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Abstract. Recent advancements in computational efficiency
and Earth system modeling have awarded hydrologists with
increasingly high-resolution models of terrestrial hydrology,
which are paramount to understanding and predicting com-
plex fluxes of moisture and energy. Continental-scale hy-
drologic simulations are, in particular, of interest to the hy-
drologic community for numerous societal, scientific, and
operational benefits. The coupled hydrology–land surface
model ParFlow–CLM configured over the continental United
States (PFCONUS) has been employed in previous literature
to study scale-dependent connections between water table
depth, topography, recharge, and evapotranspiration, as well
as to explore impacts of anthropogenic aquifer depletion to
the water and energy balance. These studies have allowed for
an unprecedented process-based understanding of the conti-
nental water cycle at high resolution. Here, we provide the
most comprehensive evaluation of PFCONUS version 1.0
(PFCONUSv1) performance to date by comparing numer-
ous modeled water balance components with thousands of
in situ observations and several remote sensing products and
using a range of statistical performance metrics for evalu-
ation. PFCONUSv1 comparisons with these datasets are a
promising indicator of model fidelity and ability to reproduce
the continental-scale water balance at high resolution. Areas
for improvement are identified, such as a positive streamflow
bias at gauges in the eastern Great Plains, a shallow water ta-

ble bias over many areas of the model domain, and low bias
in seasonal total water storage amplitude, especially for the
Ohio, Missouri, and Arkansas River basins. We discuss sev-
eral potential sources for model bias and suggest that min-
imizing error in topographic processing and meteorological
forcing would considerably improve model performance. Re-
sults here provide a benchmark and guidance for further PF-
CONUS model development, and they highlight the impor-
tance of concurrently evaluating all hydrologic components
and fluxes to provide a multivariate, holistic validation of the
complete modeled water balance.

1 Introduction

Explicitly modeling the terrestrial water cycle at the global
scale and at high resolution has recently been referred to
as a “grand challenge in hydrology” (Bierkens et al., 2015;
Wood et al., 2011), an undertaking that has excited the hydro-
logic community and encouraged the development of large-
scale modeling efforts, workshops, and working groups.
These “everywhere and locally relevant” hydrologic mod-
els (Bierkens et al., 2015) differ from land surface mod-
els (LSMs) and general circulation models (GCMs) by pro-
viding spatially ubiquitous and hyper-resolution, physically
based hydrologic simulations. While LSMs and GCMs may
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provide water balance estimates at regional, continental,
or global scales, their hydrologic schemes can be coarse-
resolution, simplified, or highly parameterized (Wood et al.,
2011). A process-based and mechanistic (rather than empir-
ical) representation of both the large-scale and local water
cycle is necessary to address hydrologic problems surround-
ing society, agriculture, resource management, biodiversity,
and climate (Clark et al., 2015).

Therefore, high-resolution, large-scale, and physically
based hydrologic modeling offers profound and multifaceted
benefits. From a societal perspective, these models enable
operational forecasting and planning in regions where water
balance estimates are unavailable or poorly constrained by
scarce or nonexistent observations, such as developing coun-
tries (Group on Earth Observations, 2009). As Beven and
Cloke (2012) point out, hyper-resolution hydrologic model
outputs (as opposed to coarse-resolution global hydrologic
model – GHM – results) can be more accessible and log-
ical to local water managers by providing locally relevant
and detailed information. High-resolution hydrologic mod-
eling could also be used to inform, initialize, or downscale
LSMs and GCMs. Clark et al. (2015) identify spatial het-
erogeneity, organization, and integration of soil moisture and
groundwater to be a major missing link in LSMs, meteoro-
logical models, and climate models. Further, large-scale hy-
drologic models could be used to better understand or con-
strain results from remote sensing. For instance, LSMs may
be used in forward modeling approaches to estimate signal
attenuation in remote sensing of total water storage change
(Landerer and Swenson, 2012).

These motivating factors have catalyzed the development
of several hyper-resolution, continental- or global-scale mod-
eling efforts over the last decade. Some fine examples in-
clude physically based platforms, such as the Terrestrial
Systems Modeling Platform (TerrSysMP), a fully integrated
soil–vegetation–atmosphere model employed over the Eu-
ropean CORDEX domain (Keune et al., 2016), and inte-
grated groundwater–surface water modeling over the conti-
nental United States with ParFlow v3 (Maxwell et al., 2015).
Others have used a global water balance approach, like Wa-
terGAP (Döll et al., 2003) and PCR-GLOBWB (Sutanudjaja
et al., 2018), which was recently coupled to MODFLOW
at 1 km resolution globally (de Graaf et al., 2017). High-
resolution land surface modeling has begun to include to-
pographically informed routing of surface or subsurface wa-
ter storage: for example, the Land Information System soft-
ware group (Zaitchik et al., 2010) or Noah-MP (Niu et al.,
2011) and operational flood forecasting from the National
Water Model (NWM) v2.0 (NOAA Office of Water Predic-
tion: the NWM, https://water.noaa.gov/about/nwm, last ac-
cess: 23 March 2020). Many of these platforms were made
possible given the notable progress made in globally avail-
able and openly accessible input parameters, such as hydrog-
raphy datasets (e.g., Lehner et al., 2008) and hydraulic pa-
rameters (Groundwater Resources of the World, n.d.; Glee-

son et al., 2014; SSURGO, 2021), as well as advancements
in computational efficiency and massively parallel comput-
ing resources (e.g., Kollet et al., 2010).

While global and continental hydrologic representation
continues to improve, the extreme-scale hydrologic model-
ing community still faces many challenges, and models can
struggle to close the water balance with certainty. Given the
lack of spatially and temporally continuous hydrologic mea-
surements across the globe, as well as their associated com-
putational demand, parameter calibration at these scales is
often problematic or infeasible (Maxwell et al., 2015). Dis-
tributed macroscale hydrology models must often rely on
a priori information and datasets informed by field mea-
surements or hydrologic theory (which may be unavailable,
especially in underdeveloped regions); or, less commonly,
they can employ regionalization approaches to transfer cal-
ibrated parameters from gauged to ungauged catchments
(Beck et al., 2016). Validation can also be problematic in that
large gaps exist in space or time for in situ measurements,
and remote sensing products often depend on hydrologic al-
gorithms and parameterization (Archfield et al., 2015).

