Articles | Volume 14, issue 12
https://doi.org/10.5194/gmd-14-7223-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-7223-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessment of the ParFlow–CLM CONUS 1.0 integrated hydrologic model: evaluation of hyper-resolution water balance components across the contiguous United States
Mary M. F. O'Neill
CORRESPONDING AUTHOR
Department of Geology and Geological Engineering, Colorado School of Mines, Golden, CO, USA
now at: Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
now at: Earth System Science Interdisciplinary Center, University of Maryland, College Park, Greenbelt, MD, USA
Danielle T. Tijerina
Department of Civil and Environmental Engineering and High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA
Laura E. Condon
Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tuscon, AZ, USA
Reed M. Maxwell
Department of Civil and Environmental Engineering and High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA
Related authors
No articles found.
Chen Yang, Zitong Jia, Wenjie Xu, Zhongwang Wei, Xiaolang Zhang, Yiguang Zou, Jeffrey McDonnell, Laura Condon, Yongjiu Dai, and Reed Maxwell
Hydrol. Earth Syst. Sci., 29, 2201–2218, https://doi.org/10.5194/hess-29-2201-2025, https://doi.org/10.5194/hess-29-2201-2025, 2025
Short summary
Short summary
We developed the first high-resolution, integrated surface water–groundwater hydrologic model of the entirety of continental China using ParFlow. The model shows good performance in terms of streamflow and water table depth when compared to global data products and observations. It is essential for water resources management and decision-making in China within a consistent framework in the changing world. It also has significant implications for similar modeling in other places in the world.
Max Berkelhammer, Gerald F. M. Page, Frank Zurek, Christopher Still, Mariah S. Carbone, William Talavera, Laura Hildebrand, James Byron, Kyle Inthabandith, Angellica Kucinski, Melissa Carlson, Kelsey Foss, Wendy Brown, Rosemary W. H. Carroll, Austin Simonpietri, Marshall Worsham, Ian Breckheimer, Anna Ryken, Reed Maxwell, David Gochis, Mark S. Raleigh, Eric Small, and Kenneth H. Williams
Hydrol. Earth Syst. Sci., 29, 701–718, https://doi.org/10.5194/hess-29-701-2025, https://doi.org/10.5194/hess-29-701-2025, 2025
Short summary
Short summary
Warming in montane systems is affecting the snowmelt input amount. At the global scale, this will impact subalpine forests that rely on spring snowmelt to support their water demands. We use a network of sensors across a hillslope in the Upper Colorado Basin to show that the changing spring snowpack has a more pronounced impact on dense forest stands, while open stands show a higher reliance on summer rain and are less sensitive to significant changes in snow.
Benjamin D. West, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci., 29, 245–259, https://doi.org/10.5194/hess-29-245-2025, https://doi.org/10.5194/hess-29-245-2025, 2025
Short summary
Short summary
This article describes the addition of reservoirs to the hydrologic model ParFlow. ParFlow is particularly good at helping us understand some of the broader drivers behind different parts of the water cycle. By having reservoirs in such a model, we hope to be able to better understand both our impacts on the environment and how to adjust our management of reservoirs to changing conditions.
Peyman Abbaszadeh, Fadji Zaouna Maina, Chen Yang, Dan Rosen, Sujay Kumar, Matthew Rodell, and Reed Maxwell
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-280, https://doi.org/10.5194/hess-2024-280, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
To manage Earth's water resources effectively amid climate change, it's crucial to understand both surface and groundwater processes. We developed a new modeling system that combines two advanced tools, ParFlow and LIS/Noah-MP, to better simulate both land surface and groundwater interactions. By testing this integrated model in the Upper Colorado River Basin, we found it improves predictions of hydrologic processes, especially in complex terrains.
Robert Hull, Elena Leonarduzzi, Luis De La Fuente, Hoang Viet Tran, Andrew Bennett, Peter Melchior, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci., 28, 4685–4713, https://doi.org/10.5194/hess-28-4685-2024, https://doi.org/10.5194/hess-28-4685-2024, 2024
Short summary
Short summary
Large-scale hydrologic simulators are a needed tool to explore complex watershed processes and how they may evolve with a changing climate. However, calibrating them can be difficult because they are costly to run and have many unknown parameters. We implement a state-of-the-art approach to model calibration using neural networks with a set of experiments based on streamflow in the upper Colorado River basin.
Jennie C. Steyaert and Laura E. Condon
Hydrol. Earth Syst. Sci., 28, 1071–1088, https://doi.org/10.5194/hess-28-1071-2024, https://doi.org/10.5194/hess-28-1071-2024, 2024
Short summary
Short summary
Reservoirs impact all river systems in the United States, yet their operations are difficult to quantify due to limited data. Using historical reservoir operations, we find that storage has declined over the past 40 years, with clear regional differences. We observe that active storage ranges are increasing in arid regions and decreasing in humid regions. By evaluating reservoir model assumptions, we find that they may miss out on seasonal dynamics and can underestimate storage.
