Articles | Volume 14, issue 12
https://doi.org/10.5194/gmd-14-7223-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-7223-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessment of the ParFlow–CLM CONUS 1.0 integrated hydrologic model: evaluation of hyper-resolution water balance components across the contiguous United States
Mary M. F. O'Neill
CORRESPONDING AUTHOR
Department of Geology and Geological Engineering, Colorado School of Mines, Golden, CO, USA
now at: Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
now at: Earth System Science Interdisciplinary Center, University of Maryland, College Park, Greenbelt, MD, USA
Danielle T. Tijerina
Department of Civil and Environmental Engineering and High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA
Laura E. Condon
Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tuscon, AZ, USA
Reed M. Maxwell
Department of Civil and Environmental Engineering and High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA
Related authors
No articles found.
Jennie C. Steyaert and Laura E. Condon
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-194, https://doi.org/10.5194/hess-2023-194, 2023
Preprint under review for HESS
Short summary
Short summary
Reservoirs impact all river systems in the United States, yet their operations are difficult to quantify due to data limitations. Using the ResOpsUS dataset (a dataset of historical reservoir operations), we find that reservoir storage has declined over the past 40 years and there are clear regional differences based on climate, and reservoir use. Through evaluating common assumptions in models, we find that storage can be underestimated using static upper and lower storage bounds.
Amanda Triplett and Laura E. Condon
Hydrol. Earth Syst. Sci., 27, 2763–2785, https://doi.org/10.5194/hess-27-2763-2023, https://doi.org/10.5194/hess-27-2763-2023, 2023
Short summary
Short summary
Accelerated melting in mountains is a global phenomenon. The Heihe River basin depends on upstream mountains for its water supply. We built a hydrologic model to examine how shifts in streamflow and warming will impact ground and surface water interactions. The results indicate that degrading permafrost has a larger effect than melting glaciers. Additionally, warming temperatures tend to have more impact than changes to streamflow. These results can inform other mountain–valley system studies.
Luis Andres De la Fuente, Mohammad Reza Ehsani, Hoshin Vijai Gupta, and Laura E. Condon
EGUsphere, https://doi.org/10.5194/egusphere-2023-666, https://doi.org/10.5194/egusphere-2023-666, 2023
Preprint archived
Short summary
Short summary
Long Short-Term Memory (LSTM) is a widely-used machine learning (ML) model in hydrology. However, it is difficult to extract knowledge from it. We propose HydroLSTM which represents processes analogous to a hydrological reservoir. Models using HydroLSTM perform similarly to LSTM but require fewer cell states. The learned parameters are informative about the dominant hydroclimatic characteristics of a catchment. Our results demonstrate how hydrological knowledge is encoded in the new structure.
Aniket Gupta, Alix Reverdy, Jean-Martial Cohard, Basile Hector, Marc Descloitres, Jean-Pierre Vandervaere, Catherine Coulaud, Romain Biron, Lucie Liger, Reed Maxwell, Jean-Gabriel Valay, and Didier Voisin
Hydrol. Earth Syst. Sci., 27, 191–212, https://doi.org/10.5194/hess-27-191-2023, https://doi.org/10.5194/hess-27-191-2023, 2023
Short summary
Short summary
Patchy snow cover during spring impacts mountainous ecosystems on a large range of spatio-temporal scales. A hydrological model simulated such snow patchiness at 10 m resolution. Slope and orientation controls precipitation, radiation, and wind generate differences in snowmelt, subsurface storage, streamflow, and evapotranspiration. The snow patchiness increases the duration of the snowmelt to stream and subsurface storage, which sustains the plants and streamflow later in the summer.
Robert Hull, Elena Leonarduzzi, Luis De La Fuente, Hoang Viet Tran, Andrew Bennett, Peter Melchior, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-345, https://doi.org/10.5194/hess-2022-345, 2022
Revised manuscript has not been submitted
Short summary
Short summary
As the stress on water resources from climate change grows, we need models that represent water processes at the scale of counties, states, and even countries in order to make viable predictions about things will change. While such models are powerful, they can be cumbersome to deal with because they are so large. This research explores a novel way of increasing the efficiency of large-scale hydrologic models using an approach called Simulation-Based Inference.
Jennie C. Steyaert and Laura E. Condon
EGUsphere, https://doi.org/10.5194/egusphere-2022-1051, https://doi.org/10.5194/egusphere-2022-1051, 2022
Preprint archived
Short summary
Short summary
All river systems in the US are impacted by dams, yet analyses are limited by a lack of data. We use the first national dataset of reservoir data to analyze reservoir storage trends from 1980–2019. We show that reservoir storage has decreased over the past 40 years. The range in monthly storage has increased over time in drier regions and decreased in wetter ones. Lastly, we find that most regions have reservoir storage that takes longer to recover from and are therefore more vulnerable.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Geosci. Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021, https://doi.org/10.5194/gmd-14-7545-2021, 2021
Short summary
Short summary
Groundwater is increasingly being included in large-scale (continental to global) land surface and hydrologic simulations. However, it is challenging to evaluate these simulations because groundwater is
hiddenunderground and thus hard to measure. We suggest using multiple complementary strategies to assess the performance of a model (
model evaluation).
Jun Zhang, Laura E. Condon, Hoang Tran, and Reed M. Maxwell
Earth Syst. Sci. Data, 13, 3263–3279, https://doi.org/10.5194/essd-13-3263-2021, https://doi.org/10.5194/essd-13-3263-2021, 2021
Short summary
Short summary
Existing national topographic datasets for the US may not be compatible with gridded hydrologic models. A national topographic dataset developed to support physically based hydrologic models at 1 km and 250 m over the contiguous US is provided. We used a Priority Flood algorithm to ensure hydrologically consistent drainage networks and evaluated the performance with an integrated hydrologic model. Datasets and scripts are available for direct data usage or modification of processing as desired.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-378, https://doi.org/10.5194/hess-2020-378, 2020
Revised manuscript not accepted
Stephen R. Maples, Laura Foglia, Graham E. Fogg, and Reed M. Maxwell
Hydrol. Earth Syst. Sci., 24, 2437–2456, https://doi.org/10.5194/hess-24-2437-2020, https://doi.org/10.5194/hess-24-2437-2020, 2020
Short summary
Short summary
In this study, we use a combination of local- and global-sensitivity analyses to evaluate the relative importance of (1) the configuration of subsurface alluvial geology and (2) the hydraulic properties of geologic facies on recharge processes. Results show that there is a large variation of recharge rates possible in a typical alluvial aquifer system and that the configuration proportion of sand and gravel deposits in the subsurface have a large impact on recharge rates.
Benjamin N. O. Kuffour, Nicholas B. Engdahl, Carol S. Woodward, Laura E. Condon, Stefan Kollet, and Reed M. Maxwell
Geosci. Model Dev., 13, 1373–1397, https://doi.org/10.5194/gmd-13-1373-2020, https://doi.org/10.5194/gmd-13-1373-2020, 2020
Short summary
Short summary
Integrated hydrologic models (IHMs) were developed in order to allow for more accurate simulations of real-world ecohydrologic conditions. Many IHMs exist, and the literature can be dense, so it is often difficult to understand what a specific model can and cannot do. We provide a review of the current core capabilities, solution techniques, communication structure with other models, some limitations, and potential future improvements of one such open-source integrated model called ParFlow.
Annette Hein, Laura Condon, and Reed Maxwell
Hydrol. Earth Syst. Sci., 23, 1931–1950, https://doi.org/10.5194/hess-23-1931-2019, https://doi.org/10.5194/hess-23-1931-2019, 2019
Short summary
Short summary
Drought is a natural disaster that can result from changes to temperature, precipitation and/or vegetation. Here we apply a
high-resolution computer model to explore the relative importance of each factor on the North American High Plains, one of the most important agricultural regions of the USA. Decreased precipitation caused larger changes in hydrologic variables (evapotranspiration, soil moisture, stream flow and water table levels) than increased temperature or disturbed vegetation did.
Laura E. Condon and Reed M. Maxwell
Hydrol. Earth Syst. Sci., 21, 1117–1135, https://doi.org/10.5194/hess-21-1117-2017, https://doi.org/10.5194/hess-21-1117-2017, 2017
Short summary
Short summary
We evaluate the impact of groundwater–surface water exchanges on the fraction of precipitation that leaves a watershed as either surface runoff or evapotranspiration. Results show that groundwater storage can systematically influence watershed behavior at the land surface. This is an important finding because most studies of tradeoffs between runoff and evapotranspiration assume that watersheds are in a steady-state condition where there are no net exchanges between the surface and subsurface.
James M. Gilbert and Reed M. Maxwell
Hydrol. Earth Syst. Sci., 21, 923–947, https://doi.org/10.5194/hess-21-923-2017, https://doi.org/10.5194/hess-21-923-2017, 2017
Short summary
Short summary
Understanding how groundwater and streamflow interact over large areas is a challenge. In this study we use a computer simulation that calculates water movement and storage at the land surface and in the subsurface within California's San Joaquin River basin to analyze different parts of the watershed. Results show that the mountains may be an important source of groundwater to the Central Valley while differences in relative speed of groundwater and river flow affect their connection patterns.
Wolfgang Kurtz, Guowei He, Stefan J. Kollet, Reed M. Maxwell, Harry Vereecken, and Harrie-Jan Hendricks Franssen
Geosci. Model Dev., 9, 1341–1360, https://doi.org/10.5194/gmd-9-1341-2016, https://doi.org/10.5194/gmd-9-1341-2016, 2016
Short summary
Short summary
This paper describes the development of a modular data assimilation (DA) system for the integrated Earth system model TerrSysMP with the help of the PDAF data assimilation library.
Currently, pressure and soil moisture data can be used to update model states and parameters in the subsurface compartment of TerrSysMP.
Results from an idealized twin experiment show that the developed DA system provides a good parallel performance and is also applicable for high-resolution modelling problems.
R. M. Maxwell, L. E. Condon, and S. J. Kollet
Geosci. Model Dev., 8, 923–937, https://doi.org/10.5194/gmd-8-923-2015, https://doi.org/10.5194/gmd-8-923-2015, 2015
Short summary
Short summary
A model that simulates groundwater and surface water flow has been developed for the major river basins of the continental United States. Fundamental data sets provide input to the model resulting in a natural organization of stream networks and groundwater flow that is compared to observations of surface water and groundwater. Model results show relationships between flow and area that are moderated by aridity and represent an important step toward integrated hydrological prediction.