Studies assessing model performance suggest that while
continental and global hydrologic modeling is promising,
there is considerable room for improvement when it comes
to model skill, and most of these performance assessments
only evaluate one or two output variables at one time. For
instance, Sutanudjaja et al. (2018) evaluated streamflow and
total water storage performance of a 5 arcmin resolution sim-
ulation of PCR-GLOBWB relative to the Global Runoff Data
Center (GRDC) and remote sensing from the Gravity Re-
covery and Climate Experiment (GRACE). Although PCR-
GLOBWB was able to acceptably reproduce terrestrial wa-
ter storage (TWS) anomalies for major global river basins,
only 40 % of discharge locations exhibited a Kling–Gupta
efficiency coefficient (KGE, a measure of performance; Bai
et al., 2016; Moriasi et al., 2007) of> 0.3, suggesting that the
large majority of GRDC stations show unsatisfactory perfor-
mance. Recent streamflow results from WaterGAP2.2d are
encouraging (Schmied et al., 2020), with a median KGE of
0.79 and a near-optimum bias measure; however, the model
underestimated TWS amplitude and trend in the majority of
basins. Salas et al. (2018) evaluated the National Flood Inter-
operability Experiment (NFIE-Hydro), which leverages the
WRF-Hydro framework and the Noah-MP LSM. They iden-
tify several regions for model improvement, including a pos-
itive bias of flow in the southern US and Central Plains and
a negative bias in the Rocky Mountains, suggesting several
potential sources for bias depending on the area, including
snowpack formulation, precipitation bias, soil column drain-
ing dynamics, or failure of lateral redistribution to attenuate
flow. These results reiterate that acceptable performance of
one model output does not necessarily translate to appropri-
ate simulations of the full water balance, and evaluating mul-
tiple output parameters simultaneously (such as snow water
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equivalent, soil moisture, evapotranspiration, and many oth-
ers) could help confidently attribute sources of bias.

We argue that validation and performance assessment
should continue to be highly prioritized for uncalibrated,
high-resolution, and large-scale hydrologic models, and val-
idation studies that evaluate several output variables are
paramount to guiding and improving model development. It
has been well established that calibration methods utilizing
multiple types of observational datasets result in overall bet-
ter model skill (e.g., Finger et al., 2015); additionally, under-
standing the relationships between multiple output variables
(e.g., evaporative fraction and soil saturation; Rakovec et al.,
2019) is imperative to diagnosing performance deficiencies.
Multivariate model validation can help attribute sources of
bias and increase certainty in water balance components; this
is especially true for the physically based hydrologic commu-
nity and at continental scales and above.

In this study, we present a rigorous, multivariable evalua-
tion of a hyper-resolution continental-scale hydrologic sim-
ulation by comparing model results to state-of-the-art mon-
itoring networks and remote sensing products. We focus on
performance of the CONUS version 1.0 model, a ParFlow–
CLM integrated groundwater–surface water simulation con-
figured across the continental United States (hereby referred
to as PFCONUSv1) (Maxwell et al., 2015). Since its con-
struction, the PFCONUSv1 model has been updated to a
ParFlow–CLM simulation, in which ParFlow is coupled to
the Common Land Model to capture surface energy parti-
tioning and land surface fluxes (Maxwell and Miller, 2005).
Recent publications have used the PFCONUSv1 model to
(1) diagnose mechanistic relationships between water ta-
ble depth, topography, recharge, and evapotranspiration at a
range of scales (Condon et al., 2015; Condon and Maxwell,
2015, 2017); (2) characterize groundwater controls on evap-
otranspiration partitioning (Maxwell and Condon, 2016);
(3) explore anthropogenic impacts on the water and energy
balances, such as impacts on evapotranspiration, stream-
flow, and groundwater from aquifer depletion (Condon et al.,
2020; Condon and Maxwell, 2019); and (4) estimate water
residence times and their sensitivity to climate and geology
(Maxwell et al., 2016).

To our knowledge, this is the most rigorous evaluation
of an integrated, physically based hydrology–land surface
model at this resolution and scale. We present comparisons
of model results and observations or remote sensing products
over 4 simulation years (water years 2003 through 2006) for
several water balance components, including streamflow, wa-
ter table depth, soil moisture, snow water equivalent, evapo-
transpiration, and total water storage, as well as atmospheric
forcing (precipitation and temperature). We discuss sources
of error in the model and prioritize areas for improvement,
with careful attention to error propagation from atmospheric
forcing datasets and terrain processing algorithms. These re-
sults provide a benchmark for forthcoming PFCONUS iter-
ations and should be used to guide future model develop-

ment. Most importantly, this study implicates the improve-
ment of atmospheric forcing datasets and topographic pro-
cessing algorithms to advance the field of continental-scale
hydrology, and it highlights the importance of evaluating the
continental-scale water balance as a whole for a process-
based understanding of model performance and bias.

2 Methods

The PFCONUSv1 model was simulated using the coupled
hydrology–land surface platform ParFlow–CLM. In this sec-
tion, we describe the governing equations for ParFlow–
CLM-formulated water balance, PFCONUSv1 configuration
and inputs, datasets for model validation, and performance
metrics.

2.1 Modeling the integrated water and energy balance
with ParFlow–CLM

The full water balance for a given hydrologic unit can be gen-
erally expressed as Iin− Iout=1S, where Iin and Iout rep-
resent the hydrologic inflows and outflows to some control
volume, and 1S is the change in water storage within the
control volume. More specifically, the full water budget for a
watershed under natural (non-anthropogenic) conditions can
be written as

Prain+Psnow+Rin−Rout+Qin−Qout−ETveg−Edir

=1Ssoil+1Ssurf+1Sgw+1Ssnow. (1)

In Eq. (1), inflows to the watershed are precipitation in
the form of rain or snow (Prain,Psnow), surface runoff enter-
ing the basin from upstream areas (Rin), or subsurface influx
(Qin). Water may leave the watershed in the form of surface
runoff (Rout), evapotranspiration from transpiration (ETveg)
or evaporation from bare surfaces (Edir), or as groundwa-
ter flux to downstream basins (Qout) or deeper reservoirs
(Qrecharge). These fluxes have a net impact on yield increases
or decreases in sources of basin water storage, such as soil
and groundwater reservoirs (1Ssoil and 1Sgw), surface wa-
ter ponding (1Ssurf), or storage as snow water equivalent
(1Ssnow). Components in Eq. (1) are typically expressed as
units of equivalent water height or volume per unit of time.
This description of the water budget equation (Eq. 1) is illus-
trated in Fig. 1a, and it may be amended to incorporate other
components particular to a watershed; these could include
anthropogenic fluxes and storage like irrigation, dam stor-
age or pumping, or they could be unique traits of the basin
such as fractured flow, lacustrine groundwater discharge, or
seawater intrusion. Equation (1) may also be simplified by
lumping precipitation, evapotranspiration, and storage com-
ponents and also by ignoring surface and subsurface inputs
external to watershed divides, which, for large enough con-
trol volumes, will be negligible (Fig. 1b). The water balance
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Figure 1. A conceptual model of the (a) complete and (b) simplified water budget for a hydrologic control volume, corresponding to Eqs. (1)
and (2).

may then be simply expressed as

P −ET−R =1S (2)

for precipitation P , evapotranspiration ET, surface runoff R,
and total change in all storage sources 1S.