Luis Andres De la Fuente, Mohammad Reza Ehsani, Hoshin Vijai Gupta, and Laura Elizabeth Condon
Hydrol. Earth Syst. Sci., 28, 945–971, https://doi.org/10.5194/hess-28-945-2024, https://doi.org/10.5194/hess-28-945-2024, 2024
Short summary
Short summary
Long short-term memory (LSTM) is a widely used machine-learning model in hydrology, but it is difficult to extract knowledge from it. We propose HydroLSTM, which represents processes like a hydrological reservoir. Models based on HydroLSTM perform similarly to LSTM while requiring fewer cell states. The learned parameters are informative about the dominant hydrology of a catchment. Our results show how parsimony and hydrological knowledge extraction can be achieved by using the new structure.
Amanda Triplett and Laura E. Condon
Hydrol. Earth Syst. Sci., 27, 2763–2785, https://doi.org/10.5194/hess-27-2763-2023, https://doi.org/10.5194/hess-27-2763-2023, 2023
Short summary
Short summary
Accelerated melting in mountains is a global phenomenon. The Heihe River basin depends on upstream mountains for its water supply. We built a hydrologic model to examine how shifts in streamflow and warming will impact ground and surface water interactions. The results indicate that degrading permafrost has a larger effect than melting glaciers. Additionally, warming temperatures tend to have more impact than changes to streamflow. These results can inform other mountain–valley system studies.
Luis Andres De la Fuente, Mohammad Reza Ehsani, Hoshin Vijai Gupta, and Laura E. Condon
EGUsphere, https://doi.org/10.5194/egusphere-2023-666, https://doi.org/10.5194/egusphere-2023-666, 2023
Preprint archived
Short summary
Short summary
Long Short-Term Memory (LSTM) is a widely-used machine learning (ML) model in hydrology. However, it is difficult to extract knowledge from it. We propose HydroLSTM which represents processes analogous to a hydrological reservoir. Models using HydroLSTM perform similarly to LSTM but require fewer cell states. The learned parameters are informative about the dominant hydroclimatic characteristics of a catchment. Our results demonstrate how hydrological knowledge is encoded in the new structure.
Aniket Gupta, Alix Reverdy, Jean-Martial Cohard, Basile Hector, Marc Descloitres, Jean-Pierre Vandervaere, Catherine Coulaud, Romain Biron, Lucie Liger, Reed Maxwell, Jean-Gabriel Valay, and Didier Voisin
Hydrol. Earth Syst. Sci., 27, 191–212, https://doi.org/10.5194/hess-27-191-2023, https://doi.org/10.5194/hess-27-191-2023, 2023
Short summary
Short summary
Patchy snow cover during spring impacts mountainous ecosystems on a large range of spatio-temporal scales. A hydrological model simulated such snow patchiness at 10 m resolution. Slope and orientation controls precipitation, radiation, and wind generate differences in snowmelt, subsurface storage, streamflow, and evapotranspiration. The snow patchiness increases the duration of the snowmelt to stream and subsurface storage, which sustains the plants and streamflow later in the summer.
Robert Hull, Elena Leonarduzzi, Luis De La Fuente, Hoang Viet Tran, Andrew Bennett, Peter Melchior, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-345, https://doi.org/10.5194/hess-2022-345, 2022
Publication in HESS not foreseen
Short summary
Short summary
As the stress on water resources from climate change grows, we need models that represent water processes at the scale of counties, states, and even countries in order to make viable predictions about things will change. While such models are powerful, they can be cumbersome to deal with because they are so large. This research explores a novel way of increasing the efficiency of large-scale hydrologic models using an approach called Simulation-Based Inference.
Jennie C. Steyaert and Laura E. Condon
EGUsphere, https://doi.org/10.5194/egusphere-2022-1051, https://doi.org/10.5194/egusphere-2022-1051, 2022
Preprint archived
Short summary
Short summary
All river systems in the US are impacted by dams, yet analyses are limited by a lack of data. We use the first national dataset of reservoir data to analyze reservoir storage trends from 1980–2019. We show that reservoir storage has decreased over the past 40 years. The range in monthly storage has increased over time in drier regions and decreased in wetter ones. Lastly, we find that most regions have reservoir storage that takes longer to recover from and are therefore more vulnerable.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Geosci. Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021, https://doi.org/10.5194/gmd-14-7545-2021, 2021
Short summary
Short summary
Groundwater is increasingly being included in large-scale (continental to global) land surface and hydrologic simulations. However, it is challenging to evaluate these simulations because groundwater is
hiddenunderground and thus hard to measure. We suggest using multiple complementary strategies to assess the performance of a model (
model evaluation).
Jun Zhang, Laura E. Condon, Hoang Tran, and Reed M. Maxwell
Earth Syst. Sci. Data, 13, 3263–3279, https://doi.org/10.5194/essd-13-3263-2021, https://doi.org/10.5194/essd-13-3263-2021, 2021
Short summary
Short summary
Existing national topographic datasets for the US may not be compatible with gridded hydrologic models. A national topographic dataset developed to support physically based hydrologic models at 1 km and 250 m over the contiguous US is provided. We used a Priority Flood algorithm to ensure hydrologically consistent drainage networks and evaluated the performance with an integrated hydrologic model. Datasets and scripts are available for direct data usage or modification of processing as desired.