L. E. Condon, S. Gangopadhyay, and T. Pruitt
Hydrol. Earth Syst. Sci., 19, 159–175, https://doi.org/10.5194/hess-19-159-2015, https://doi.org/10.5194/hess-19-159-2015, 2015
Related subject area
Hydrology
NEOPRENE v1.0.1: a Python library for generating spatial rainfall based on the Neyman–Scott process
Uncertainty estimation for a new exponential-filter-based long-term root-zone soil moisture dataset from Copernicus Climate Change Service (C3S) surface observations
Validating the Nernst–Planck transport model under reaction-driven flow conditions using RetroPy v1.0
DynQual v1.0: a high-resolution global surface water quality model
Data space inversion for efficient uncertainty quantification using an integrated surface and sub-surface hydrologic model
Simulation of crop yield using the global hydrological model H08 (crp.v1)
How is a global sensitivity analysis of a catchment-scale, distributed pesticide transfer model performed? Application to the PESHMELBA model
iHydroSlide3D v1.0: an advanced hydrological–geotechnical model for hydrological simulation and three-dimensional landslide prediction
GEB v0.1: a large-scale agent-based socio-hydrological model – simulating 10 million individual farming households in a fully distributed hydrological model
Tracing and visualisation of contributing water sources in the LISFLOOD-FP model of flood inundation (within CAESAR-Lisflood version 1.9j-WS)
Continental-scale evaluation of a fully distributed coupled land surface and groundwater model, ParFlow-CLM (v3.6.0), over Europe
Evaluating a global soil moisture dataset from a multitask model (GSM3 v1.0) with potential applications for crop threats
SERGHEI (SERGHEI-SWE) v1.0: a performance-portable high-performance parallel-computing shallow-water solver for hydrology and environmental hydraulics
Enhancing the representation of water management in global hydrological models
A simple, efficient, mass-conservative approach to solving Richards' equation (openRE, v1.0)
Customized deep learning for precipitation bias correction and downscaling
Implementation and sensitivity analysis of the Dam-Reservoir OPeration model (DROP v1.0) over Spain
Regional coupled surface–subsurface hydrological model fitting based on a spatially distributed minimalist reduction of frequency domain discharge data
Representing the impact of Rhizophora mangroves on flow and sediment transport in a hydrodynamic model (COAWST_rh v1.0): the importance of three-dimensional root system structures
Operational water forecast ability of the HRRR-iSnobal combination: an evaluation to adapt into production environments
Dynamic weighted ensemble of geoscientific models via automated machine learning-based classification
Prediction of algal blooms via data-driven machine learning models: an evaluation using data from a well-monitored mesotrophic lake
UniFHy v0.1.1: a community modelling framework for the terrestrial water cycle in Python
mesas.py v1.0: A flexible Python package for modeling solute transport and transit times using StorAge Selection functions
Basin-scale gyres and mesoscale eddies in large lakes: a novel procedure for their detection and characterization, assessed in Lake Geneva
SIMO v1.0: simplified model of the vertical temperature profile in a small, warm, monomictic lake
Thermal modeling of three lakes within the continuous permafrost zone in Alaska using the LAKE 2.0 model
Water balance model (WBM) v.1.0.0: a scalable gridded global hydrologic model with water-tracking functionality
Coupling a large-scale hydrological model (CWatM v1.1) with a high-resolution groundwater flow model (MODFLOW 6) to assess the impact of irrigation at regional scale
RavenR v2.1.4: an open-source R package to support flexible hydrologic modelling
Developing a parsimonious canopy model (PCM v1.0) to predict forest gross primary productivity and leaf area index of deciduous broad-leaved forest
Synergy between satellite observations of soil moisture and water storage anomalies for runoff estimation
A physically based distributed karst hydrological model (QMG model-V1.0) for flood simulations
Modular Assessment of Rainfall–Runoff Models Toolbox (MARRMoT) v2.1: an object-oriented implementation of 47 established hydrological models for improved speed and readability
CREST-VEC: a framework towards more accurate and realistic flood simulation across scales
Rad-cGAN v1.0: Radar-based precipitation nowcasting model with conditional generative adversarial networks for multiple dam domains
The eWaterCycle platform for open and FAIR hydrological collaboration
Evaluating the Atibaia River hydrology using JULES6.1
A framework for ensemble modelling of climate change impacts on lakes worldwide: the ISIMIP Lake Sector
CLIMFILL v0.9: a framework for intelligently gap filling Earth observations
Modeling subgrid lake energy balance in ORCHIDEE terrestrial scheme using the FLake lake model
Evaluating a reservoir parametrization in the vector-based global routing model mizuRoute (v2.0.1) for Earth system model coupling
Improved runoff simulations for a highly varying soil depth and complex terrain watershed in the Loess Plateau with the Community Land Model version 5
GSTools v1.3: a toolbox for geostatistical modelling in Python
AI4Water v1.0: an open-source python package for modeling hydrological time series using data-driven methods
Modeling of streamflow in a 30 km long reach spanning 5 years using OpenFOAM 5.x
Tree hydrodynamic modelling of the soil–plant–atmosphere continuum using FETCH3
Effects of dimensionality on the performance of hydrodynamic models for stratified lakes and reservoirs
Computation of backwater effects in surface waters of lowland catchments including control structures – an efficient and re-usable method implemented in the hydrological open-source model Kalypso-NA (4.0)
Inishell 2.0: semantically driven automatic GUI generation for scientific models
Javier Diez-Sierra, Salvador Navas, and Manuel del Jesus
Geosci. Model Dev., 16, 5035–5048, https://doi.org/10.5194/gmd-16-5035-2023, https://doi.org/10.5194/gmd-16-5035-2023, 2023
Short summary
Short summary
NEOPRENE is an open-source, freely available library allowing scientists and practitioners to generate synthetic time series and maps of rainfall. These outputs will help to explore plausible events that were never observed in the past but may occur in the near future and to generate possible future events under climate change conditions. The paper shows how to use the library to downscale daily precipitation and how to use synthetic generation to improve our characterization of extreme events.
Adam Pasik, Alexander Gruber, Wolfgang Preimesberger, Domenico De Santis, and Wouter Dorigo
Geosci. Model Dev., 16, 4957–4976, https://doi.org/10.5194/gmd-16-4957-2023, https://doi.org/10.5194/gmd-16-4957-2023, 2023
Short summary
Short summary
We apply the exponential filter (EF) method to satellite soil moisture retrievals to estimate the water content in the unobserved root zone globally from 2002–2020. Quality assessment against an independent dataset shows satisfactory results. Error characterization is carried out using the standard uncertainty propagation law and empirically estimated values of EF model structural uncertainty and parameter uncertainty. This is followed by analysis of temporal uncertainty variations.
Po-Wei Huang, Bernd Flemisch, Chao-Zhong Qin, Martin O. Saar, and Anozie Ebigbo
Geosci. Model Dev., 16, 4767–4791, https://doi.org/10.5194/gmd-16-4767-2023, https://doi.org/10.5194/gmd-16-4767-2023, 2023
Short summary
Short summary
Water in natural environments consists of many ions. Ions are electrically charged and exert electric forces on each other. We discuss whether the electric forces are relevant in describing mixing and reaction processes in natural environments. By comparing our computer simulations to lab experiments in literature, we show that the electric interactions between ions can play an essential role in mixing and reaction processes, in which case they should not be neglected in numerical modeling.
Edward R. Jones, Marc F. P. Bierkens, Niko Wanders, Edwin H. Sutanudjaja, Ludovicus P. H. van Beek, and Michelle T. H. van Vliet
Geosci. Model Dev., 16, 4481–4500, https://doi.org/10.5194/gmd-16-4481-2023, https://doi.org/10.5194/gmd-16-4481-2023, 2023
Short summary
Short summary
DynQual is a new high-resolution global water quality model for simulating total dissolved solids, biological oxygen demand and fecal coliform as indicators of salinity, organic pollution and pathogen pollution, respectively. Output data from DynQual can supplement the observational record of water quality data, which is highly fragmented across space and time, and has the potential to inform assessments in a broad range of fields including ecological, human health and water scarcity studies.
Hugo Delottier, John Doherty, and Philip Brunner
Geosci. Model Dev., 16, 4213–4231, https://doi.org/10.5194/gmd-16-4213-2023, https://doi.org/10.5194/gmd-16-4213-2023, 2023
Short summary
Short summary
Long run times are usually a barrier to the quantification and reduction of predictive uncertainty with complex hydrological models. Data space inversion (DSI) provides an alternative and highly model-run-efficient method for uncertainty quantification. This paper demonstrates DSI's ability to robustly quantify predictive uncertainty and extend the methodology to provide practical metrics that can guide data acquisition and analysis to achieve goals of decision-support modelling.
Zhipin Ai and Naota Hanasaki
Geosci. Model Dev., 16, 3275–3290, https://doi.org/10.5194/gmd-16-3275-2023, https://doi.org/10.5194/gmd-16-3275-2023, 2023
Short summary
Short summary
Simultaneously simulating food production and the requirements and availability of water resources in a spatially explicit manner within a single framework remains challenging on a global scale. Here, we successfully enhanced the global hydrological model H08 that considers human water use and management to simulate the yields of four major staple crops: maize, wheat, rice, and soybean. Our improved model will be beneficial for advancing global food–water nexus studies in the future.
Emilie Rouzies, Claire Lauvernet, Bruno Sudret, and Arthur Vidard
Geosci. Model Dev., 16, 3137–3163, https://doi.org/10.5194/gmd-16-3137-2023, https://doi.org/10.5194/gmd-16-3137-2023, 2023
Short summary
Short summary
Water and pesticide transfer models are complex and should be simplified to be used in decision support. Indeed, these models simulate many spatial processes in interaction, involving a large number of parameters. Sensitivity analysis allows us to select the most influential input parameters, but it has to be adapted to spatial modelling. This study will identify relevant methods that can be transposed to any hydrological and water quality model and improve the fate of pesticide knowledge.