In this study, the complete water balance (Eq. 1, Fig. 1a) is
modeled using ParFlow–CLM (Kollet and Maxwell, 2006;
Maxwell and Miller, 2005), an integrated groundwater–
surface water model which uses the mixed form of the
Richards equation to simulate three-dimensional variably
saturated flow. The Richards equation is given as

SsS(ψp)
δψp

δt
+φ

δS(ψp)

δt

=1 ·
[
−Ks(x)kr(ψp) · ∇(ψp− z)

]
+ qs (3)

for specific storage Ss (L−1), relative saturation S (–), pres-
sure head ψp (L), saturated hydraulic conductivity tensor
Ks (LT−1), relative permeability kr (–), and porosity of the
medium φ (–) at depth z (L) and time t (T). In Eq. (3), relative
permeability varies with pressure head through time based
on relationships established by van Genuchten (1980), and
qs is a source–sink term (T−1). A free-surface overland-flow
boundary condition for continuity of pressure and flux ap-
plies to the groundwater flux term across the land surface and
subsurface interface. The kinematic wave approximation of
the momentum equation is used to solve overland flow, which
is a function of ponded depth given by Manning’s equation:

v =

√
S0

n
ψ2/3, (4)

where n is the Manning roughness coefficient (LT−1/3) and
ψ is the ponding depth (surface pressure head) (L). Note that
the friction slope S0 (–) in Eq. (4) is used to approximate the
bed slope (–) in the kinematic wave approximation.

ParFlow is coupled with the Common Land Model (CLM)
(Dai et al., 2003), a land surface model which balances en-
ergy and calculates evapotranspiration at the land surface,
in order to simulate the coupled water and energy budgets.
CLM requires atmospheric conditions (precipitation, tem-
perature, specific humidity, wind speed, and longwave and
shortwave radiation) in order to provide hourly partition-
ing of net radiation into sensible, latent, and ground heat.
Shown in Eq. (5), CLM calculates direct evaporation from
the ground using the gradient between specific humidity at
the ground surface qg (MM−1) and at a reference height qa
(MM−1), along with air density ρa (ML−3), atmospheric re-
sistance rd (TL−1), and a soil resistance term β (–).

ETdir = −βρa
qa− qg

rd
(5)

To calculate actual transpiration, CLM adjusts potential
transpiration by stomatal and aerodynamic resistance terms
as follows.

ETpot = ρa
(LAI+ SAI)

rb
(qf− qc) (6)

ETveg = ETpot×

[
Ldrb

LAI

(
LAI,sun

rb+ rs,sun
+

LAI,sha

rb+ rs,sha

)]
(7)

Potential transpiration (Eq. 6) is a function of leaf and
stem area index LAI and SAI (–), boundary layer resistance
rb (TL−1), air density ρa (ML−3), and the gradient of spe-
cific humidity between foliage and canopy qf− qc (MM−1).
Transpiration (Eq. 7) only occurs from the dry fraction of the
canopy (Ld) and further depends on stomatal resistance rs
(TL−1). In Eq. (7), the sunlit (sun) and shaded (sha) fractions
of the dry canopy are separately defined with their own LAI
and stomatal resistance values. Note that the leaf and stem
area index and stomatal resistance terms are parameterized
by plant functional types and defined per cell, without frac-
tional vegetation, and for a single canopy layer. For a further
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explanation of ET calculations in ParFlow–CLM, see Jeffer-
son et al. (2017).

2.2 PFCONUSv1 configuration, parameters, and
inputs

The PFCONUSv1 model represents the first integrated
groundwater–surface water model employed at the continen-
tal scale at hyper-resolution (1 km). A full description of the
model configuration and inputs can be found in Maxwell
et al. (2015) and Maxwell and Condon (2016), but a brief
summary is given below.

Spanning roughly 6.3 millionkm2 at 1 km lateral grid
spacing, the PFCONUSv1 model encompasses the major-
ity of eight major river basins in the United States at high
resolution, including the Ohio, Missouri, Arkansas, Missis-
sippi, and Colorado River basins. The model is composed of
3442 cells in the x (east–west) direction and 1888 cells in
the y direction (north–south). Its five vertical layers of vari-
able thickness provide a cumulative vertical depth of 102 m.
From the top, soil layers are 0.1, 0.3, 0.6, and 1 m, respec-
tively. Topographic slopes were calculated using the Barnes
et al. (2016) algorithm, applied to the HydroSHEDS (Hydro-
logical data and maps SHuttle Elevation Derivatives at mul-
tiple Scales; Lehner et al., 2008) digital elevation model, to
guarantee a connected drainage network. Vegetation classes
for characterization of plant functional parameters were pro-
vided by the IGBP land cover classifications and the USGS
land cover dataset. Distributed, heterogeneous soil param-
eters, including saturated hydraulic conductivity, porosity,
and van Genuchten parameters, were assigned to spatial
soil units described by the Soil Survey Geographic database
(SSURGO). Geologic units for the bottom 100 m thick layer
of the PFCONUSv1 model were developed from the Glee-
son et al. (2011) national permeability map. Estimates from
Gleeson et al. (2011) were adjusted using the e-folding rela-
tionship described in Fan et al. (2013), which accounts for
topographic complexity, and variance in permeability was
also reduced. No-flow boundary conditions were imposed
at the bottom of the model domain (assuming impermeable
bedrock) and on the sides. Note that with a model depth of
just over 100 m, the model may more appropriately be con-
sidered a shallow aquifer storage model. Deeper 1S con-
tributions are not resolved, which may not represent deeper
hydrologic flow paths of thick and expansive aquifers such
as the Ogallala, the saturated thickness of which can exceed
300 m (McGuire et al., 2012); however, as Maxwell et al.
(2015) explain, the current model thickness and vertical dis-
cretization are limited not by computational expense but by
data availability, with a lack of detailed depth-to-bedrock and
aquifer thickness estimates at meaningful resolution.