Cited articles
Archfield, S. A., Clark, M., Arheimer, B., Hay, L. E., McMillan, H., Kiang, J. E., Seibert, J., Hakala, K., Bock, A., Wagener, T., Farmer, W. H., Andréassian, V., Attinger, S., Viglione, A., Knight, R., Markstrom, S., and Over, T.:
Accelerating advances in continental domain hydrologic modeling,
Water Resour. Res.,
51, 10078–10091, https://doi.org/10.1002/2015WR017498, 2015.
Ashfaq, M., Bowling, L. C., Cherkauer, K., Pal, J. S., and Diffenbaugh, N. S.:
Influence of climate model biases and daily-scale temperature and precipitation events on hydrological impacts assessment: A case study of the United States,
J. Geophys. Res.,
115, D14116, https://doi.org/10.1029/2009JD012965, 2010.
Bai, P., Liu, X., Yang, T., Liang, K., and Liu, C.:
Evaluation of streamflow simulation results of land surface models in GLDAS on the Tibetan plateau,
J. Geophys. Res.-Atmos.,
121, 12180–12197, https://doi.org/10.1002/2016JD025501, 2016.
Baldocchi, D. D.:
Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future,
Glob. Change Biol.,
9, 479–492, https://doi.org/10.1046/j.1365-2486.2003.00629.x, 2003.
Barnes, M. L., Welty, C., and Miller, A. J.:
Global Topographic Slope Enforcement to Ensure Connectivity and Drainage in an Urban Terrain,
J. Hydrol. Eng.,
21, 06015017, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001306, 2016.
Beck, H. E., van Dijk, A. I. J. M., de Roo, A., Miralles, D. G., McVicar, T. R., Schellekens, J., and Bruijnzeel, L. A.:
Global-scale regionalization of hydrologic model parameters,
Water Resour. Res.,
52, 3599–3622, https://doi.org/10.1002/2015WR018247, 2016.
Beven, K. J. and Cloke, H. L.:
Comment on “Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water” by Eric F. Wood et al.,
Water Resour. Res.,
48, W01801, https://doi.org/10.1029/2011wr010982, 2012.
Bierkens, M. F. P., Bell, V. A., Burek, P., Chaney, N., Condon, L. E., David, C. H., de Roo, A., Döll, P., Drost, N., Famiglietti, J. S., Flörke, M., Gochis, D. J., Houser, P., Hut, R., Keune, J., Kollet, S., Maxwell, R. M., Reager, J. T., Samaniego, L., Sudicky, E., Sutanudjaja, E. H., van de Giesen, N., Winsemius, H., and Wood, E. F.:
Hyper-resolution global hydrological modelling: what is next?,
Hydrol. Process.,
29, 310–320, https://doi.org/10.1002/hyp.10391, 2015.
Chen, J., Famigliett, J. S., Scanlon, B. R., and Rodell, M.:
Groundwater Storage Changes: Present Status from GRACE Observations,
Springer, Cham, https://doi.org/10.1007/978-3-319-32449-4_9, pp. 207–227, 2016.
Clark, M. P., Fan, Y., Lawrence, D. M., Adam, J. C., Bolster, D., Gochis, D. J., Hooper, R. P., Kumar, M., Leung, L. R., Mackay, D. S., Maxwell, R. M., Shen, C., Swenson, S. C., and Zeng, X.:
Improving the representation of hydrologic processes in Earth System Models,
Water Resour. Res.,
51, 5929–5956, https://doi.org/10.1002/2015WR017096, 2015.
Collier, N., Hoffman, F. M., Lawrence, D. M., Keppel-Aleks, G., Koven, C. D., Riley, W. J., Mu, M., and Randerson, J. T.:
The International Land Model Benchmarking (ILAMB) System: Design, Theory, and Implementation,
J. Adv. Model. Earth Sy.,
10, 2731–2754, https://doi.org/10.1029/2018MS001354, 2018.
Condon, L. E. and Maxwell, R. M.:
Evaluating the relationship between topography and groundwater using outputs from a continental-scale integrated hydrology model,
Water Resour. Res.,
51, 6602–6621, https://doi.org/10.1002/2014WR016774, 2015.
Condon, L. E. and Maxwell, R. M.: Systematic shifts in Budyko relationships caused by groundwater storage changes, Hydrol. Earth Syst. Sci., 21, 1117–1135, https://doi.org/10.5194/hess-21-1117-2017, 2017.
Condon, L. E. and Maxwell, R. M.:
Simulating the sensitivity of evapotranspiration and streamflow to large-scale groundwater depletion,
Science Advances,
5, eaav4574, https://doi.org/10.1126/sciadv.aav4574, 2019.
Condon, L. E., Hering, A. S., and Maxwell, R. M.:
Quantitative assessment of groundwater controls across major US river basins using a multi-model regression algorithm,
Adv. Water Resour.,
82, 106–123, https://doi.org/10.1016/J.ADVWATRES.2015.04.008, 2015.
Condon, L. E., Atchley, A. L., and Maxwell, R. M.:
Evapotranspiration depletes groundwater under warming over the contiguous United States,
Nat. Commun.,
11, 1–8, https://doi.org/10.1038/s41467-020-14688-0, 2020.