Guoding Chen, Ke Zhang, Sheng Wang, Yi Xia, and Lijun Chao
Geosci. Model Dev., 16, 2915–2937, https://doi.org/10.5194/gmd-16-2915-2023, https://doi.org/10.5194/gmd-16-2915-2023, 2023
Short summary
Short summary
In this study, we developed a novel modeling system called iHydroSlide3D v1.0 by coupling a modified a 3D landslide model with a distributed hydrology model. The model is able to apply flexibly different simulating resolutions for hydrological and slope stability submodules and gain a high computational efficiency through parallel computation. The test results in the Yuehe River basin, China, show a good predicative capability for cascading flood–landslide events.
Jens A. de Bruijn, Mikhail Smilovic, Peter Burek, Luca Guillaumot, Yoshihide Wada, and Jeroen C. J. H. Aerts
Geosci. Model Dev., 16, 2437–2454, https://doi.org/10.5194/gmd-16-2437-2023, https://doi.org/10.5194/gmd-16-2437-2023, 2023
Short summary
Short summary
We present a computer simulation model of the hydrological system and human system, which can simulate the behaviour of individual farmers and their interactions with the water system at basin scale to assess how the systems have evolved and are projected to evolve in the future. For example, we can simulate the effect of subsidies provided on investment in adaptation measures and subsequent effects in the hydrological system, such as a lowering of the groundwater table or reservoir level.
Matthew D. Wilson and Thomas J. Coulthard
Geosci. Model Dev., 16, 2415–2436, https://doi.org/10.5194/gmd-16-2415-2023, https://doi.org/10.5194/gmd-16-2415-2023, 2023
Short summary
Short summary
During flooding, the sources of water that inundate a location can influence impacts such as pollution. However, methods to trace water sources in flood events are currently only available in complex, computationally expensive hydraulic models. We propose a simplified method which can be added to efficient, reduced-complexity model codes, enabling an improved understanding of flood dynamics and its impacts. We demonstrate its application for three sites at a range of spatial and temporal scales.
Bibi S. Naz, Wendy Sharples, Yueling Ma, Klaus Goergen, and Stefan Kollet
Geosci. Model Dev., 16, 1617–1639, https://doi.org/10.5194/gmd-16-1617-2023, https://doi.org/10.5194/gmd-16-1617-2023, 2023
Short summary
Short summary
It is challenging to apply a high-resolution integrated land surface and groundwater model over large spatial scales. In this paper, we demonstrate the application of such a model over a pan-European domain at 3 km resolution and perform an extensive evaluation of simulated water states and fluxes by comparing with in situ and satellite data. This study can serve as a benchmark and baseline for future studies of climate change impact projections and for hydrological forecasting.
Jiangtao Liu, David Hughes, Farshid Rahmani, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 16, 1553–1567, https://doi.org/10.5194/gmd-16-1553-2023, https://doi.org/10.5194/gmd-16-1553-2023, 2023
Short summary
Short summary
Under-monitored regions like Africa need high-quality soil moisture predictions to help with food production, but it is not clear if soil moisture processes are similar enough around the world for data-driven models to maintain accuracy. We present a deep-learning-based soil moisture model that learns from both in situ data and satellite data and performs better than satellite products at the global scale. These results help us apply our model globally while better understanding its limitations.
Daniel Caviedes-Voullième, Mario Morales-Hernández, Matthew R. Norman, and Ilhan Özgen-Xian
Geosci. Model Dev., 16, 977–1008, https://doi.org/10.5194/gmd-16-977-2023, https://doi.org/10.5194/gmd-16-977-2023, 2023
Short summary
Short summary
This paper introduces the SERGHEI framework and a solver for shallow-water problems. Such models, often used for surface flow and flood modelling, are computationally intense. In recent years the trends to increase computational power have changed, requiring models to adapt to new hardware and new software paradigms. SERGHEI addresses these challenges, allowing surface flow simulation to be enabled on the newest and upcoming consumer hardware and supercomputers very efficiently.
Guta Wakbulcho Abeshu, Fuqiang Tian, Thomas Wild, Mengqi Zhao, Sean Turner, A F M Kamal Chowdhury, Chris R. Vernon, Hongchang Hu, Yuan Zhuang, Mohamad Hejazi, and Hong-Yi Li
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-12, https://doi.org/10.5194/gmd-2023-12, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
Most existing global hydrologic models do not explicitly represent hydropower reservoirs. We are introducing a new water management module to Xanthos that distinguishes between the operational characteristics of irrigation, hydropower, and flood control reservoirs. We show that this explicit representation of hydropower reservoirs can lead to a significantly more realistic simulation of reservoir storage and releases in over 44 % of the hydropower reservoirs included in this study.
Andrew M. Ireson, Raymond J. Spiteri, Martyn P. Clark, and Simon A. Mathias
Geosci. Model Dev., 16, 659–677, https://doi.org/10.5194/gmd-16-659-2023, https://doi.org/10.5194/gmd-16-659-2023, 2023
Short summary
Short summary
Richards' equation (RE) is used to describe the movement and storage of water in a soil profile and is a component of many hydrological and earth-system models. Solving RE numerically is challenging due to the non-linearities in the properties. Here, we present a simple but effective and mass-conservative solution to solving RE, which is ideal for teaching/learning purposes but also useful in prototype models that are used to explore alternative process representations.
Fang Wang, Di Tian, and Mark Carroll
Geosci. Model Dev., 16, 535–556, https://doi.org/10.5194/gmd-16-535-2023, https://doi.org/10.5194/gmd-16-535-2023, 2023
Short summary
Short summary
Gridded precipitation datasets suffer from biases and coarse resolutions. We developed a customized deep learning (DL) model to bias-correct and downscale gridded precipitation data using radar observations. The results showed that the customized DL model can generate improved precipitation at fine resolutions where regular DL and statistical methods experience challenges. The new model can be used to improve precipitation estimates, especially for capturing extremes at smaller scales.
Malak Sadki, Simon Munier, Aaron Boone, and Sophie Ricci
Geosci. Model Dev., 16, 427–448, https://doi.org/10.5194/gmd-16-427-2023, https://doi.org/10.5194/gmd-16-427-2023, 2023
Short summary
Short summary
Predicting water resource evolution is a key challenge for the coming century.
Anthropogenic impacts on water resources, and particularly the effects of dams and reservoirs on river flows, are still poorly known and generally neglected in global hydrological studies. A parameterized reservoir model is reproduced to compute monthly releases in Spanish anthropized river basins. For global application, an exhaustive sensitivity analysis of the model parameters is performed on flows and volumes.
Nicolas Flipo, Nicolas Gallois, and Jonathan Schuite
Geosci. Model Dev., 16, 353–381, https://doi.org/10.5194/gmd-16-353-2023, https://doi.org/10.5194/gmd-16-353-2023, 2023
Short summary
Short summary
A new approach is proposed to fit hydrological or land surface models, which suffer from large uncertainties in terms of water partitioning between fast runoff and slow infiltration from small watersheds to regional or continental river basins. It is based on the analysis of hydrosystem behavior in the frequency domain, which serves as a basis for estimating water flows in the time domain with a physically based model. It opens the way to significant breakthroughs in hydrological modeling.
Masaya Yoshikai, Takashi Nakamura, Eugene C. Herrera, Rempei Suwa, Rene Rollon, Raghab Ray, Keita Furukawa, and Kazuo Nadaoka
EGUsphere, https://doi.org/10.5194/egusphere-2022-1350, https://doi.org/10.5194/egusphere-2022-1350, 2023
Short summary
Short summary
Due to complex root system structures, representing the impacts of Rhizophora mangroves on flow and sediment transport in hydrodynamic models has been challenging. This study presents a new drag and turbulence model that leverages an empirical model for root systems. The model can be applied without rigorous measurements of root structures and showed high performance in flow simulations, which may provide a better understanding of sedimentary processes in Rhizophora mangrove forests.
Joachim Meyer, John Horel, Patrick Kormos, Andrew Hedrick, Ernesto Trujillo, and S. McKenzie Skiles
Geosci. Model Dev., 16, 233–250, https://doi.org/10.5194/gmd-16-233-2023, https://doi.org/10.5194/gmd-16-233-2023, 2023
Short summary
Short summary
Freshwater resupply from seasonal snow in the mountains is changing. Current water prediction methods from snow rely on historical data excluding the change and can lead to errors. This work presented and evaluated an alternative snow-physics-based approach. The results in a test watershed were promising, and future improvements were identified. Adaptation to current forecast environments would improve resilience to the seasonal snow changes and helps ensure the accuracy of resupply forecasts.
Hao Chen, Tiejun Wang, Yonggen Zhang, Yun Bai, and Xi Chen
EGUsphere, https://doi.org/10.5194/egusphere-2022-1326, https://doi.org/10.5194/egusphere-2022-1326, 2023
Short summary
Short summary
Effectively assembling multiple models for approaching a benchmark solution remains a long-standing issue for various geoscience domains. We here proposed an automated machine learning-assisted ensemble framework (AutoML-Ens) that attempts to resolve this challenge. Results demonstrated the great potential of AutoML-Ens for improving estimations due to its two unique features, i.e., assigning dynamic weights for candidate models and taking full advantage of AutoML-assisted workflow.
Shuqi Lin, Donald C. Pierson, and Jorrit P. Mesman
Geosci. Model Dev., 16, 35–46, https://doi.org/10.5194/gmd-16-35-2023, https://doi.org/10.5194/gmd-16-35-2023, 2023
Short summary
Short summary
The risks brought by the proliferation of algal blooms motivate the improvement of bloom forecasting tools, but algal blooms are complexly controlled and difficult to predict. Given rapid growth of monitoring data and advances in computation, machine learning offers an alternative prediction methodology. This study tested various machine learning workflows in a dimictic mesotrophic lake and gave promising predictions of the seasonal variations and the timing of algal blooms.