Initial conditions were provided by an intensive spin-up
process. First, a steady-state ParFlow groundwater configu-
ration was run continuously without CLM; this model was
forced by an average surface recharge flux derived from

Maurer et al. (2002) and run continuously until the differ-
ence between outflow and recharge rates was less than 3 % of
total water storage change. A full description of this steady-
state model and its performance can be found in Maxwell
et al. (2015). Second, and using the initial condition pro-
vided by the steady-state model, a transient system was sim-
ulated with the fully coupled ParFlow–CLM for water year
1985, the most climatologically average water year within
the past 30 years. As described in Maxwell and Condon
(2016), atmospheric forcing was bilinearly interpolated from
the North American Land Data Assimilation System Phase 2
(NLDAS-2) (Cosgrove, 2003; Xia et al., 2012a, b) For spin-
up purposes, the transient simulation was run continuously
for 4 years of repeated 1985 atmospheric forcing to provide
an initial condition for the simulation in this study. Thus,
the initial condition provided here represents pressure head,
soil moisture, and surface energy balance conditions that
would be present during the most climatologically average
water year in recent history. Since the model does not incor-
porate anthropogenic abstractions in the form of pumping,
injections, irrigation, or surface water diversions and dam
storage, the initial conditions provided also represent a pre-
development scenario.

For this study, PFCONUSv1 was run for modern-day
water years using initial conditions provided by the tran-
sient spin-up process described above. The simulation here
was run at hourly temporal resolution for water years
2003 through 2006. Atmospheric forcing originated from
the 12 km NLDAS-2 product (Xia et al., 2012a, b); how-
ever, finer-resolution products were blended in where avail-
able and elevation effects were incorporated to produce
higher-resolution, more physically realistic meteorological
variables. Such products included the 4 km Stage IV and
Stage II radar and gauge products and Level 2 shortwave
radiation from the GOES Surface and Insolation Products
(GSIP). These adjustments to the 12 km NLDAS data and
the finer-resolution products are described, for example, in
Pan et al. (2016) and include the following: gap-filling and
daily rescaling procedure to ensure the Stage IV hourly data
match daily totals from NLDAS-2; adjustments to timing for
the GSIP Level 2 data based on solar angles; and elevation-
dependent downscaling of 12 km NLDAS-2 products, such
as hydrostatic effects for atmospheric pressure and lapse
rates for specific humidity, air temperature, and longwave
radiation. The final atmospheric variables were interpolated
using bilinear interpolation to the 1 km PFCONUSv1 grid.

An important consideration when attempting high-
resolution integrated models of this kind is of course the
computational demand. ParFlow–CLM solves the globally
implicit solutions to nonlinear and coupled equations in
Eq. (3) through Eq. (7) with a Newton–Krylov parallel solver
(Jones and Woodward, 2001); the associated significant com-
putational challenge is tackled with a multigrid precondi-
tioner and highly scaled parallel efficiency (Kollet et al.,
2010; Reed M. Maxwell, 2013; Osei-Kuffuor et al., 2014).
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Table 1. Products used to evaluate PFCONUSv1-simulated water balance component performance.

Water balance component Data product Spatial scale Product type

Comparisons to modeled water budget components

Surface runoff, R USGS stream gauges Aggregate of upstream area, 2392 locations Point observation
Evapotranspiration, ET MODIS 1 km resolution, global scale Remote sensing

SSEBop 1 km resolution, global scale Remote sensing
FLUXNET Local, 30 locations Point observation

Storage, 1S SNOTEL Local, 556 locations Point observation
GRACE (5 products) 0.25 to 1◦ resolution, 3◦ basis function, global scale Remote sensing
ESACCI active/passive 0.25◦ resolution, global scale Remote sensing
USGS wells Local

41 269 locations static, 2486 locations temporal
Point observation

Comparisons to atmospheric forcing

Precipitation, temperature GHCND Local, 9139 locations Point observation
Precipitation, temperature SNOTEL Local, 556 locations Point observation
Temperature, vapor pressure
deficit, wind speed

FLUXNET Local, 30 locations Point observation

The simulations presented here were run on 3456 proces-
sors distributed to 72 and 48 units in the x and y directions,
respectively, on the Cheyenne high-performance computing
system managed by the National Center for Atmospheric
Research (NCAR) Computational and Information Systems
Lab. Required core hours for a single water year averaged
over 300 000 core hours for this processor topology; how-
ever, the scaled parallel efficiency even at this decomposi-
tion is over 60 %. The hourly outputs generated over 11 TB
of information per water year, while the required storage for
the interpolated atmospheric forcing alone was over 3 TB per
water year.

2.3 Datasets for comparison

Simulated runoff, evapotranspiration, and sources of storage
change from the PFCONUSv1 model were compared against
available point-scale measurements and coarse-resolution re-
mote sensing products in order to identify locations of rela-
tively better or worse performance, major sources of model
bias, and regions most in need of improvement. Table 1
provides a summary of all data products compared to PF-
CONUSv1 outputs. It is important to note here that while
we use absolute error metrics common to calibrated models
developed specifically for prediction, calibration of the PF-
CONUSv1 model is not a goal of this study, nor is it feasi-
ble given the computational demands posed by such a highly
parallelized platform. Rather, the intent is to evaluate the
model’s ability to demonstrate realistic behavior, to identify
regions, times, and sources of uncertainty, and to prioritize
areas of improvement for future model development.

2.3.1 Surface water runoff, R

Modeled surface water runoff (R in Eq. 2) was compared to
daily observations at 2392 US Geological Survey (USGS)
stream gauges containing observations over the simulation
period (1 October 2002 through 30 September 2006) within
the PFCONUSv1 domain (Table 1) (obtained from https:
//waterdata.usgs.gov/nwis/sw, last access: 2 February 2020).
As discussed in the supplemental information for Maxwell
and Condon (2016), the algorithm used for topographic pro-
cessing resulted in spatial inconsistencies between the real
and modeled stream network. USGS gauges were therefore
mapped to the PFCONUSv1 grid using a combination of
nearest-neighbor mapping and manual adjustments to en-
sure that all gauges lay on an appropriate ParFlow stream
cell; for instance, a gauge comparison point that was in-
correctly mapped upstream of a confluence may be moved
to an appropriate location downstream. The large majority
of mapped gauges were within 3 km of their “actual” loca-
tion. As Maxwell and Condon (2016) explain, approximately
10 % of USGS gauges required more significant manual ad-
justments because of considerable discrepancies between the
true stream network and that constructed for the model.