Cosgrove, B. A.:
Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project,
J. Geophys. Res.,
108, 8842, https://doi.org/10.1029/2002JD003118, 2003.
Dahle, C., Murböck, M., Flechtner, F., Dobslaw, H., Michalak, G., Neumayer, K., Abrykosov, O., Reinhold, A., König, R., Sulzbach, R., and Förste, C.:
The GFZ GRACE RL06 Monthly Gravity Field Time Series: Processing Details and Quality Assessment,
Remote Sens.-Basel,
11, 2116, https://doi.org/10.3390/rs11182116, 2019.
Dai, Y., Zeng, X., Dickinson, R. E., Baker, I., Bonan, G. B., Bosilovich, M. G., Denning, A. S., Dirmeyer, P. A., Houser, P. R., Niu, G., Oleson, K. W., Schlosser, C. A., and Yang, Z.-L.:
The Common Land Model,
B. Am. Meteorol. Soc.,
84, 1013–1024, https://doi.org/10.1175/BAMS-84-8-1013, 2003.
de Graaf, I. E. M., van Beek, R. L. P. H., Gleeson, T., Moosdorf, N., Schmitz, O., Sutanudjaja, E. H., and Bierkens, M. F. P.:
A global-scale two-layer transient groundwater model: Development and application to groundwater depletion,
Adv. Water Resour.,
102, 53–67, https://doi.org/10.1016/j.advwatres.2017.01.011, 2017.
Döll, P., Kaspar, F., and Lehner, B.:
A global hydrological model for deriving water availability indicators: Model tuning and validation,
J. Hydrol.,
270, 105–134, https://doi.org/10.1016/S0022-1694(02)00283-4, 2003.
Döll, P., Fritsche, M., Eicker, A., and Müller Schmied, H.:
Seasonal Water Storage Variations as Impacted by Water Abstractions: Comparing the Output of a Global Hydrological Model with GRACE and GPS Observations,
Surv. Geophys.,
35, 1311–1331, https://doi.org/10.1007/s10712-014-9282-2, 2014.
Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, P. D., Hirschi, M., Ikonen, J., de Jeu, R., Kidd, R., Lahoz, W., Liu, Y. Y., Miralles, D., Mistelbauer, T., Nicolai-Shaw, N., Parinussa, R., Pratola, C., Reimer, C., van der Schalie, R., Seneviratne, S. I., Smolander, T., and Lecomte, P.:
ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions,
Remote Sens. Environ.,
203, 185–215, https://doi.org/10.1016/j.rse.2017.07.001, 2017.
Falcone, J. A.:
GAGES-II: Geospatial attributes of gages for evaluating streamflow,
U.S. Geological Survey,
available at: https://water.usgs.gov/GIS/metadata/usgswrd/XML/gagesII_Sept2011.xml (last access: 18 August 2020), 2002.
Fan, Y., Li, H., and Miguez-Macho, G.:
Global patterns of groundwater table depth,
Science,
339, 940–943, https://doi.org/10.1126/science.1229881, 2013.
Finger, D., Vis, M., Huss, M., and Seibert, J.:
The value of multiple data set calibration versus model complexity for improving the performance of hydrological models in mountain catchments,
Water Resour. Res.,
51, 1939–1958, https://doi.org/10.1002/2014WR015712, 2015.
Foster, L. M. and Maxwell, R. M.:
Sensitivity analysis of hydraulic conductivity and Manning's n parameters lead to new method to scale effective hydraulic conductivity across model resolutions,
Hydrol. Process.,
33, https://doi.org/10.1002/hyp.13327, 332–349, 2019.
Gleeson, T., Smith, L., Moosdorf, N., Hartmann, J., Dürr, H. H., Manning, A. H., van Beek, L. P. H., and Jellinek, A. M.:
Mapping permeability over the surface of the Earth,
Geophys. Res. Lett.,
38, L02401, https://doi.org/10.1029/2010GL045565, 2011.
Gleeson, T., Moosdorf, N., Hartmann, J., and van Beek, L. P. H.: A glimpse beneath Earth's surface: GLobal HYdrogeology MaPS (GLHYMPS) of permeability and porosity, Geophys. Res. Lett., 41, 3891–3898, https://doi.org/10.1002/2014GL059856, 2014.
Gleeson, T., Wagener, T., Döll, P., Zipper, S. C., West, C., Wada, Y., Taylor, R., Scanlon, B., Rosolem, R., Rahman, S., Oshinlaja, N., Maxwell, R., Lo, M.-H., Kim, H., Hill, M., Hartmann, A., Fogg, G., Famiglietti, J. S., Ducharne, A., de Graaf, I., Cuthbert, M., Condon, L., Bresciani, E., and Bierkens, M. F. P.: GMD Perspective: the quest to improve the evaluation of groundwater representation in continental to global scale models, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2021-97, in review, 2021.
Group on Earth Observations: GEOSS Strategic Targets, Document 12 (Rev1), GEO-VI, 17–18 November 2009, available at: https://www.earthobservations.org/documents.php (last access: 18 October 2021), 2009.
Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., and Dorigo, W.: Evolution of the ESA CCI Soil Moisture climate data records and their underlying merging methodology, Earth Syst. Sci. Data, 11, 717–739, https://doi.org/10.5194/essd-11-717-2019, 2019.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.:
Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling,
J. Hydrol.,
377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Jefferson, J. L., Maxwell, R. M., and Constantine, P. G.:
Exploring the Sensitivity of Photosynthesis and Stomatal Resistance Parameters in a Land Surface Model,
J. Hydrometeorol.,
18, 897–915, https://doi.org/10.1175/jhm-d-16-0053.1, 2017.
Jones, J. E. and Woodward, C. S.:
Newton–Krylov-multigrid solvers for large-scale, highly heterogeneous, variably saturated flow problems,
Adv. Water Resour.,
24, 763–774, https://doi.org/10.1016/S0309-1708(00)00075-0, 2001.
Jung, M., Reichstein, M., and Bondeau, A.: Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model, Biogeosciences, 6, 2001–2013, https://doi.org/10.5194/bg-6-2001-2009, 2009.
Kauffeldt, A., Wetterhall, F., Pappenberger, F., Salamon, P., and Thielen, J.:
Technical review of large-scale hydrological models for implementation in operational flood forecasting schemes on continental level,
Environ. Modell. Softw.,
75, 68–76, https://doi.org/10.1016/J.ENVSOFT.2015.09.009, 2016.
Keune, J., Gasper, F., Goergen, K., Hense, A., Shrestha, P., Sulis, M., and Kollet, S.:
Studying the influence of groundwater representations on land surface-atmosphere feedbacks during the European heat wave in 2003,
J. Geophys. Res.-Atmos.,
121, 13301–13325, https://doi.org/10.1002/2016JD025426, 2016.
Kirchner, J. W.:
Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology,
Water Resour. Res.,
42, W03S04, https://doi.org/10.1029/2005WR004362, 2006.
Knipper, K. R., Kinoshita, A. M., and Hogue, T. S.:
Evaluation of a moderate resolution imaging spectroradiometer triangle-based algorithm for evapotranspiration estimates in subalpine regions,
J. Appl. Remote Sens.,
10, 016002, https://doi.org/10.1117/1.jrs.10.016002, 2016.
Koirala, S., Hirabayashi, Y., Mahendran, R., and Kanae, S.:
Global assessment of agreement among streamflow projections using CMIP5 model outputs,
Environ. Res. Lett.,
9, 064017, https://doi.org/10.1088/1748-9326/9/6/064017, 2014.
Kollet, S. J. and Maxwell, R. M.:
Integrated surface–groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model,
Adv. Water Resour.,
29, 945–958, https://doi.org/10.1016/J.ADVWATRES.2005.08.006, 2006.
Kollet, S. J., Maxwell, R. M., Woodward, C. S., Smith, S., Vanderborght, J., Vereecken, H., and Simmer, C.:
Proof of concept of regional scale hydrologic simulations at hydrologic resolution utilizing massively parallel computer resources,
Water Resour. Res.,
46, W04201, https://doi.org/10.1029/2009WR008730, 2010.
Kollet, S., Sulis, M., Maxwell, R. M., Paniconi, C., Putti, M., Bertoldi, G., Coon, E. T., Cordano, E., Endrizzi, S., Kikinzon, Mouche, E., Mügler, Park, Y.-J., Refsgaard, J. C., Stisen, S., and Sudicky, E.: The integrated hydrologic model intercomparison project, IH-MIP2: A second set of benchmark results to diagnose integrated hydrology and feedbacks, Water Resour. Res., 53, 867–890, https://doi.org/10.1002/2016WR019191, 2017.
Krysanova, V., Zaherpour, J., Didovets, I., Gosling, S. N., Gerten, D., Hanasaki, N., Schmied, H. M., Pokhrel, Y., Satoh, Y., Tang, Q., and Wada, Y.:
How Evaluation of Global Hydrological Models Can Help to Improve Credibility of River Discharge Projections under Climate Change,
Climatic Change,
163, 1353–1377, https://doi.org/10.1007/s10584-020-02840-0, 2020.
Kumar, S. V., Peters-Lidard, C. D., Santanello, J., Harrison, K., Liu, Y., and Shaw, M.: Land surface Verification Toolkit (LVT) – a generalized framework for land surface model evaluation, Geosci. Model Dev., 5, 869–886, https://doi.org/10.5194/gmd-5-869-2012, 2012.
Landerer, F. W. and Swenson, S. C.:
Accuracy of scaled GRACE terrestrial water storage estimates,
Water Resour. Res.,
48, W04531, https://doi.org/10.1029/2011WR011453, 2012.
Lehner, B., Verdin, K., and Jarvis, A.:
New Global Hydrography Derived From Spaceborne Elevation Data,
EOS T. Am. Geophys. Un.,
89, 93, https://doi.org/10.1029/2008EO100001, 2008.