Thibault Hallouin, Richard J. Ellis, Douglas B. Clark, Simon J. Dadson, Andrew G. Hughes, Bryan N. Lawrence, Grenville M. S. Lister, and Jan Polcher
Geosci. Model Dev., 15, 9177–9196, https://doi.org/10.5194/gmd-15-9177-2022, https://doi.org/10.5194/gmd-15-9177-2022, 2022
Short summary
Short summary
A new framework for modelling the water cycle in the land system has been implemented. It considers the hydrological cycle as three interconnected components, bringing flexibility in the choice of the physical processes and their spatio-temporal resolutions. It is designed to foster collaborations between land surface, hydrological, and groundwater modelling communities to develop the next-generation of land system models for integration in Earth system models.
Ciaran Harman and Esther Xu Fei
EGUsphere, https://doi.org/10.5194/egusphere-2022-1262, https://doi.org/10.5194/egusphere-2022-1262, 2022
Short summary
Short summary
Over the last 10 years scientists have developed a new way of modeling how material is transported through complex systems, called StorAge Selection. Here we present some new code implementing this method that is easy to use, but also flexible and very accurate. We show that for cases where we know exactly what the answer should be, our code gets the right answer. We also show that our code is closer than some other people's code to the right answer in an important way: it conserves mass.
Seyed Mahmood Hamze-Ziabari, Ulrich Lemmin, Frédéric Soulignac, Mehrshad Foroughan, and David Andrew Barry
Geosci. Model Dev., 15, 8785–8807, https://doi.org/10.5194/gmd-15-8785-2022, https://doi.org/10.5194/gmd-15-8785-2022, 2022
Short summary
Short summary
A procedure combining numerical simulations, remote sensing, and statistical analyses is developed to detect large-scale current systems in large lakes. By applying this novel procedure in Lake Geneva, strategies for detailed transect field studies of the gyres and eddies were developed. Unambiguous field evidence of 3D gyre/eddy structures in full agreement with predictions confirmed the robustness of the proposed procedure.
Kristina Šarović, Melita Burić, and Zvjezdana B. Klaić
Geosci. Model Dev., 15, 8349–8375, https://doi.org/10.5194/gmd-15-8349-2022, https://doi.org/10.5194/gmd-15-8349-2022, 2022
Short summary
Short summary
We develop a simple 1-D model for the prediction of the vertical temperature profiles in small, warm lakes. The model uses routinely measured meteorological variables as well as UVB radiation and yearly mean temperature data. It can be used for the assessment of the onset and duration of lake stratification periods when water temperature data are unavailable, which can be useful for various lake studies performed in other scientific fields, such as biology, geochemistry, and sedimentology.
Jason A. Clark, Elchin E. Jafarov, Ken D. Tape, Benjamin M. Jones, and Victor Stepanenko
Geosci. Model Dev., 15, 7421–7448, https://doi.org/10.5194/gmd-15-7421-2022, https://doi.org/10.5194/gmd-15-7421-2022, 2022
Short summary
Short summary
Lakes in the Arctic are important reservoirs of heat. Under climate warming scenarios, we expect Arctic lakes to warm the surrounding frozen ground. We simulate water temperatures in three Arctic lakes in northern Alaska over several years. Our results show that snow depth and lake ice strongly affect water temperatures during the frozen season and that more heat storage by lakes would enhance thawing of frozen ground.
Danielle S. Grogan, Shan Zuidema, Alex Prusevich, Wilfred M. Wollheim, Stanley Glidden, and Richard B. Lammers
Geosci. Model Dev., 15, 7287–7323, https://doi.org/10.5194/gmd-15-7287-2022, https://doi.org/10.5194/gmd-15-7287-2022, 2022
Short summary
Short summary
This paper describes the University of New Hampshire's water balance model (WBM). This model simulates the land surface components of the global water cycle and includes water extractions for use by humans for agricultural, domestic, and industrial purposes. A new feature is described that permits water source tracking through the water cycle, which has implications for water resource management. This paper was written to describe a long-used model and presents its first open-source version.
Luca Guillaumot, Mikhail Smilovic, Peter Burek, Jens de Bruijn, Peter Greve, Taher Kahil, and Yoshihide Wada
Geosci. Model Dev., 15, 7099–7120, https://doi.org/10.5194/gmd-15-7099-2022, https://doi.org/10.5194/gmd-15-7099-2022, 2022
Short summary
Short summary
We develop and test the first large-scale hydrological model at regional scale with a very high spatial resolution that includes a water management and groundwater flow model. This study infers the impact of surface and groundwater-based irrigation on groundwater recharge and on evapotranspiration in both irrigated and non-irrigated areas. We argue that water table recorded in boreholes can be used as validation data if water management is well implemented and spatial resolution is ≤ 100 m.
Robert Chlumsky, James R. Craig, Simon G. M. Lin, Sarah Grass, Leland Scantlebury, Genevieve Brown, and Rezgar Arabzadeh
Geosci. Model Dev., 15, 7017–7030, https://doi.org/10.5194/gmd-15-7017-2022, https://doi.org/10.5194/gmd-15-7017-2022, 2022
Short summary
Short summary
We introduce the open-source RavenR package, which has been built to support the use of the hydrologic modelling framework Raven. The R package contains many functions that may be useful in each step of the model-building process, including preparing model input files, running the model, and analyzing the outputs. We present six reproducible use cases of the RavenR package for the Liard River basin in Canada to demonstrate how it may be deployed.
Bahar Bahrami, Anke Hildebrandt, Stephan Thober, Corinna Rebmann, Rico Fischer, Luis Samaniego, Oldrich Rakovec, and Rohini Kumar
Geosci. Model Dev., 15, 6957–6984, https://doi.org/10.5194/gmd-15-6957-2022, https://doi.org/10.5194/gmd-15-6957-2022, 2022
Short summary
Short summary
Leaf area index (LAI) and gross primary productivity (GPP) are crucial components to carbon cycle, and are closely linked to water cycle in many ways. We develop a Parsimonious Canopy Model (PCM) to simulate GPP and LAI at stand scale, and show its applicability over a diverse range of deciduous broad-leaved forest biomes. With its modular structure, the PCM is able to adapt with existing data requirements, and run in either a stand-alone mode or as an interface linked to hydrologic models.
Stefania Camici, Gabriele Giuliani, Luca Brocca, Christian Massari, Angelica Tarpanelli, Hassan Hashemi Farahani, Nico Sneeuw, Marco Restano, and Jérôme Benveniste
Geosci. Model Dev., 15, 6935–6956, https://doi.org/10.5194/gmd-15-6935-2022, https://doi.org/10.5194/gmd-15-6935-2022, 2022
Short summary
Short summary
This paper presents an innovative approach, STREAM (SaTellite-based Runoff Evaluation And Mapping), to derive daily river discharge and runoff estimates from satellite observations of soil moisture, precipitation, and terrestrial total water storage anomalies. Potentially useful for multiple operational and scientific applications, the added value of the STREAM approach is the ability to increase knowledge on the natural processes, human activities, and their interactions on the land.
Ji Li, Daoxian Yuan, Fuxi Zhang, Jiao Liu, and Mingguo Ma
Geosci. Model Dev., 15, 6581–6600, https://doi.org/10.5194/gmd-15-6581-2022, https://doi.org/10.5194/gmd-15-6581-2022, 2022
Short summary
Short summary
A new karst hydrological model (the QMG model) is developed to simulate and predict the floods in karst trough valley basins. Unlike the complex structure and parameters of current karst groundwater models, this model has a simple double-layered structure with few parameters and decreases the demand for modeling data in karst areas. The flood simulation results based on the QMG model of the Qingmuguan karst trough valley basin are satisfactory, indicating the suitability of the model simulation.
Luca Trotter, Wouter J. M. Knoben, Keirnan J. A. Fowler, Margarita Saft, and Murray C. Peel
Geosci. Model Dev., 15, 6359–6369, https://doi.org/10.5194/gmd-15-6359-2022, https://doi.org/10.5194/gmd-15-6359-2022, 2022
Short summary
Short summary
MARRMoT is a piece of software that emulates 47 common models for hydrological simulations. It can be used to run and calibrate these models within a common environment as well as to easily modify them. We restructured and recoded MARRMoT in order to make the models run faster and to simplify their use, while also providing some new features. This new MARRMoT version runs models on average 3.6 times faster while maintaining very strong consistency in their outputs to the previous version.
Zhi Li, Shang Gao, Mengye Chen, Jonathan Gourley, Naoki Mizukami, and Yang Hong
Geosci. Model Dev., 15, 6181–6196, https://doi.org/10.5194/gmd-15-6181-2022, https://doi.org/10.5194/gmd-15-6181-2022, 2022
Short summary
Short summary
Operational streamflow prediction at a continental scale is critical for national water resources management. However, limited computational resources often impede such processes, with streamflow routing being one of the most time-consuming parts. This study presents a recent development of a hydrologic system that incorporates a vector-based routing scheme with a lake module that markedly speeds up streamflow prediction. Moreover, accuracy is improved and flood false alarms are mitigated.
Suyeon Choi and Yeonjoo Kim
Geosci. Model Dev., 15, 5967–5985, https://doi.org/10.5194/gmd-15-5967-2022, https://doi.org/10.5194/gmd-15-5967-2022, 2022
Short summary
Short summary
Here we present the cGAN-based precipitation nowcasting model, named Rad-cGAN, trained to predict a radar reflectivity map with a lead time of 10 min. Rad-cGAN showed superior performance at a lead time of up to 90 min compared with the reference models. Furthermore, we demonstrate the successful implementation of the transfer learning strategies using pre-trained Rad-cGAN to develop the models for different dam domains.
Rolf Hut, Niels Drost, Nick van de Giesen, Ben van Werkhoven, Banafsheh Abdollahi, Jerom Aerts, Thomas Albers, Fakhereh Alidoost, Bouwe Andela, Jaro Camphuijsen, Yifat Dzigan, Ronald van Haren, Eric Hutton, Peter Kalverla, Maarten van Meersbergen, Gijs van den Oord, Inti Pelupessy, Stef Smeets, Stefan Verhoeven, Martine de Vos, and Berend Weel
Geosci. Model Dev., 15, 5371–5390, https://doi.org/10.5194/gmd-15-5371-2022, https://doi.org/10.5194/gmd-15-5371-2022, 2022
Short summary
Short summary
With the eWaterCycle platform, we are providing the hydrological community with a platform to conduct their research that is fully compatible with the principles of both open science and FAIR science. The eWatercyle platform gives easy access to well-known hydrological models, big datasets and example experiments. Using eWaterCycle hydrologists can easily compare the results from different models, couple models and do more complex hydrological computational research.