2.3.2 Evapotranspiration, ET

For evapotranspiration (ET in Eq. 2), three datasets are used
to evaluate PFCONUSv1 results (Table 1). Observations
from FLUXNET, an international network of meteorologi-
cal towers that rely on the eddy covariance method to esti-
mate evapotranspiration, were used to evaluate the temporal
performance in ET. FLUXNET data were obtained from the
FLUXNET 2015 online data portal (https://fluxnet.fluxdata.
org/, last access: 6 February 2020), and the 30 sites used
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in this study are those that contain at least 1 water year of
observations during the simulation period. PFCONUSv1 ET
estimates were also compared to the MODIS evapotranspi-
ration MOD16A2 monthly product provided by the Univer-
sity of Montana Numerical Terradynamic Simulation Group
(NTSG) lab (http://files.ntsg.umt.edu/data/NTSG_Products/
MOD16/, last access: 20 March 2020). The MODIS prod-
uct, a NASA and EOS initiative to estimate global terres-
trial evapotranspiration using satellite remote sensing data,
uses a Penman–Monteith-based approach, stomatal resis-
tance, and vegetation information to estimate evapotranspi-
ration at an 8 d interval at 1 km resolution (Mu et al., 2007,
2011). MOD16A2 improves upon the original MOD16 ET
algorithm by considering surface energy partitioning and at-
mospheric demand as well as land cover, leaf area index,
and meteorological reanalysis products provided by NASA’s
Global Modeling and Assimilation Office (GMAO). Given
the 8 d interval limitation and point-based uncertainties in
ET of up to 40 %–60 % (Velpuri et al., 2013; Westerhoff,
2015), the monthly MOD16A2 product was spatially ag-
gregated to HUC8 watersheds across the PFCONUSv1 do-
main with equal-area weighting. We also compare HUC8-
aggregated monthly PFCONUSv1 evapotranspiration with
estimates from the Operational Simplified Surface Energy
Balance (SSEBop) algorithm (Senay et al., 2013). The SSE-
Bop model is a relatively simple model using 1 km 8 d
MODIS remotely sensed thermal imagery (land surface tem-
perature and emissivity), combined with thermal index refer-
ence ET (Senay et al., 2013). Velpuri et al. (2013) evaluated
MOD16A2 and SSEBop performance across the contiguous
United States at point and basin scales, finding that SSEBop
outperformed MOD16A2 in western arid basins. Note that
for FLUXNET observations, ET (mmd−1) was derived from
latent heat (Wm−2) by scaling by the latent heat of vapor-
ization λ (2.45 MJ kg−1) with the proportional relationship
ET= LE

λ
.

2.3.3 Storage, S

To evaluate PFCONUSv1 storage change (1S in Eq. 2),
four products are used to compare to individual storage
components, including total water storage, snow water stor-
age, and soil water storage. Modeled snow water equivalent
was compared to Snow Telemetry (SNOTEL) station data,
a network maintained by the Natural Resources Conserva-
tion Service (NRCS). SNOTEL data were accessed from
the NRCS online report generator 2.0 (http://wcc.sc.egov.
usda.gov/reportGenerator/, last access: 28 February 2020).
Of the available SNOTEL stations, 556 are within the PF-
CONUSv1 domain and have observations during the simu-
lation period. These SNOTEL locations were compared to
simulated snow water equivalent at their nearest-neighbor
PFCONUSv1 grid cells. For soil water storage, soil mois-
ture anomalies were derived from the active/passive satel-
lite products from the ESA Programme on Global Mon-

itoring of Essential Climate Variables (ECV) Soil Mois-
ture Climate Change Initiative (CCI) project v04.5 (Gruber
et al., 2019; https://www.esa-soilmoisture-cci.org/node/237,
last access: 20 February 2020). This remote sensing product
uses a combined estimate of soil moisture from four active
and seven passive microwave sensors, providing soil storage
at 0.25◦ resolution. ESACCI soil moisture estimates were
compared to soil moisture in the top layer of PFCONUSv1,
representing up to 0.1 m of depth.

PFCONUSv1 total water storage anomalies (an aggregate
of all subsurface, snow water, and surface water storage
components) were also compared to terrestrial water stor-
age anomalies provided from remote sensing products from
the Gravity Recovery and Climate Experiment (GRACE).
The GRACE products are derived from slight fluctuations in
Earth’s gravity caused by changes in mass and measured by
twin satellites launched in 2002; these gravity field changes
over land may be attributable to terrestrial water storage
change. GRACE solutions are provided by three process-
ing centers: the NASA Jet Propulsion Laboratory (JPL), the
GeoforschungsZentrum Potsdam (GFZ), and the Center for
Space Research at University of Texas, Austin (CSR). In
this study, PFCONUSv1 total water storage changes were
compared to the Release-06 gravity field solutions (RL06) at
1◦, calculated using the spherical harmonic approach (Lan-
derer and Swenson, 2012) with varying degrees and orders,
spherical harmonic coefficients, and filtering processes. We
also compare PFCONUSv1 to the mass concentration block
(mascon) solutions provided by JPL at 0.5◦ and CSR at
0.25◦ (Save et al., 2016; Wiese et al., 2016), which elim-
inate much of the need for empirical post-processing and
filtering required in the spherical harmonic solutions. The
GRACE products listed above are hereafter referred to as
JPL, GFZ, and CSR for the RL06 spherical harmonic so-
lutions and JPLm and CSRm for the mascon solutions. For
both the ESACCI soil moisture product and the GRACE to-
tal water storage anomalies, PFCONUSv1 estimates are ag-
gregated to the coarse-resolution product by area-weighted
mean prior to comparisons.

Finally, PFCONUSv1-calculated depths to water table are
compared with water levels from 41 269 USGS groundwater
wells across the continental United States; like streamflow,
these data are freely available for download from the USGS
National Water Information System (https://waterdata.usgs.
gov/nwis/gw, last access: 23 March 2020). Of these wells, lo-
cations with more than 10 observations during the simulation
timeframe and that met requirements for appropriate aquifer
comparison (such as well depth, aquifer type, and anthro-
pogenic influence) were used to calculate correlations with
PFCONUSv1 time series; 2486 wells fit these criteria (see
Table 1) and will be discussed further in Sect. 3. Note that
in this study, we focus on the change in water storage over a
given period of time rather than the total amount of water cur-
rently stored. Storage anomalies are presented as deviations
through time from mean storage states; we also discuss the
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water storage amplitude, or peak-to-peak intra-annual stor-
age change, for a given region as a proxy for seasonality. In
the majority of the PFCONUSv1 domain, over this relatively
brief simulation period, the variance in the intra-annual (sea-
sonal) signal explains the majority of the variance in storage
anomaly time series.

2.3.4 Atmospheric forcing

One important source of bias is that of atmospheric forc-
ing; to evaluate the impact of meteorological performance
on simulated water balance variables, we compare the in-
terpolated NLDAS product to observed daily precipitation
(N = 9193) and observed averaged daily temperature (N =
1678) at meteorological stations maintained by the Global
Historical Climatology Network (GHCND) (Table 3.1) (data
accessed via Climate Data Online portal, https://www.ncdc.
noaa.gov/cdo-web/search, last access: 11 February 2020).
Atmospheric forcing variables were also compared to ob-
served data at SNOTEL and FLUXNET sites.