Maurer, E. P., Wood, A. W., Adam, J. C., Lettenmaier, D. P., Nijssen, B., Maurer, E. P., Wood, A. W., Adam, J. C., Lettenmaier, D. P., and Nijssen, B.:
A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United States,
J. Climate, 15, 3237–3251, https://doi.org/10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2, 2002.
Maxwell, R. M.:
A terrain-following grid transform and preconditioner for parallel, large-scale, integrated hydrologic modeling,
Adv. Water Resour.,
53, 109–117, https://doi.org/10.1016/J.ADVWATRES.2012.10.001, 2013.
Maxwell, R. M. and Condon, L. E.:
Connections between groundwater flow and transpiration partitioning,
Science,
353, 377–380, https://doi.org/10.1126/science.aaf7891, 2016.
Maxwell, R. M. and Miller, N. L.:
Development of a Coupled Land Surface and Groundwater Model,
J. Hydrometeorol.,
6, 233–247, https://doi.org/10.1175/JHM422.1, 2005.
Maxwell, R. M., Condon, L. E., and Kollet, S. J.: A high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3, Geosci. Model Dev., 8, 923–937, https://doi.org/10.5194/gmd-8-923-2015, 2015.
Maxwell, R. M., Condon, L. E., Kollet, S. J., Maher, K., Haggerty, R., and Forrester, M. M.:
The imprint of climate and geology on the residence times of groundwater,
Geophys. Res. Lett.,
43, 701–708, https://doi.org/10.1002/2015GL066916, 2016.
McGuire, V. L., Lund, K. D., and Densmore, B. K.:
Saturated Thickness and Water in Storage in the High Plains Aquifer, 2009, and Water-Level Changes and Changes in Water in Storage in the High Plains Aquifer, 1980 to 1995, 1995 to 2000, 2000 to 2005, and 2005 to 2009,
Scientific Investigations Report 2012-5177, U.S. Department of the Interior, U.S. Geological Survey Technical Report, 2012.
Molotch, N. P. and Bales, R. C.:
Scaling snow observations from the point to the grid element: Implications for observation network design,
Water Resour. Res.,
41, 1–16, https://doi.org/10.1029/2005WR004229, 2005.
Moriasi, D. N., Arnold, J. G., Liew, M. W. Van, Bingner, R. L., Harmel, R. D., and Veith, T. L.:
Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations, T. ASABE, 50, 885–900, https://doi.org/10.13031/2013.23153, 2007.
Moriasi, D. N., Gitau, M. W., Pai, N., and Daggupati, P.:
Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria,
T. ASABE,
58, 1763–1785, https://doi.org/10.13031/trans.58.10715, 2015.
Mu, Q., Heinsch, F. A., Zhao, M., and Running, S. W.:
Development of a global evapotranspiration algorithm based on MODIS and global meteorology data,
Remote Sens. Environ.,
111, 519–536, https://doi.org/10.1016/j.rse.2007.04.015, 2007.
Mu, Q., Zhao, M., and Running, S. W.:
Improvements to a MODIS global terrestrial evapotranspiration algorithm,
Remote Sens. Environ.,
115, 1781–1800, https://doi.org/10.1016/j.rse.2011.02.019, 2011.
Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., and Döll, P.: The global water resources and use model WaterGAP v2.2d: model description and evaluation, Geosci. Model Dev., 14, 1037–1079, https://doi.org/10.5194/gmd-14-1037-2021, 2021.
Niraula, R., Meixner, T., Ajami, H., Rodell, M., Gochis, D., and Castro, C. L.:
Comparing potential recharge estimates from three Land Surface Models across the western US,
J. Hydrol.,
545, 410–423, https://doi.org/10.1016/j.jhydrol.2016.12.028, 2017.
Niu, G. Y., Yang, Z. L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.:
The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements,
J. Geophys. Res.-Atmos.,
116, D12109, https://doi.org/10.1029/2010JD015139, 2011.
Oki, T. and Kanae, S.:
Global hydrological cycles and world water resources,
Science,
313, 1068–1072, https://doi.org/10.1126/science.1128845, 2006.
Or, D., Lehmann, P., and Assouline, S.:
Natural length scales define the range of applicability of the Richards equation for capillary flows,
Water Resour. Res.,
51, 7130–7144, https://doi.org/10.1002/2015WR017034, 2015.
Osei-Kuffuor, D., Maxwell, R. M., and Woodward, C. S.:
Improved numerical solvers for implicit coupling of subsurface and overland flow,
Adv. Water Resour.,
74, 185–195, https://doi.org/10.1016/j.advwatres.2014.09.006, 2014.
Pan, M., Cai, X., Chaney, N. W., Entekhabi, D., and Wood, E. F.:
An initial assessment of SMAP soil moisture retrievals using high-resolution model simulations and in situ observations,
Geophys. Res. Lett.,
43, 9662–9668, https://doi.org/10.1002/2016GL069964, 2016.
Piani, C., Weedon, G. P., Best, M., Gomes, S. M., Viterbo, P., Hagemann, S., and Haerter, J. O.:
Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models,
J. Hydrol.,
395, 199–215, https://doi.org/10.1016/j.jhydrol.2010.10.024, 2010.