Hsi-Kai Chou, Ana Maria Heuminski de Avila, and Michaela Bray
Geosci. Model Dev., 15, 5233–5240, https://doi.org/10.5194/gmd-15-5233-2022, https://doi.org/10.5194/gmd-15-5233-2022, 2022
Short summary
Short summary
Land surface models allow us to understand and investigate the cause and effect of environmental process changes. Therefore, this type of model is increasingly used for hydrological assessments. Here we explore the possibility of this approach using a case study in the Atibaia River basin, which serves as a major water supply for the metropolitan regions of Campinas and São Paulo, Brazil. We evaluated the model performance and use the model to simulate the basin hydrology.
Malgorzata Golub, Wim Thiery, Rafael Marcé, Don Pierson, Inne Vanderkelen, Daniel Mercado-Bettin, R. Iestyn Woolway, Luke Grant, Eleanor Jennings, Benjamin M. Kraemer, Jacob Schewe, Fang Zhao, Katja Frieler, Matthias Mengel, Vasiliy Y. Bogomolov, Damien Bouffard, Marianne Côté, Raoul-Marie Couture, Andrey V. Debolskiy, Bram Droppers, Gideon Gal, Mingyang Guo, Annette B. G. Janssen, Georgiy Kirillin, Robert Ladwig, Madeline Magee, Tadhg Moore, Marjorie Perroud, Sebastiano Piccolroaz, Love Raaman Vinnaa, Martin Schmid, Tom Shatwell, Victor M. Stepanenko, Zeli Tan, Bronwyn Woodward, Huaxia Yao, Rita Adrian, Mathew Allan, Orlane Anneville, Lauri Arvola, Karen Atkins, Leon Boegman, Cayelan Carey, Kyle Christianson, Elvira de Eyto, Curtis DeGasperi, Maria Grechushnikova, Josef Hejzlar, Klaus Joehnk, Ian D. Jones, Alo Laas, Eleanor B. Mackay, Ivan Mammarella, Hampus Markensten, Chris McBride, Deniz Özkundakci, Miguel Potes, Karsten Rinke, Dale Robertson, James A. Rusak, Rui Salgado, Leon van der Linden, Piet Verburg, Danielle Wain, Nicole K. Ward, Sabine Wollrab, and Galina Zdorovennova
Geosci. Model Dev., 15, 4597–4623, https://doi.org/10.5194/gmd-15-4597-2022, https://doi.org/10.5194/gmd-15-4597-2022, 2022
Short summary
Short summary
Lakes and reservoirs are warming across the globe. To better understand how lakes are changing and to project their future behavior amidst various sources of uncertainty, simulations with a range of lake models are required. This in turn requires international coordination across different lake modelling teams worldwide. Here we present a protocol for and results from coordinated simulations of climate change impacts on lakes worldwide.
Verena Bessenbacher, Sonia Isabelle Seneviratne, and Lukas Gudmundsson
Geosci. Model Dev., 15, 4569–4596, https://doi.org/10.5194/gmd-15-4569-2022, https://doi.org/10.5194/gmd-15-4569-2022, 2022
Short summary
Short summary
Earth observations have many missing values. They are often filled using information from spatial and temporal contexts that mostly ignore information from related observed variables. We propose the gap-filling method CLIMFILL that additionally uses information from related variables. We test CLIMFILL using gap-free reanalysis data of variables related to soil–moisture climate interactions. CLIMFILL creates estimates for the missing values that recover the original dependence structure.
Anthony Bernus and Catherine Ottlé
Geosci. Model Dev., 15, 4275–4295, https://doi.org/10.5194/gmd-15-4275-2022, https://doi.org/10.5194/gmd-15-4275-2022, 2022
Short summary
Short summary
The lake model FLake was coupled to the ORCHIDEE land surface model to simulate lake energy balance at global scale with a multi-tile approach. Several simulations were performed with various atmospheric reanalyses and different lake depth parameterizations. The simulated lake surface temperature showed good agreement with observations (RMSEs of the order of 3 °C). We showed the large impact of the atmospheric forcing on lake temperature. We highlighted systematic errors on ice cover phenology.
Inne Vanderkelen, Shervan Gharari, Naoki Mizukami, Martyn P. Clark, David M. Lawrence, Sean Swenson, Yadu Pokhrel, Naota Hanasaki, Ann van Griensven, and Wim Thiery
Geosci. Model Dev., 15, 4163–4192, https://doi.org/10.5194/gmd-15-4163-2022, https://doi.org/10.5194/gmd-15-4163-2022, 2022
Short summary
Short summary
Human-controlled reservoirs have a large influence on the global water cycle. However, dam operations are rarely represented in Earth system models. We implement and evaluate a widely used reservoir parametrization in a global river-routing model. Using observations of individual reservoirs, the reservoir scheme outperforms the natural lake scheme. However, both schemes show a similar performance due to biases in runoff timing and magnitude when using simulated runoff.
Jiming Jin, Lei Wang, Jie Yang, Bingcheng Si, and Guo-Yue Niu
Geosci. Model Dev., 15, 3405–3416, https://doi.org/10.5194/gmd-15-3405-2022, https://doi.org/10.5194/gmd-15-3405-2022, 2022
Short summary
Short summary
This study aimed to improve runoff simulations and explore deep soil hydrological processes for a highly varying soil depth and complex terrain watershed in the Loess Plateau, China. The actual soil depths and river channels were incorporated into the model to better simulate the runoff in this watershed. The soil evaporation scheme was modified to better describe the evaporation processes. Our results showed that the model significantly improved the runoff simulations.
Sebastian Müller, Lennart Schüler, Alraune Zech, and Falk Heße
Geosci. Model Dev., 15, 3161–3182, https://doi.org/10.5194/gmd-15-3161-2022, https://doi.org/10.5194/gmd-15-3161-2022, 2022
Short summary
Short summary
The GSTools package provides a Python-based platform for geoostatistical applications. Salient features of GSTools are its random field generation, its kriging capabilities and its versatile covariance model. It is furthermore integrated with other Python packages, like PyKrige, ogs5py or scikit-gstat, and provides interfaces to meshio and PyVista. Four presented workflows showcase the abilities of GSTools.
Ather Abbas, Laurie Boithias, Yakov Pachepsky, Kyunghyun Kim, Jong Ahn Chun, and Kyung Hwa Cho
Geosci. Model Dev., 15, 3021–3039, https://doi.org/10.5194/gmd-15-3021-2022, https://doi.org/10.5194/gmd-15-3021-2022, 2022
Short summary
Short summary
The field of artificial intelligence has shown promising results in a wide variety of fields including hydrological modeling. However, developing and testing hydrological models with artificial intelligence techniques require expertise from diverse fields. In this study, we developed an open-source framework based upon the python programming language to simplify the process of the development of hydrological models of time series data using machine learning.
Yunxiang Chen, Jie Bao, Yilin Fang, William A. Perkins, Huiying Ren, Xuehang Song, Zhuoran Duan, Zhangshuan Hou, Xiaoliang He, and Timothy D. Scheibe
Geosci. Model Dev., 15, 2917–2947, https://doi.org/10.5194/gmd-15-2917-2022, https://doi.org/10.5194/gmd-15-2917-2022, 2022
Short summary
Short summary
Climate change affects river discharge variations that alter streamflow. By integrating multi-type survey data with a computational fluid dynamics tool, OpenFOAM, we show a workflow that enables accurate and efficient streamflow modeling at 30 km and 5-year scales. The model accuracy for water stage and depth average velocity is −16–9 cm and 0.71–0.83 in terms of mean error and correlation coefficients. This accuracy indicates the model's reliability for evaluating climate impact on rivers.
Marcela Silva, Ashley M. Matheny, Valentijn R. N. Pauwels, Dimetre Triadis, Justine E. Missik, Gil Bohrer, and Edoardo Daly
Geosci. Model Dev., 15, 2619–2634, https://doi.org/10.5194/gmd-15-2619-2022, https://doi.org/10.5194/gmd-15-2619-2022, 2022
Short summary
Short summary
Our study introduces FETCH3, a ready-to-use, open-access model that simulates the water fluxes across the soil, roots, and stem. To test the model capabilities, we tested it against exact solutions and a case study. The model presented considerably small errors when compared to the exact solutions and was able to correctly represent transpiration patterns when compared to experimental data. The results show that FETCH3 can correctly simulate above- and below-ground water transport.
Mayra Ishikawa, Wendy Gonzalez, Orides Golyjeswski, Gabriela Sales, J. Andreza Rigotti, Tobias Bleninger, Michael Mannich, and Andreas Lorke
Geosci. Model Dev., 15, 2197–2220, https://doi.org/10.5194/gmd-15-2197-2022, https://doi.org/10.5194/gmd-15-2197-2022, 2022
Short summary
Short summary
Reservoir hydrodynamics is often described in numerical models differing in dimensionality. 1D and 2D models assume homogeneity along the unresolved dimension. We compare the performance of models with 1 to 3 dimensions. All models presented reasonable results for seasonal temperature dynamics. Neglecting longitudinal transport resulted in the largest deviations in temperature. Flow velocity could only be reproduced by the 3D model. Results support the selection of models and their assessment.
Sandra Hellmers and Peter Fröhle
Geosci. Model Dev., 15, 1061–1077, https://doi.org/10.5194/gmd-15-1061-2022, https://doi.org/10.5194/gmd-15-1061-2022, 2022
Short summary
Short summary
A hydrological method to compute backwater effects in surface water streams and on adjacent lowlands caused by mostly complex flow control systems is presented. It enables transfer of discharges to water levels and calculation of backwater volume routing along streams and lowland areas by balancing water level slopes. The developed, implemented and evaluated method extends the application range of hydrological models significantly for flood-routing simulation in backwater-affected catchments.