2.4 Performance metrics

Performance metrics for evaluating PFCONUSv1 include
percent annual bias or total annual bias, Spearman rank cor-
relation coefficient, and the ratio of root mean squared error
to the standard deviation of observations (RSR). While these
were not calculated for all validation datasets and the tempo-
ral resolution at which they were evaluated differed between
datasets (e.g., daily, weekly, or monthly), they are each used
at some point in our analysis, so we define them here.

As a measure of average magnitude accuracy with an op-
timal value of 0, percent bias is given by

PBIAS=
∑n
i=1Si −Oi∑n
i=1Oi

· 100, (8)

where Si and Oi are simulated and observed values. Per-
cent bias in PFCONUSv1 outputs was calculated using daily
observations in Eq. (8) such that days during which obser-
vations were unavailable were excluded for both simulated
and observed annual totals. Percent bias is an effective met-
ric for evaluating long-term mean values, but it cannot be
used to evaluate timing or shorter temporal events; further, if
the model underpredicts and overpredicts with similar mag-
nitudes, PBIAS can be deceivingly low.

For these reasons, we also calculate for each stream gauge
Spearman’s rank correlation coefficient, or Spearman’s ρ,
given by Eq. (9).

ρ = 1−
6
∑n
i=1d

2
i

n(n2− 1)
(9)

Unlike the coefficient of determination R2, which de-
scribes the degree of collinearity between the data, Spear-
man’s ρ independently ranks the simulated and observed val-
ues, with di in Eq. (9) being the difference in ranks for a given

value i, and n is the number of values in the series. Unlike
other metrics describing temporal correlation, such as R2 or
Nash–Sutcliffe efficiency, ρ is less restrictive; it does not as-
sume linearity and instead tests for monotonic correlation.
The optimal value for ρ is 1, and the cutoff for good perfor-
mance is likely analogous to that of R2, which varies in the
literature but is generally around 0.6.

A final performance metric, the RMSE–observation stan-
dard deviation ratio (RSR), is also provided. RSR is given
by Eq. (10) and describes root mean squared error (RMSE)
relative to the standard deviation of the observations.

RSR=
RMSE

St. Dev. Obs.
=

√∑n
i=1(Oi − Si)

2√∑n
i=1(Oi −O)

2
(10)

In Eq. (10), O is the mean of observations. While RSR
is less widely used than PBIAS and ρ, its benefit lies in its
normalization of the common error index statistic RMSE; the
ratio describes error relative to natural variability in the true
system such that an RSR of 1 suggests that the mean daily
error is equal to 1 standard deviation of observed values and
thus comparable to what we may expect from noise or intra-
annual variability. An RSR value of 0 is optimal, while values
under 0.5 (RMSE is less than half of the standard deviation of
observations) are considered to be excellent (Moriasi et al.,
2007).

Together, performance metrics (Eq. 8 through Eq. 10)
are quantitative indicators of model realism, representing a
model’s ability to capture long-term states (PBIAS) and tim-
ing (ρ), as well as its error relative to expected system vari-
ability (RSR). However, many other statistical criteria are
popular (Waseem et al., 2017), and the target values used to
indicate unacceptable, acceptable, or excellent performance
can vary because criteria for evaluation necessarily depend
upon model purpose (i.e., a regional surface water model
that has been well calibrated for operational forecasting will
represent spatiotemporal patterns of streamflow with higher
accuracy than a continental-scale land surface model can
plausibly achieve). Further, performance is expected to de-
crease with increasingly higher temporal resolution: for in-
stance, criteria may be more lenient across all error met-
rics when moving from monthly to daily timescales at the
watershed scale (Moriasi et al., 2015) as well as from sea-
sonal to monthly timescales at the global scale (Krysanova
et al., 2020). As a physically based, high-resolution (spa-
tially and temporally), and uncalibrated continental-scale
model, a primary purpose of the PFCONUS, and others like
it (Gleeson et al., 2021), is to understand process interac-
tions between groundwater, surface water, and ecohydrolog-
ical fluxes. In this study, a PFCONUS-simulated water bal-
ance component in Eq. (2) is generally judged to be excel-
lent for this purpose with the following measures: RSR< 0.6,
ρ > 0.7, or |PBIAS|< 20 %. Locations that indicate unac-
ceptable or poor performance are those with RSR< 1.2,
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Figure 2. Mean annual water balance components from PFCONUSv1 at 1 km resolution: (a) interpolated precipitation P from atmospheric
forcing inputs, (b) simulated mean annual evapotranspiration (ET), (c) simulated mean annual runoff R, and (d) simulated mean annual total
water storage1S amplitude (combined seasonality of snow water equivalent, groundwater, soil water, and surface water). Total water storage
amplitude is the peak-to-peak seasonal storage anomaly rather than annual storage trend; seasonality (rather than inter-annual variability)
explained the majority of the variance in total 1S. Dotted lines are states, while thicker solid lines are major US river basin outlines, which
are labeled in (a).

|PBIAS|< 75 %, and ρ > 0.5. However, error metrics are re-
ported with the primary goal of intercomparison across lo-
cations (interpretation of metrics should be paired with vi-
sual inspection of spatial patterns and time series provided)
or, where discussed, relative to the performance of other
continental-scale hydrologic or land surface models. Gleeson
et al. (2021) caution against the use of model evaluation to
indicate a “finished” product and instead recommend open-
ended evaluation and model improvement. Metrics (Eq. 8
through Eq. 10) are therefore used to identify where future
development of PFCONUS can be focused to improve upon
timing, volume, and variability of fluxes. Performance met-
rics reported in this study are also supplemented by plots of
probability of exceedance or non-exceedance where appro-
priate (see Figs. S1 through S8 in the Supplement), which
should help regional-scale modelers identify relative perfor-
mance of major basins at various thresholds. Since there are
many other commonly used performance metrics particular
to streamflow, we also report Nash–Sutcliffe efficiency and
Kling–Gupta efficiency for simulated flows at USGS gauges
(Fig. S9 in the Supplement) (Gupta et al., 2009).