Rakovec, O., Mizukami, N., Kumar, R., Newman, A. J., Thober, S., Wood, A. W., Clark, M. P., and Samaniego, L.:
Diagnostic Evaluation of Large-Domain Hydrologic Models Calibrated Across the Contiguous United States,
J. Geophys. Res.-Atmos.,
124, 13991–14007, https://doi.org/10.1029/2019JD030767, 2019.
Rodell, M., McWilliams, E. B., Famiglietti, J. S., Beaudoing, H. K., and Nigro, J.:
Estimating evapotranspiration using an observation based terrestrial water budget,
Hydrol. Process.,
25, 4082–4092, https://doi.org/10.1002/hyp.8369, 2011.
Salas, F. R., Somos-Valenzuela, M. A., Dugger, A., Maidment, D. R., Gochis, D. J., David, C. H., Yu, W., Ding, D., Clark, E. P., and Noman, N.:
Towards Real-Time Continental Scale Streamflow Simulation in Continuous and Discrete Space,
J. Am. Water Resour. As.,
54, 7–27, https://doi.org/10.1111/1752-1688.12586, 2018.
Save, H., Bettadpur, S., and Tapley, B. D.:
High-resolution CSR GRACE RL05 mascons,
J. Geophys. Res.-Sol. Ea.,
121, 7547–7569, https://doi.org/10.1002/2016JB013007, 2016.
Schreiner-McGraw, A. P. and Ajami, H.: Combined Impacts of Uncertainty in Precipitation and Air Temperature on Simulated Mountain System Recharge from an Integrated Hydrologic Model, Hydrol. Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-2020-558, in review, 2021.
Senay, G. B., Bohms, S., Singh, R. K., Gowda, P. H., Velpuri, N. M., Alemu, H., and Verdin, J. P.:
Operational Evapotranspiration Mapping Using Remote Sensing and Weather Datasets: A New Parameterization for the SSEB Approach,
J. Am. Water Resour. As.,
49, 577–591, https://doi.org/10.1111/jawr.12057, 2013.
Senay, G. B., Gowda, P. H., Bohms, S., Howell, T. A., Friedrichs, M., Marek, T. H., and Verdin, J. P.: Evaluating the SSEBop approach for evapotranspiration mapping with landsat data using lysimetric observations in the semi-arid Texas High Plains, Hydrol. Earth Syst. Sci. Discuss., 11, 723–756, https://doi.org/10.5194/hessd-11-723-2014, 2014.
Smith, S., Maxwell, R., Condon, L., Engdahl, N., Gasper, F., Kulkarni, K., Beisman, J., Hector, B., Woodward, C., Fonseca, J., Thompson, D., and Coon, E.:
ParFlow Version 3.6.0 (Version v3.6.0),
Zenodo [code],
https://doi.org/10.5281/zenodo.4639761, 2019.
Sperna Weiland, F. C., Vrugt, J. A., van Beek, R. L. P. H., Weerts, A. H., and Bierkens, M. F. P.:
Significant uncertainty in global scale hydrological modeling from precipitation data errors,
J. Hydrol.,
529, 1095–1115, https://doi.org/10.1016/j.jhydrol.2015.08.061, 2015.
SSURGO: Soil Staff Survey, Natural Resources Conservation Service, United States Department of Agriculture, Web Soil Survey, available at: https://websoilsurvey.nrcs.usda.gov/, last access: 18 October 2021.
Strassberg, G., Scanlon, B. R., and Chambers, D.:
Evaluation of groundwater storage monitoring with the GRACE satellite: Case study of the High Plains aquifer, central United States,
Water Resour. Res.,
45, W05410, https://doi.org/10.1029/2008WR006892, 2009.
Sutanudjaja, E. H., van Beek, R., Wanders, N., Wada, Y., Bosmans, J. H. C., Drost, N., van der Ent, R. J., de Graaf, I. E. M., Hoch, J. M., de Jong, K., Karssenberg, D., López López, P., Peßenteiner, S., Schmitz, O., Straatsma, M. W., Vannametee, E., Wisser, D., and Bierkens, M. F. P.: PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model, Geosci. Model Dev., 11, 2429–2453, https://doi.org/10.5194/gmd-11-2429-2018, 2018.
Swinbank, W. C.:
The Measurement of Vertical Transfer of Heat and Water Vapor by Eddies in the Lower Atmosphere,
J. Meteorol.,
8, 135–145, https://doi.org/10.1175/1520-0469(1951)008<0135:TMOVTO>2.0.CO;2, 1951.
Tang, Q., Gao, H., Yeh, P., Oki, T., Su, F., and Lettenmaier, D. P.:
Dynamics of Terrestrial Water Storage Change from Satellite and Surface Observations and Modeling,
J. Hydrometeorol.,
11, 156–170, https://doi.org/10.1175/2009JHM1152.1, 2010.
Tijerina, D. T., Condon, L. E., FitzGerald, K., Dugger, A., O'Neill, M. M., Sampson, K., Gochis, D. J., and Maxwell, R. M.:
Continental Hydrologic Intercomparison Project (CHIP), Phase 1: A Large-Scale Hydrologic Model Comparison over the Continental United States,
Water Resour. Res.,
57, e2020WR028931, https://doi.org/10.1029/2020WR028931, 2021.