Mathias Bavay, Michael Reisecker, Thomas Egger, and Daniela Korhammer
Geosci. Model Dev., 15, 365–378, https://doi.org/10.5194/gmd-15-365-2022, https://doi.org/10.5194/gmd-15-365-2022, 2022
Short summary
Short summary
Most users struggle with the configuration of numerical models. This can be improved by relying on a GUI, but this requires a significant investment and a specific skill set and does not fit with the daily duties of model developers, leading to major maintenance burdens. Inishell generates a GUI on the fly based on an XML description of the required configuration elements, making maintenance very simple. This concept has been shown to work very well in our context.
Cited articles
Archfield, S. A., Clark, M., Arheimer, B., Hay, L. E., McMillan, H., Kiang, J. E., Seibert, J., Hakala, K., Bock, A., Wagener, T., Farmer, W. H., Andréassian, V., Attinger, S., Viglione, A., Knight, R., Markstrom, S., and Over, T.:
Accelerating advances in continental domain hydrologic modeling,
Water Resour. Res.,
51, 10078–10091, https://doi.org/10.1002/2015WR017498, 2015.
Ashfaq, M., Bowling, L. C., Cherkauer, K., Pal, J. S., and Diffenbaugh, N. S.:
Influence of climate model biases and daily-scale temperature and precipitation events on hydrological impacts assessment: A case study of the United States,
J. Geophys. Res.,
115, D14116, https://doi.org/10.1029/2009JD012965, 2010.
Bai, P., Liu, X., Yang, T., Liang, K., and Liu, C.:
Evaluation of streamflow simulation results of land surface models in GLDAS on the Tibetan plateau,
J. Geophys. Res.-Atmos.,
121, 12180–12197, https://doi.org/10.1002/2016JD025501, 2016.
Baldocchi, D. D.:
Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future,
Glob. Change Biol.,
9, 479–492, https://doi.org/10.1046/j.1365-2486.2003.00629.x, 2003.
Barnes, M. L., Welty, C., and Miller, A. J.:
Global Topographic Slope Enforcement to Ensure Connectivity and Drainage in an Urban Terrain,
J. Hydrol. Eng.,
21, 06015017, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001306, 2016.
Beck, H. E., van Dijk, A. I. J. M., de Roo, A., Miralles, D. G., McVicar, T. R., Schellekens, J., and Bruijnzeel, L. A.:
Global-scale regionalization of hydrologic model parameters,
Water Resour. Res.,
52, 3599–3622, https://doi.org/10.1002/2015WR018247, 2016.
Beven, K. J. and Cloke, H. L.:
Comment on “Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water” by Eric F. Wood et al.,
Water Resour. Res.,
48, W01801, https://doi.org/10.1029/2011wr010982, 2012.
Bierkens, M. F. P., Bell, V. A., Burek, P., Chaney, N., Condon, L. E., David, C. H., de Roo, A., Döll, P., Drost, N., Famiglietti, J. S., Flörke, M., Gochis, D. J., Houser, P., Hut, R., Keune, J., Kollet, S., Maxwell, R. M., Reager, J. T., Samaniego, L., Sudicky, E., Sutanudjaja, E. H., van de Giesen, N., Winsemius, H., and Wood, E. F.:
Hyper-resolution global hydrological modelling: what is next?,
Hydrol. Process.,
29, 310–320, https://doi.org/10.1002/hyp.10391, 2015.
Chen, J., Famigliett, J. S., Scanlon, B. R., and Rodell, M.:
Groundwater Storage Changes: Present Status from GRACE Observations,
Springer, Cham, https://doi.org/10.1007/978-3-319-32449-4_9, pp. 207–227, 2016.
Clark, M. P., Fan, Y., Lawrence, D. M., Adam, J. C., Bolster, D., Gochis, D. J., Hooper, R. P., Kumar, M., Leung, L. R., Mackay, D. S., Maxwell, R. M., Shen, C., Swenson, S. C., and Zeng, X.:
Improving the representation of hydrologic processes in Earth System Models,
Water Resour. Res.,
51, 5929–5956, https://doi.org/10.1002/2015WR017096, 2015.
Collier, N., Hoffman, F. M., Lawrence, D. M., Keppel-Aleks, G., Koven, C. D., Riley, W. J., Mu, M., and Randerson, J. T.:
The International Land Model Benchmarking (ILAMB) System: Design, Theory, and Implementation,
J. Adv. Model. Earth Sy.,
10, 2731–2754, https://doi.org/10.1029/2018MS001354, 2018.
Condon, L. E. and Maxwell, R. M.:
Evaluating the relationship between topography and groundwater using outputs from a continental-scale integrated hydrology model,
Water Resour. Res.,
51, 6602–6621, https://doi.org/10.1002/2014WR016774, 2015.
Condon, L. E. and Maxwell, R. M.: Systematic shifts in Budyko relationships caused by groundwater storage changes, Hydrol. Earth Syst. Sci., 21, 1117–1135, https://doi.org/10.5194/hess-21-1117-2017, 2017.
Condon, L. E. and Maxwell, R. M.:
Simulating the sensitivity of evapotranspiration and streamflow to large-scale groundwater depletion,
Science Advances,
5, eaav4574, https://doi.org/10.1126/sciadv.aav4574, 2019.
Condon, L. E., Hering, A. S., and Maxwell, R. M.:
Quantitative assessment of groundwater controls across major US river basins using a multi-model regression algorithm,
Adv. Water Resour.,
82, 106–123, https://doi.org/10.1016/J.ADVWATRES.2015.04.008, 2015.
Condon, L. E., Atchley, A. L., and Maxwell, R. M.:
Evapotranspiration depletes groundwater under warming over the contiguous United States,
Nat. Commun.,
11, 1–8, https://doi.org/10.1038/s41467-020-14688-0, 2020.
Cosgrove, B. A.:
Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project,
J. Geophys. Res.,
108, 8842, https://doi.org/10.1029/2002JD003118, 2003.
Dahle, C., Murböck, M., Flechtner, F., Dobslaw, H., Michalak, G., Neumayer, K., Abrykosov, O., Reinhold, A., König, R., Sulzbach, R., and Förste, C.:
The GFZ GRACE RL06 Monthly Gravity Field Time Series: Processing Details and Quality Assessment,
Remote Sens.-Basel,
11, 2116, https://doi.org/10.3390/rs11182116, 2019.
Dai, Y., Zeng, X., Dickinson, R. E., Baker, I., Bonan, G. B., Bosilovich, M. G., Denning, A. S., Dirmeyer, P. A., Houser, P. R., Niu, G., Oleson, K. W., Schlosser, C. A., and Yang, Z.-L.:
The Common Land Model,
B. Am. Meteorol. Soc.,
84, 1013–1024, https://doi.org/10.1175/BAMS-84-8-1013, 2003.
de Graaf, I. E. M., van Beek, R. L. P. H., Gleeson, T., Moosdorf, N., Schmitz, O., Sutanudjaja, E. H., and Bierkens, M. F. P.:
A global-scale two-layer transient groundwater model: Development and application to groundwater depletion,
Adv. Water Resour.,
102, 53–67, https://doi.org/10.1016/j.advwatres.2017.01.011, 2017.
Döll, P., Kaspar, F., and Lehner, B.:
A global hydrological model for deriving water availability indicators: Model tuning and validation,
J. Hydrol.,
270, 105–134, https://doi.org/10.1016/S0022-1694(02)00283-4, 2003.
Döll, P., Fritsche, M., Eicker, A., and Müller Schmied, H.:
Seasonal Water Storage Variations as Impacted by Water Abstractions: Comparing the Output of a Global Hydrological Model with GRACE and GPS Observations,
Surv. Geophys.,
35, 1311–1331, https://doi.org/10.1007/s10712-014-9282-2, 2014.
Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, P. D., Hirschi, M., Ikonen, J., de Jeu, R., Kidd, R., Lahoz, W., Liu, Y. Y., Miralles, D., Mistelbauer, T., Nicolai-Shaw, N., Parinussa, R., Pratola, C., Reimer, C., van der Schalie, R., Seneviratne, S. I., Smolander, T., and Lecomte, P.:
ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions,
Remote Sens. Environ.,
203, 185–215, https://doi.org/10.1016/j.rse.2017.07.001, 2017.
Falcone, J. A.:
GAGES-II: Geospatial attributes of gages for evaluating streamflow,
U.S. Geological Survey,
available at: https://water.usgs.gov/GIS/metadata/usgswrd/XML/gagesII_Sept2011.xml (last access: 18 August 2020), 2002.
Fan, Y., Li, H., and Miguez-Macho, G.:
Global patterns of groundwater table depth,
Science,
339, 940–943, https://doi.org/10.1126/science.1229881, 2013.
Finger, D., Vis, M., Huss, M., and Seibert, J.:
The value of multiple data set calibration versus model complexity for improving the performance of hydrological models in mountain catchments,
Water Resour. Res.,
51, 1939–1958, https://doi.org/10.1002/2014WR015712, 2015.
Foster, L. M. and Maxwell, R. M.:
Sensitivity analysis of hydraulic conductivity and Manning's n parameters lead to new method to scale effective hydraulic conductivity across model resolutions,
Hydrol. Process.,
33, https://doi.org/10.1002/hyp.13327, 332–349, 2019.
Gleeson, T., Smith, L., Moosdorf, N., Hartmann, J., Dürr, H. H., Manning, A. H., van Beek, L. P. H., and Jellinek, A. M.:
Mapping permeability over the surface of the Earth,
Geophys. Res. Lett.,
38, L02401, https://doi.org/10.1029/2010GL045565, 2011.
Gleeson, T., Moosdorf, N., Hartmann, J., and van Beek, L. P. H.: A glimpse beneath Earth's surface: GLobal HYdrogeology MaPS (GLHYMPS) of permeability and porosity, Geophys. Res. Lett., 41, 3891–3898, https://doi.org/10.1002/2014GL059856, 2014.
Gleeson, T., Wagener, T., Döll, P., Zipper, S. C., West, C., Wada, Y., Taylor, R., Scanlon, B., Rosolem, R., Rahman, S., Oshinlaja, N., Maxwell, R., Lo, M.-H., Kim, H., Hill, M., Hartmann, A., Fogg, G., Famiglietti, J. S., Ducharne, A., de Graaf, I., Cuthbert, M., Condon, L., Bresciani, E., and Bierkens, M. F. P.: GMD Perspective: the quest to improve the evaluation of groundwater representation in continental to global scale models, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2021-97, in review, 2021.