3 Results

By providing detailed partitioning of the water and energy
budgets at high spatial and temporal resolution and at conti-
nental spatial extent, the PFCONUSv1 ParFlow–CLM model
offers an unprecedented opportunity to study large-scale non-
linear relationships and to provide hydrologic process esti-
mates at locations remote from observation networks. The
2003–2006 water year simulations in this study estimate
hourly pressure head and saturation at each of the approxi-
mately 31.5 million 1 km three-dimensional model cells; the
simulations also provide evapotranspiration and energy bal-
ance estimates at each of the 6.3 million land surface grid
cells. Figure 2 shows the PFCONUSv1 model extent, mean
annual precipitation from interpolated atmospheric forcing,
and mean annual simulated components of Eq. (2). Below,
these water balance components, their performance, and their
relative bias sources are discussed in detail. Note that dif-
ferent performance metrics were discussed for model com-
ponents based on their temporal and spatial coverage, con-
tinuity, resolution, and uncertainty. For instance, the sheer
amount of temporal and spatial coverage provided by the
USGS stream gauge network allowed for several different
error metrics to evaluate long-term behavior, hydrograph
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shape, and flashiness. Comparisons of model results with re-
mote sensing products and well observations were more lim-
ited by higher uncertainty and lower temporal and spatial res-
olution and continuity, but they were still valuable in iden-
tifying regions for model improvement and analyzing error
propagation between water balance components.

3.1 Runoff, R

The ability to accurately simulate overland flow at the ma-
jor basin or continental scale and above has for several
years been a topic of much interest in the hydrologic com-
munity. Continental or global streamflow estimates could
be coupled to general circulation models to provide pre-
dictions of surface water resource vulnerability to climate
change (e.g., Koirala et al., 2014); large-scale runoff mod-
els could additionally provide flood forecasts to regions lack-
ing developed surface water monitoring networks (Kauffeldt
et al., 2016). While integrated groundwater–surface water
modeling is computationally demanding, results from PF-
CONUSv1 represent a rare opportunity to evaluate stream-
flow performance (1) because the integrated system plat-
form resolves shallow aquifer, vadose zone, and surface wa-
ter transfer, and (2) streams form naturally as surface water
is routed by topography without requiring pre-defined stream
reaches.

PFCONUSv1 streamflow R was evaluated against 2392
USGS stream gauges which are well distributed across the
United States. We analyze model performance using percent
bias, Spearman rank correlation, and RSR. However, Glee-
son et al. (2021) suggest that while the use of error metrics
and direct comparison of observations with simulated val-
ues are valuable for evaluation, they should be supplemented
with hydrologically meaningful diagnostic signatures to bet-
ter understand system dynamics. Further, PBIAS can be sen-
sitive to precipitation provided by the interpolated NLDAS
atmospheric forcing product. Since P is an input to the PF-
CONUSv1 rather than a model result, runoff ratio (RR= R

P
)

was also calculated to extract model performance indepen-
dent of precipitation bias and to better represent a diagnostic
measurement of watershed response to rainfall. RR measures
the amount of precipitation partitioned to runoff, with lower
RR values generally indicating a greater portion of precipi-
tation lost to infiltration or evapotranspiration. “True” runoff
ratios were estimated by first identifying all GHCND pre-
cipitation gauges upstream of a USGS stream gauge. The
mean annual precipitation was then calculated and applied
over the drainage area defined by the Geospatial Attributes of
Gages for Evaluating Streamflow (GAGES-II) dataset (Fal-
cone, 2002). RR is equal to the ratio of total USGS gauge
flow to GHCND precipitation. A similar process was done
for simulated RR using NLDAS-interpolated precipitation,
simulated flow at the gauge cell, and model drainage area
from the input digital elevation model derived from Hy-
droSHEDS. Note that while the interpolated NLDAS pre-

cipitation, unlike the GHCND gauge network, is continu-
ous in space, only modeled cells which matched the nearest-
neighbor GHCND gauge network were used to estimate up-
stream precipitation in order to create as controlled a compar-
ison as possible. Runoff ratios were not calculated for USGS
stream gauges with fewer than three upstream GHCND pre-
cipitation gauges.

Observed total annual flow during the simulation period is
shown in Fig. 3a; annual streamflow varies by several orders
of magnitude across US major basins, with higher flows in
the east and the Pacific Northwest and the lowest flows in the
Great Plains. Runoff ratios are generally highest in the east;
the majority of the arid west exhibits RR of less than 0.1,
with the exception of topographically complex regions and
headwater watersheds of the Rocky Mountains (Fig. 3c).

PFCONUSv1 reproduces point-scale annual flows across
the United States with a median annual PBIAS of 7.7 %
and with 25th and 75th percentiles of −26.2 % and 77.4 %,
respectively (Fig. 3b). Shown in Fig. 3e and f, the 25th,
50th, and 75th percentiles for daily Spearman’s ρ are 0.42,
0.65, and 0.76, while the same for RSR are 0.86, 1.2, and
2.5. The median PFCONUSv1 minus USGS difference in
RR is 0.016 (Fig. 3d), which corresponds to a mean per-
cent bias in runoff ratio of 8.3 %. The PFCONUSv1 model
simulates observed streamflow with RSR< 0.6, ρ > 0.7, and
|PBIAS|< 20 % at 54 gauges (approximately 2 % of avail-
able sites). An additional 97 locations (4 % of gauges) ex-
hibit RSR< 0.7, ρ > 0.65, and |PBIAS| < 30 %. An ad-
ditional 382 locations (15.7 % of gauges) show RSR< 1,
ρ > 0.6, and |PBIAS|< 50 %. And, finally, an additional
268 gauges (11 % of gauges) show RSR< 1.2, ρ > 0.5,
and |PBIAS|< 75 %. As has been shown in previous lit-
erature (Waseem et al., 2017), different performance met-
rics do not always indicate the same closeness of fit: while
2099 gauges (86 % of the dataset) show either RSR< 1.2,
|PBIAS|< 75 %, or ρ > 0.5, only 801 gauges (34 % of all
gauges) fit all those criteria.

Streamflow performance varies widely across major
basins. For instance, median PBIAS, ρ, and RSR for the
Ohio River Basin are −7.8 %, 0.79, and 0.84, respectively,
and the median of simulated RR values is within 6 % of the
median estimate of RR= 0.42 from observations. Simulated
flows in the Tennessee River Basin also appropriately simu-
late observed flows: mean PBIAS, ρ, and RSR are −11.9 %,
0.69, and 0.89, respectively; 60 % of the gauges in the basin
perform with RSR< 1.2, ρ > 0.5, and |PBIAS| < 75 %, and
observed and simulated mean RR values are 0.49 and 0.53,
respectively, for a percent bias in RR of 9 %. Conversely,
the majority of the upper Missouri River Basin shows weak
timing performance (median ρ of 0.49) and higher overall
bias: the median PBIAS for Missouri is 65 % and median
RSR is 2.2, indicating that the majority of Missouri gauges
exhibit daily RMSE that is twice the volume of expected
daily variability. The Great Plains region is certainly the re-
gion with the worst streamflow performance: PFCONUSv1
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Figure 3. (a) Observed annual streamflow R from the USGS gauge network, (b) PBIAS for simulated PFCONUSv1 streamflow, (c) runoff
ratio calculated from USGS stream gauges and GHCND precipitation gauges, (d) simulated minus observed runoff ratio, (e) ρ of simulated
daily flows, and (f) RSR of simulated daily flows.

