Articles | Volume 14, issue 12
Model evaluation paper
 | Highlight paper
30 Nov 2021
Model evaluation paper | Highlight paper |  | 30 Nov 2021

Assessment of the ParFlow–CLM CONUS 1.0 integrated hydrologic model: evaluation of hyper-resolution water balance components across the contiguous United States

Mary M. F. O'Neill, Danielle T. Tijerina, Laura E. Condon, and Reed M. Maxwell

Related authors

Synthesis of Historical Reservoir Operations from 1980 – 2020 for the Evaluation of Reservoir Representation in Large Scale Hydrologic Models
Jennie C. Steyaert and Laura E. Condon
Hydrol. Earth Syst. Sci. Discuss.,,, 2023
Preprint under review for HESS
Short summary
Climate-warming-driven changes in the cryosphere and their impact on groundwater–surface-water interactions in the Heihe River basin
Amanda Triplett and Laura E. Condon
Hydrol. Earth Syst. Sci., 27, 2763–2785,,, 2023
Short summary
Towards Interpretable LSTM-based Modelling of Hydrological Systems
Luis Andres De la Fuente, Mohammad Reza Ehsani, Hoshin Vijai Gupta, and Laura E. Condon
EGUsphere,,, 2023
Preprint archived
Short summary
Impact of distributed meteorological forcing on simulated snow cover and hydrological fluxes over a mid-elevation alpine micro-scale catchment
Aniket Gupta, Alix Reverdy, Jean-Martial Cohard, Basile Hector, Marc Descloitres, Jean-Pierre Vandervaere, Catherine Coulaud, Romain Biron, Lucie Liger, Reed Maxwell, Jean-Gabriel Valay, and Didier Voisin
Hydrol. Earth Syst. Sci., 27, 191–212,,, 2023
Short summary
Using simulation-based inference to determine the parameters of an integrated hydrologic model: a case study from the upper Colorado River basin
Robert Hull, Elena Leonarduzzi, Luis De La Fuente, Hoang Viet Tran, Andrew Bennett, Peter Melchior, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci. Discuss.,,, 2022
Revised manuscript has not been submitted
Short summary

Related subject area

NEOPRENE v1.0.1: a Python library for generating spatial rainfall based on the Neyman–Scott process
Javier Diez-Sierra, Salvador Navas, and Manuel del Jesus
Geosci. Model Dev., 16, 5035–5048,,, 2023
Short summary
Uncertainty estimation for a new exponential-filter-based long-term root-zone soil moisture dataset from Copernicus Climate Change Service (C3S) surface observations
Adam Pasik, Alexander Gruber, Wolfgang Preimesberger, Domenico De Santis, and Wouter Dorigo
Geosci. Model Dev., 16, 4957–4976,,, 2023
Short summary
Validating the Nernst–Planck transport model under reaction-driven flow conditions using RetroPy v1.0
Po-Wei Huang, Bernd Flemisch, Chao-Zhong Qin, Martin O. Saar, and Anozie Ebigbo
Geosci. Model Dev., 16, 4767–4791,,, 2023
Short summary
DynQual v1.0: a high-resolution global surface water quality model
Edward R. Jones, Marc F. P. Bierkens, Niko Wanders, Edwin H. Sutanudjaja, Ludovicus P. H. van Beek, and Michelle T. H. van Vliet
Geosci. Model Dev., 16, 4481–4500,,, 2023
Short summary
Data space inversion for efficient uncertainty quantification using an integrated surface and sub-surface hydrologic model
Hugo Delottier, John Doherty, and Philip Brunner
Geosci. Model Dev., 16, 4213–4231,,, 2023
Short summary

Cited articles

Ashfaq, M., Bowling, L. C., Cherkauer, K., Pal, J. S., and Diffenbaugh, N. S.: Influence of climate model biases and daily-scale temperature and precipitation events on hydrological impacts assessment: A case study of the United States, J. Geophys. Res., 115, D14116,, 2010. 
Bai, P., Liu, X., Yang, T., Liang, K., and Liu, C.: Evaluation of streamflow simulation results of land surface models in GLDAS on the Tibetan plateau, J. Geophys. Res.-Atmos., 121, 12180–12197,, 2016. 
Baldocchi, D. D.: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future, Glob. Change Biol., 9, 479–492,, 2003. 
Barnes, M. L., Welty, C., and Miller, A. J.: Global Topographic Slope Enforcement to Ensure Connectivity and Drainage in an Urban Terrain, J. Hydrol. Eng., 21, 06015017,, 2016. 
Short summary
Modeling the hydrologic cycle at high resolution and at large spatial scales is an incredible opportunity and challenge for hydrologists. In this paper, we present the results of a high-resolution hydrologic simulation configured over the contiguous United States. We discuss simulated water fluxes through groundwater, soil, plants, and over land, and we compare model results to in situ observations and satellite products in order to build confidence and guide future model development.