Group on Earth Observations: GEOSS Strategic Targets, Document 12 (Rev1), GEO-VI, 17–18 November 2009, available at: https://www.earthobservations.org/documents.php (last access: 18 October 2021), 2009.
Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., and Dorigo, W.: Evolution of the ESA CCI Soil Moisture climate data records and their underlying merging methodology, Earth Syst. Sci. Data, 11, 717–739, https://doi.org/10.5194/essd-11-717-2019, 2019.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.:
Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling,
J. Hydrol.,
377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Jefferson, J. L., Maxwell, R. M., and Constantine, P. G.:
Exploring the Sensitivity of Photosynthesis and Stomatal Resistance Parameters in a Land Surface Model,
J. Hydrometeorol.,
18, 897–915, https://doi.org/10.1175/jhm-d-16-0053.1, 2017.
Jones, J. E. and Woodward, C. S.:
Newton–Krylov-multigrid solvers for large-scale, highly heterogeneous, variably saturated flow problems,
Adv. Water Resour.,
24, 763–774, https://doi.org/10.1016/S0309-1708(00)00075-0, 2001.
Jung, M., Reichstein, M., and Bondeau, A.: Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model, Biogeosciences, 6, 2001–2013, https://doi.org/10.5194/bg-6-2001-2009, 2009.
Kauffeldt, A., Wetterhall, F., Pappenberger, F., Salamon, P., and Thielen, J.:
Technical review of large-scale hydrological models for implementation in operational flood forecasting schemes on continental level,
Environ. Modell. Softw.,
75, 68–76, https://doi.org/10.1016/J.ENVSOFT.2015.09.009, 2016.
Keune, J., Gasper, F., Goergen, K., Hense, A., Shrestha, P., Sulis, M., and Kollet, S.:
Studying the influence of groundwater representations on land surface-atmosphere feedbacks during the European heat wave in 2003,
J. Geophys. Res.-Atmos.,
121, 13301–13325, https://doi.org/10.1002/2016JD025426, 2016.
Kirchner, J. W.:
Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology,
Water Resour. Res.,
42, W03S04, https://doi.org/10.1029/2005WR004362, 2006.
Knipper, K. R., Kinoshita, A. M., and Hogue, T. S.:
Evaluation of a moderate resolution imaging spectroradiometer triangle-based algorithm for evapotranspiration estimates in subalpine regions,
J. Appl. Remote Sens.,
10, 016002, https://doi.org/10.1117/1.jrs.10.016002, 2016.
Koirala, S., Hirabayashi, Y., Mahendran, R., and Kanae, S.:
Global assessment of agreement among streamflow projections using CMIP5 model outputs,
Environ. Res. Lett.,
9, 064017, https://doi.org/10.1088/1748-9326/9/6/064017, 2014.
Kollet, S. J. and Maxwell, R. M.:
Integrated surface–groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model,
Adv. Water Resour.,
29, 945–958, https://doi.org/10.1016/J.ADVWATRES.2005.08.006, 2006.
Kollet, S. J., Maxwell, R. M., Woodward, C. S., Smith, S., Vanderborght, J., Vereecken, H., and Simmer, C.:
Proof of concept of regional scale hydrologic simulations at hydrologic resolution utilizing massively parallel computer resources,
Water Resour. Res.,
46, W04201, https://doi.org/10.1029/2009WR008730, 2010.
Kollet, S., Sulis, M., Maxwell, R. M., Paniconi, C., Putti, M., Bertoldi, G., Coon, E. T., Cordano, E., Endrizzi, S., Kikinzon, Mouche, E., Mügler, Park, Y.-J., Refsgaard, J. C., Stisen, S., and Sudicky, E.: The integrated hydrologic model intercomparison project, IH-MIP2: A second set of benchmark results to diagnose integrated hydrology and feedbacks, Water Resour. Res., 53, 867–890, https://doi.org/10.1002/2016WR019191, 2017.
Krysanova, V., Zaherpour, J., Didovets, I., Gosling, S. N., Gerten, D., Hanasaki, N., Schmied, H. M., Pokhrel, Y., Satoh, Y., Tang, Q., and Wada, Y.:
How Evaluation of Global Hydrological Models Can Help to Improve Credibility of River Discharge Projections under Climate Change,
Climatic Change,
163, 1353–1377, https://doi.org/10.1007/s10584-020-02840-0, 2020.
Kumar, S. V., Peters-Lidard, C. D., Santanello, J., Harrison, K., Liu, Y., and Shaw, M.: Land surface Verification Toolkit (LVT) – a generalized framework for land surface model evaluation, Geosci. Model Dev., 5, 869–886, https://doi.org/10.5194/gmd-5-869-2012, 2012.
Landerer, F. W. and Swenson, S. C.:
Accuracy of scaled GRACE terrestrial water storage estimates,
Water Resour. Res.,
48, W04531, https://doi.org/10.1029/2011WR011453, 2012.
Lehner, B., Verdin, K., and Jarvis, A.:
New Global Hydrography Derived From Spaceborne Elevation Data,
EOS T. Am. Geophys. Un.,
89, 93, https://doi.org/10.1029/2008EO100001, 2008.
Maurer, E. P., Wood, A. W., Adam, J. C., Lettenmaier, D. P., Nijssen, B., Maurer, E. P., Wood, A. W., Adam, J. C., Lettenmaier, D. P., and Nijssen, B.:
A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United States,
J. Climate, 15, 3237–3251, https://doi.org/10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2, 2002.
Maxwell, R. M.:
A terrain-following grid transform and preconditioner for parallel, large-scale, integrated hydrologic modeling,
Adv. Water Resour.,
53, 109–117, https://doi.org/10.1016/J.ADVWATRES.2012.10.001, 2013.
Maxwell, R. M. and Condon, L. E.:
Connections between groundwater flow and transpiration partitioning,
Science,
353, 377–380, https://doi.org/10.1126/science.aaf7891, 2016.
Maxwell, R. M. and Miller, N. L.:
Development of a Coupled Land Surface and Groundwater Model,
J. Hydrometeorol.,
6, 233–247, https://doi.org/10.1175/JHM422.1, 2005.
Maxwell, R. M., Condon, L. E., and Kollet, S. J.: A high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3, Geosci. Model Dev., 8, 923–937, https://doi.org/10.5194/gmd-8-923-2015, 2015.
Maxwell, R. M., Condon, L. E., Kollet, S. J., Maher, K., Haggerty, R., and Forrester, M. M.:
The imprint of climate and geology on the residence times of groundwater,
Geophys. Res. Lett.,
43, 701–708, https://doi.org/10.1002/2015GL066916, 2016.
McGuire, V. L., Lund, K. D., and Densmore, B. K.:
Saturated Thickness and Water in Storage in the High Plains Aquifer, 2009, and Water-Level Changes and Changes in Water in Storage in the High Plains Aquifer, 1980 to 1995, 1995 to 2000, 2000 to 2005, and 2005 to 2009,
Scientific Investigations Report 2012-5177, U.S. Department of the Interior, U.S. Geological Survey Technical Report, 2012.
Molotch, N. P. and Bales, R. C.:
Scaling snow observations from the point to the grid element: Implications for observation network design,
Water Resour. Res.,
41, 1–16, https://doi.org/10.1029/2005WR004229, 2005.
Moriasi, D. N., Arnold, J. G., Liew, M. W. Van, Bingner, R. L., Harmel, R. D., and Veith, T. L.:
Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations, T. ASABE, 50, 885–900, https://doi.org/10.13031/2013.23153, 2007.
Moriasi, D. N., Gitau, M. W., Pai, N., and Daggupati, P.:
Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria,
T. ASABE,
58, 1763–1785, https://doi.org/10.13031/trans.58.10715, 2015.
Mu, Q., Heinsch, F. A., Zhao, M., and Running, S. W.:
Development of a global evapotranspiration algorithm based on MODIS and global meteorology data,
Remote Sens. Environ.,
111, 519–536, https://doi.org/10.1016/j.rse.2007.04.015, 2007.
Mu, Q., Zhao, M., and Running, S. W.:
Improvements to a MODIS global terrestrial evapotranspiration algorithm,
Remote Sens. Environ.,
115, 1781–1800, https://doi.org/10.1016/j.rse.2011.02.019, 2011.
Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., and Döll, P.: The global water resources and use model WaterGAP v2.2d: model description and evaluation, Geosci. Model Dev., 14, 1037–1079, https://doi.org/10.5194/gmd-14-1037-2021, 2021.
Niraula, R., Meixner, T., Ajami, H., Rodell, M., Gochis, D., and Castro, C. L.:
Comparing potential recharge estimates from three Land Surface Models across the western US,
J. Hydrol.,
545, 410–423, https://doi.org/10.1016/j.jhydrol.2016.12.028, 2017.
Niu, G. Y., Yang, Z. L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.:
The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements,
J. Geophys. Res.-Atmos.,
116, D12109, https://doi.org/10.1029/2010JD015139, 2011.
Oki, T. and Kanae, S.:
Global hydrological cycles and world water resources,
Science,
313, 1068–1072, https://doi.org/10.1126/science.1128845, 2006.
Or, D., Lehmann, P., and Assouline, S.:
Natural length scales define the range of applicability of the Richards equation for capillary flows,
Water Resour. Res.,
51, 7130–7144, https://doi.org/10.1002/2015WR017034, 2015.
Osei-Kuffuor, D., Maxwell, R. M., and Woodward, C. S.:
Improved numerical solvers for implicit coupling of subsurface and overland flow,
Adv. Water Resour.,
74, 185–195, https://doi.org/10.1016/j.advwatres.2014.09.006, 2014.
Pan, M., Cai, X., Chaney, N. W., Entekhabi, D., and Wood, E. F.:
An initial assessment of SMAP soil moisture retrievals using high-resolution model simulations and in situ observations,
Geophys. Res. Lett.,
43, 9662–9668, https://doi.org/10.1002/2016GL069964, 2016.
Piani, C., Weedon, G. P., Best, M., Gomes, S. M., Viterbo, P., Hagemann, S., and Haerter, J. O.:
Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models,
J. Hydrol.,
395, 199–215, https://doi.org/10.1016/j.jhydrol.2010.10.024, 2010.
