 50 km) of ice concentration for the stationary two-dimensional test case with randomized orientations for the
initial (a) cosine bell and (b) slotted cylinder particle distributions.

ining the effect of nonuniform motion and testing the abil-
ity of the flux correction algorithm described in Sect. 3.4 to
correct the issues created by this motion. The first test we
examine is a variation of the two-dimensional test used in
the previous section. Instead of making the elements undergo
uniform motion, we fix their positions and randomize the

orientations of their associated polygons before each remap-
ping. This introduces the overlaps and gaps between source
polygons that might be expected from a general motion of
the elements. As before, a total of 200 remappings are per-
formed before the concentration distributions are examined.
Figure 8b and e show the effect of these randomized ori-
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Figure 10. L2 error norm versus mean particle radius for the cosine
bell (CB) and slotted cylinder (SC) stationary two-dimensional test
cases with randomized orientations with both low- and higher-order
remapping. First- and second-order convergence gradients are also
shown as the dotted lines.

entations on the remapped ice concentration for the higher-
order remapping scheme. As can be seen, while the general
shape of the initial distributions is preserved, the randomiza-
tion results in ice concentrations significantly larger than 1
for some elements (where elements overlapped) and ice con-
centration less than that expected for others (from gaps in the
polygon distribution), with these effects taking on a random
nature. Clearly, without correction this effect would have a
seriously detrimental effect for any sea ice simulation. Fig-
ure 8c and f show the same final ice concentration distribu-
tion but generated with the flux correction scheme described
in Sect. 3.4 performed after remapping. Now, ice concentra-
tions are bounded correctly by [0,1], and the final distribution
is smooth with results similar to those obtained in Sect. 4.2.
Exactly the same result is not expected as the distribution
of particles for remapping is different and the remapping
method tested in Sect. 4.2 does not require the flux correc-
tion scheme. However, the similarity in the results indicates
that the flux correction scheme works effectively and does
not introduce significantly more numerical diffusion. This is
also evident in the cross section of ice concentration shown
in Fig. 9. Repeating the L2 error scaling analysis in the previ-
ous section (Fig. 10) shows larger L2 error norms for the un-
corrected simulations, while the flux-corrected simulations
show significantly lower errors and also show second-order
convergence with mean particle size for the smooth cosine
bell test case.

To demonstrate the effect of the flux correction in
more realistic situations we present two more test cases.
In the first, adapted from Lipscomb et al. (2007), we
have a square domain of size 1000 km by 1000 km with

a random distribution of elements covering the domain
generated by the algorithm of Liang et al. (2015). In
the middle of the domain is an “L-shaped” island con-
sisting of fixed coastal elements. Initial elements are
coastal or sea ice elements according to the following.

Here, (x,y) is the position of the element center, x0 and
y0 equal 400 km, x1 and y1 equal 600 km, and x2 and y2
equal 550 km. Elements have a mean element radius of
∼ 10 km, with non-coastal elements having a concentration
of 1 everywhere. A constant wind forcing is applied to the
elements with the x and y components of wind velocity both
equal to 10 ms−1, while the ocean is stationary. During the
simulation the elements flow around the island, leaving an
open-water wake behind it. Since the contact model used
here consists of elastic repulsion without a representation
of ridging, ice does not build up on the windward side of
the island. The simulation is run for 2 d after which the
element distribution is remapped to the destination element
distribution with the higher-order scheme and either with
or without the flux correction algorithm. Figure 11a and b
show the effect on ice concentration of remapping without
and with the flux correction, respectively. Figure 11c and d
show the same but with a value of 1 subtracted from the
ice concentration to highlight the excess ice concentration
generated by the remapping when the flux correction
is not used. These figures clearly show elements with
concentration greater than 1 after remapping without flux
correction and also show how the flux correction removes
this excess concentration and results in a concentration field
closer to the concentration field before remapping with a
concentration of 1 most places within the pack. Elements on
the edge of the ice pack and the edge of the island wake have
concentrations less than 1, since during the remapping these
elements were not fully covered by source elements.

The final test case we examine is that from Flato (1993).
Here the domain consists of a 500 km by 500 km closed
square with the upper half (y > 250 km) initially filled with
elements with a concentration of 1 and a mean radius of
∼ 2.5 km. The elements have the same air and ocean stress
formulation and the same elastic repulsion contact model as
the previous island test case. The ocean is again stationary,
but the wind field, U a, takes the form of a vortex with

U a(r)=min
{
ω|r|,

λ

|r|

}(
k×

r

|r|

)
, (55)

where r is the position vector relative to the center of
the vortex at (250, 200 km), ω is 0.5× 10−3 s−1, λ is
8× 105 m2 s−1, and k is the unit vertical vector. The sim-
ulation is run for 2 d and then the element distribution is
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Figure 11. Island test case showing remapping without any correction (a, c) and with the flux-based correction (b, d). (a, b) Ice concentration
and (c, d) the difference from an ice concentration of 1.0. Coastal elements comprising the central island are shown in grey.

remapped. As for the island test case, Fig. 12 shows that the
flux correction scheme is capable of removing excess con-
centration caused by more realistic nonuniform motion of the
elements for this test case.

5 Conclusions

Modeling sea ice dynamics with the discrete element method
has the potential to enable the capture of the anisotropic de-
formation and fracture seen in observational data that are dif-
ficult to reproduce in continuum models. The DEM models,
however, present a challenge due to convergence and overlap
of the Lagrangian elements in simulations. To manage this
element clustering, a deformed element distribution is peri-
odically remapped to an undeformed distribution. This pa-
per presents a geometrically based remapping algorithm de-
signed to address the unique challenges of accurately remap-
ping sea ice tracer fields for circular discrete elements. In
particular, the method includes a representation of effective
element area defined with a radical Voronoi tessellation for
the undeformed element configuration that enables an accu-
rate definition of area conservation in the case of 100 % sea

ice concentration. Our remapping approach builds on conser-
vative, bounds-preserving, and compatible algorithms devel-
oped for incremental remapping and applied to sea ice (Lip-
scomb and Hunke, 2001; Lipscomb and Ringler, 2005). In
the case of uniform motion, the effective element area en-
ables a complete coverage of the ice domain without over-
lap, and the method inherits the properties of the incremental
remapping algorithms. In the case of nonuniform motion in
which gaps and overlaps occur between the deformed effec-
tive element areas, monotonicity can be lost. To address this,
we developed a novel flux-based correction method, which
maintains conservation while correcting for bounds viola-
tions due to overlapping elements. Numerical examples are
provided that demonstrate the second-order accuracy of the
method, bounds preservation for both uniform and nonuni-
form motion, and compatibility between primitive and con-
served tracer quantities.
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Figure 12. Vortex test case showing remapping without any correction (a, c) and with the flux-based correction (b, d). (a, b) Ice concentration
and (c, d) the difference from an ice concentration of 1.0.
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Sojka, R.: Solving Contact Mechanics Problems with PERMON,
in: High Performance Computing in Science and Engineering,
vol. 9611 of Lecture Notes in Computer Science, edited by:
Kozubek, T., Blaheta, R., Šístek, J., Rozložník, M., and Čer-
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