Troch, P., Durcik, M., Seneviratne, S., Hirschi, M., Teuling, A., Hurkmans, R., and Hasan, S.:
New data sets to estimate terrestrial water storage change,
EOS T. Am. Geophys. Un.,
88, 469–470, https://doi.org/10.1029/2007EO450001, 2007.
van Genuchten, M. T.:
A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils,
Soil Sci. Soc. Am. J.,
44, 892, https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.
Velpuri, N. M., Senay, G. B., Singh, R. K., Bohms, S., and Verdin, J. P.:
A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: Using point and gridded FLUXNET and water balance ET,
Remote Sens. Environ.,
139, 35–49, https://doi.org/10.1016/j.rse.2013.07.013, 2013.
Waseem, M., Mani, N., Andiego, G., and Usman, M.:
A Review of Criteria of Fit for Hydrological Models,
International Research Journal of Engineering and Technology (IRJET),
4, 1765–1772, 2017.
Westerhoff, R. S.:
Using uncertainty of Penman and Penman–Monteith methods in combined satellite and ground-based evapotranspiration estimates,
Remote Sens. Environ.,
169, 102–112, https://doi.org/10.1016/j.rse.2015.07.021, 2015.
Wiese, D. N., Landerer, F. W., and Watkins, M. M.:
Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution,
Water Resour. Res.,
52, 7490–7502, https://doi.org/10.1002/2016WR019344, 2016.
Wilson, K. B., Hanson, P. J., Mulholland, P. J., Baldocchi, D. D., and Wullschleger, S. D.:
A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance,
Agr. Forest Meteorol.,
106, 153–168, https://doi.org/10.1016/S0168-1923(00)00199-4, 2001.
Wood, E. F., Roundy, J. K., Troy, T. J., van Beek, L. P. H., Bierkens, M. F. P., Blyth, E., de Roo, A., Döll, P., Ek, M., Famiglietti, J., Gochis, D., van de Giesen, N., Houser, P., Jaffé, P. R., Kollet, S., Lehner, B., Lettenmaier, D. P., Peters-Lidard, C., Sivapalan, M., Sheffield, J., Wade, A., and Whitehead, P.: Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water,
Water Resour. Res.,
47, W05301, https://doi.org/10.1029/2010WR010090, 2011.
Wu, S., Li, J., and Huang, G. H.:
A study on DEM-derived primary topographic attributes for hydrologic applications: Sensitivity to elevation data resolution,
Appl. Geogr.,
28, 210–223, https://doi.org/10.1016/j.apgeog.2008.02.006, 2008.
Xia, Y., Mitchell, K., Ek, M., Cosgrove, B., Sheffield, J., Luo, L., Alonge, C., Wei, H., Meng, J., Livneh, B., Duan, Q., and Lohmann, D.:
Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow,
J. Geophys. Res.-Atmos.,
117, D03110, https://doi.org/10.1029/2011JD016051, 2012a.
Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo, L., Alonge, C., Wei, H., Meng, J., Livneh, B., Lettenmaier, D., Koren, V., Duan, Q., Mo, K., Fan, Y., and Mocko, D.:
Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products,
J. Geophys. Res.-Atmos.,
117, D03109, https://doi.org/10.1029/2011JD016048, 2012b.
Xia, Y., Ek, M. B., Wu, Y., Ford, T., and Quiring, S. M.:
Comparison of NLDAS-2 Simulated and NASMD Observed Daily Soil Moisture. Part I: Comparison and Analysis,
J. Hydrometeorol.,
16, 1962–1980, https://doi.org/10.1175/JHM-D-14-0096.1, 2015a.
Xia, Y., Hobbins, M. T., Mu, Q., and Ek, M. B.:
Evaluation of NLDAS-2 evapotranspiration against tower flux site observations,
Hydrol. Process.,
29, 1757–1771, https://doi.org/10.1002/hyp.10299, 2015b.
Xu, C. Y. and Singh, V. P.:
Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions,
J. Hydrol.,
308, 105–121, https://doi.org/10.1016/j.jhydrol.2004.10.024, 2005.
Zaitchik, B. F., Rodell, M., and Olivera, F.:
Evaluation of the Global Land Data Assimilation System using global river discharge data and a source-to-sink routing scheme,
Water Resour. Res.,
46, https://doi.org/10.1029/2009WR007811, 2010.
Zhang, L., Dobslaw, H., Stacke, T., Güntner, A., Dill, R., and Thomas, M.: Validation of terrestrial water storage variations as simulated by different global numerical models with GRACE satellite observations, Hydrol. Earth Syst. Sci., 21, 821–837, https://doi.org/10.5194/hess-21-821-2017, 2017.
Short summary
Modeling the hydrologic cycle at high resolution and at large spatial scales is an incredible opportunity and challenge for hydrologists. In this paper, we present the results of a high-resolution hydrologic simulation configured over the contiguous United States. We discuss simulated water fluxes through groundwater, soil, plants, and over land, and we compare model results to in situ observations and satellite products in order to build confidence and guide future model development.
Modeling the hydrologic cycle at high resolution and at large spatial scales is an incredible...