Rakovec, O., Mizukami, N., Kumar, R., Newman, A. J., Thober, S., Wood, A. W., Clark, M. P., and Samaniego, L.:
Diagnostic Evaluation of Large-Domain Hydrologic Models Calibrated Across the Contiguous United States,
J. Geophys. Res.-Atmos.,
124, 13991–14007, https://doi.org/10.1029/2019JD030767, 2019.
Rodell, M., McWilliams, E. B., Famiglietti, J. S., Beaudoing, H. K., and Nigro, J.:
Estimating evapotranspiration using an observation based terrestrial water budget,
Hydrol. Process.,
25, 4082–4092, https://doi.org/10.1002/hyp.8369, 2011.
Salas, F. R., Somos-Valenzuela, M. A., Dugger, A., Maidment, D. R., Gochis, D. J., David, C. H., Yu, W., Ding, D., Clark, E. P., and Noman, N.:
Towards Real-Time Continental Scale Streamflow Simulation in Continuous and Discrete Space,
J. Am. Water Resour. As.,
54, 7–27, https://doi.org/10.1111/1752-1688.12586, 2018.
Save, H., Bettadpur, S., and Tapley, B. D.:
High-resolution CSR GRACE RL05 mascons,
J. Geophys. Res.-Sol. Ea.,
121, 7547–7569, https://doi.org/10.1002/2016JB013007, 2016.
Schreiner-McGraw, A. P. and Ajami, H.: Combined Impacts of Uncertainty in Precipitation and Air Temperature on Simulated Mountain System Recharge from an Integrated Hydrologic Model, Hydrol. Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-2020-558, in review, 2021.
Senay, G. B., Bohms, S., Singh, R. K., Gowda, P. H., Velpuri, N. M., Alemu, H., and Verdin, J. P.:
Operational Evapotranspiration Mapping Using Remote Sensing and Weather Datasets: A New Parameterization for the SSEB Approach,
J. Am. Water Resour. As.,
49, 577–591, https://doi.org/10.1111/jawr.12057, 2013.
Senay, G. B., Gowda, P. H., Bohms, S., Howell, T. A., Friedrichs, M., Marek, T. H., and Verdin, J. P.: Evaluating the SSEBop approach for evapotranspiration mapping with landsat data using lysimetric observations in the semi-arid Texas High Plains, Hydrol. Earth Syst. Sci. Discuss., 11, 723–756, https://doi.org/10.5194/hessd-11-723-2014, 2014.
Smith, S., Maxwell, R., Condon, L., Engdahl, N., Gasper, F., Kulkarni, K., Beisman, J., Hector, B., Woodward, C., Fonseca, J., Thompson, D., and Coon, E.:
ParFlow Version 3.6.0 (Version v3.6.0),
Zenodo [code],
https://doi.org/10.5281/zenodo.4639761, 2019.
Sperna Weiland, F. C., Vrugt, J. A., van Beek, R. L. P. H., Weerts, A. H., and Bierkens, M. F. P.:
Significant uncertainty in global scale hydrological modeling from precipitation data errors,
J. Hydrol.,
529, 1095–1115, https://doi.org/10.1016/j.jhydrol.2015.08.061, 2015.
SSURGO: Soil Staff Survey, Natural Resources Conservation Service, United States Department of Agriculture, Web Soil Survey, available at: https://websoilsurvey.nrcs.usda.gov/, last access: 18 October 2021.
Strassberg, G., Scanlon, B. R., and Chambers, D.:
Evaluation of groundwater storage monitoring with the GRACE satellite: Case study of the High Plains aquifer, central United States,
Water Resour. Res.,
45, W05410, https://doi.org/10.1029/2008WR006892, 2009.
Sutanudjaja, E. H., van Beek, R., Wanders, N., Wada, Y., Bosmans, J. H. C., Drost, N., van der Ent, R. J., de Graaf, I. E. M., Hoch, J. M., de Jong, K., Karssenberg, D., López López, P., Peßenteiner, S., Schmitz, O., Straatsma, M. W., Vannametee, E., Wisser, D., and Bierkens, M. F. P.: PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model, Geosci. Model Dev., 11, 2429–2453, https://doi.org/10.5194/gmd-11-2429-2018, 2018.
Swinbank, W. C.:
The Measurement of Vertical Transfer of Heat and Water Vapor by Eddies in the Lower Atmosphere,
J. Meteorol.,
8, 135–145, https://doi.org/10.1175/1520-0469(1951)008<0135:TMOVTO>2.0.CO;2, 1951.
Tang, Q., Gao, H., Yeh, P., Oki, T., Su, F., and Lettenmaier, D. P.:
Dynamics of Terrestrial Water Storage Change from Satellite and Surface Observations and Modeling,
J. Hydrometeorol.,
11, 156–170, https://doi.org/10.1175/2009JHM1152.1, 2010.
Tijerina, D. T., Condon, L. E., FitzGerald, K., Dugger, A., O'Neill, M. M., Sampson, K., Gochis, D. J., and Maxwell, R. M.:
Continental Hydrologic Intercomparison Project (CHIP), Phase 1: A Large-Scale Hydrologic Model Comparison over the Continental United States,
Water Resour. Res.,
57, e2020WR028931, https://doi.org/10.1029/2020WR028931, 2021.
Troch, P., Durcik, M., Seneviratne, S., Hirschi, M., Teuling, A., Hurkmans, R., and Hasan, S.:
New data sets to estimate terrestrial water storage change,
EOS T. Am. Geophys. Un.,
88, 469–470, https://doi.org/10.1029/2007EO450001, 2007.
van Genuchten, M. T.:
A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils,
Soil Sci. Soc. Am. J.,
44, 892, https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.
Velpuri, N. M., Senay, G. B., Singh, R. K., Bohms, S., and Verdin, J. P.:
A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: Using point and gridded FLUXNET and water balance ET,
Remote Sens. Environ.,
139, 35–49, https://doi.org/10.1016/j.rse.2013.07.013, 2013.
Waseem, M., Mani, N., Andiego, G., and Usman, M.:
A Review of Criteria of Fit for Hydrological Models,
International Research Journal of Engineering and Technology (IRJET),
4, 1765–1772, 2017.
Westerhoff, R. S.:
Using uncertainty of Penman and Penman–Monteith methods in combined satellite and ground-based evapotranspiration estimates,
Remote Sens. Environ.,
169, 102–112, https://doi.org/10.1016/j.rse.2015.07.021, 2015.
Wiese, D. N., Landerer, F. W., and Watkins, M. M.:
Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution,
Water Resour. Res.,
52, 7490–7502, https://doi.org/10.1002/2016WR019344, 2016.
Wilson, K. B., Hanson, P. J., Mulholland, P. J., Baldocchi, D. D., and Wullschleger, S. D.:
A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance,
Agr. Forest Meteorol.,
106, 153–168, https://doi.org/10.1016/S0168-1923(00)00199-4, 2001.
Wood, E. F., Roundy, J. K., Troy, T. J., van Beek, L. P. H., Bierkens, M. F. P., Blyth, E., de Roo, A., Döll, P., Ek, M., Famiglietti, J., Gochis, D., van de Giesen, N., Houser, P., Jaffé, P. R., Kollet, S., Lehner, B., Lettenmaier, D. P., Peters-Lidard, C., Sivapalan, M., Sheffield, J., Wade, A., and Whitehead, P.: Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water,
Water Resour. Res.,
47, W05301, https://doi.org/10.1029/2010WR010090, 2011.
Wu, S., Li, J., and Huang, G. H.:
A study on DEM-derived primary topographic attributes for hydrologic applications: Sensitivity to elevation data resolution,
Appl. Geogr.,
28, 210–223, https://doi.org/10.1016/j.apgeog.2008.02.006, 2008.
Xia, Y., Mitchell, K., Ek, M., Cosgrove, B., Sheffield, J., Luo, L., Alonge, C., Wei, H., Meng, J., Livneh, B., Duan, Q., and Lohmann, D.:
Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow,
J. Geophys. Res.-Atmos.,
117, D03110, https://doi.org/10.1029/2011JD016051, 2012a.
Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo, L., Alonge, C., Wei, H., Meng, J., Livneh, B., Lettenmaier, D., Koren, V., Duan, Q., Mo, K., Fan, Y., and Mocko, D.:
Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products,
J. Geophys. Res.-Atmos.,
117, D03109, https://doi.org/10.1029/2011JD016048, 2012b.
Xia, Y., Ek, M. B., Wu, Y., Ford, T., and Quiring, S. M.:
Comparison of NLDAS-2 Simulated and NASMD Observed Daily Soil Moisture. Part I: Comparison and Analysis,
J. Hydrometeorol.,
16, 1962–1980, https://doi.org/10.1175/JHM-D-14-0096.1, 2015a.
Xia, Y., Hobbins, M. T., Mu, Q., and Ek, M. B.:
Evaluation of NLDAS-2 evapotranspiration against tower flux site observations,
Hydrol. Process.,
29, 1757–1771, https://doi.org/10.1002/hyp.10299, 2015b.
Xu, C. Y. and Singh, V. P.:
Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions,
J. Hydrol.,
308, 105–121, https://doi.org/10.1016/j.jhydrol.2004.10.024, 2005.
Zaitchik, B. F., Rodell, M., and Olivera, F.:
Evaluation of the Global Land Data Assimilation System using global river discharge data and a source-to-sink routing scheme,
Water Resour. Res.,
46, https://doi.org/10.1029/2009WR007811, 2010.
Zhang, L., Dobslaw, H., Stacke, T., Güntner, A., Dill, R., and Thomas, M.: Validation of terrestrial water storage variations as simulated by different global numerical models with GRACE satellite observations, Hydrol. Earth Syst. Sci., 21, 821–837, https://doi.org/10.5194/hess-21-821-2017, 2017.
Short summary
Modeling the hydrologic cycle at high resolution and at large spatial scales is an incredible opportunity and challenge for hydrologists. In this paper, we present the results of a high-resolution hydrologic simulation configured over the contiguous United States. We discuss simulated water fluxes through groundwater, soil, plants, and over land, and we compare model results to in situ observations and satellite products in order to build confidence and guide future model development.
Modeling the hydrologic cycle at high resolution and at large spatial scales is an incredible...