percent bias in the majority of these gauges is greater than
300 %, and in some cases, simulated flow is greater than
10 times the volume observed. While the mean difference
in runoff ratio in this region is only 0.04, this is on av-
erage 4 times larger than RR estimated from observations.
Results in Fig. 3 therefore suggest that in the arid Great
Plains region, a very small change in runoff ratio can result

in dramatic error in streamflow bias, and the PFCONUSv1
struggles to capture low flows in this region. There is ev-
idence that continental-scale hydrologic models commonly
share this struggle to capture streamflow dynamics in the
Great Plains region. The first phase of the Continental Hydro-
logic Intercomparison Project has shown that a NOAA US
National Water Model configuration of WRF-Hydro shares
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Figure 4. Time series of PFCONUSv1-modeled and USGS-observed streamflow time series at representative gauge locations for each major
basin.

the same streamflow performance category (poor hydrograph
shape and/or timing and high bias) as PFCONUSv1, run for
the single water year 1985, at many gauges in the Great
Plains region (Tijerina et al., 2021). While the intercompari-
son project is in its infancy and this comparison was primar-
ily proof-of-concept, such results may stress the importance

of representing groundwater abstractions and irrigation over
the Ogallala in continental-scale hydrologic models.

Note that in Fig. 3, no filtering was done for these met-
rics in order to eliminate gauges with incorrect drainage area
from topographic processing discrepancies, nor have we re-
moved sites proximate to dams, influenced by nearby pump-
ing or irrigation, or affected by bias in atmospheric forcing.
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As an example of PFCONUSv1 performance in ideal con-
ditions, we show in Fig. 4 selected examples of individual
gauge comparisons for each major basin in the PFCONUSv1
domain. Gauges chosen for Fig. 4 were those that tended to
be minimally impacted by bias from anthropogenic effects
or by errors in basin delineation by topographic processing.
Such gauge attributes were determined based on geospatial
stream properties obtained from the Geospatial Attributes
of Gages for Evaluating Streamflow (Gages-II) dataset (Fal-
cone, 2002), as well as the National Hydrography Dataset
(see the supplemental information in Maxwell and Condon,
2016, for a detailed description of geospatial stream gauge
attributes). Streamflow time series examples in Fig. 4 include
gauges with the following properties: (1) represented greater
than 300 km2 of upstream drainage area, (2) PFCONUSv1
drainage area differed from actual drainage area by less than
20 %, (3) total dam storage was less than 3 % of total an-
nual flow for the closest upstream dam, (4) total withdrawals
for the previous 5 years were less than 3 % of total annual
flow, (5) total irrigated area in 2002 constituted no more
than 15 % of the total drainage area, and (6) upstream area
Spearman’s ρ for precipitation performance must be greater
than 0.5. The examples in Fig. 4 therefore represent natural-
ized gauges with minimal bias in a priori inputs, low anthro-
pogenic impact, and good performance potential. We also
compared domain-wide PFCONUSv1 performance at refer-
ence gauges identified by Maxwell et al. (2015) (locations
with the least human influence and best representing “nat-
ural” ecohydrologic conditions) with non-reference gauges.
As a whole, PFCONUSv1 performed better at reference lo-
cations regardless of the error metric used (Fig. S1). How-
ever, the difference in performance between reference and
non-reference locations varies considerably between basins
(Figs. S4 and S5). The Pacific Northwest, Missouri, Lower
Colorado, and Arkansas–Red–White basins exhibit much
greater performance at reference gauges across all error met-
rics, while other basins show mixed signals or poorer per-
formance at reference gauges (Figs. S1 and S2), indicating
sources of bias other than anthropogenic effects.

3.2 Evapotranspiration, ET

Evapotranspiration is a major component of the water bal-
ance, accounting for roughly 60 % partitioning of land pre-
cipitation into the atmosphere annually (Oki and Kanae,
2006); however, it is also widely considered to be an incred-
ibly difficult value to constrain (Senay et al., 2013; Velpuri
et al., 2013; Xu and Singh, 2005) and is often estimated
simply as the residual of other components of the water
balance. Unlike streamflow and precipitation, direct point
measurement methodologies are limited, costly, and difficult
to maintain. Direct estimates can be inferred from sap flux
measurements; lysimeters, which weigh plant and soil mass
to track temporal fluctuations in water storage; or chemi-
cal tracers, such as deuterium (Wilson et al., 2001). Cur-

rently, the method which likely provides the most defen-
sible direct measurements of ET is the eddy flux or eddy
correlation method. Eddy flux towers relate observed turbu-
lent heat fluxes at the surface (latent and sensible heat) to
the covariance between instantaneous fluctuations of verti-
cal wind speed, humidity, and temperature (Baldocchi, 2003;
Swinbank, 1951). The PFCONUSv1-simulated daily ET was
compared to observations from 30 eddy covariance towers
managed by the FLUXNET mission. Locations of these sites
and their relative performance are shown in Fig. 5, along with
time series examples from three FLUXNET sites with com-
plete observations during the entire observation period.

Results in Fig. 5 demonstrate the ability of the PF-
CONUSv1 model to simulate daily and seasonal ET across
difference climatic zones. The mean 25th, 50th, and 75th
percentiles for PFCONUSv1-simulated daily ET PBIAS are
3 %, 26 %, and 55 %, respectively. Given that remote sens-
ing estimates regularly exhibit uncertainty of 50 %–60 % for
point-scale ET estimates, or > 20 % uncertainty in ET at
the basin scale (Velpuri et al., 2013), PFCONUSv1 ET re-
sults are promising, especially for an uncalibrated model. For
daily time series, 25th, 50th, and 75th percentiles are 0.6,
0.72, and 0.81 for ρ and 0.69, 0.92, and 1.33 for RSR, re-
spectively. Because the metric is an indicator of monotonic
agreement, the high overall Spearman’s ρ values are particu-
larly telling because ρ is sensitive not only to seasonal trends
which dominate the time series variance but also the influen-
tial day-to-day (sub-seasonal) noise. Out of 30 FLUXNET
sites with observations during the simulation time period,
the PFCONUSv1 model performs with RSR< 1.2, |PBIAS|
< 75 %, or ρ > 0.5 at 19 locations (63 % of locations); at 29
out of 30 sites, the PFCONUSv1-simulated ET fits one of
these criteria.

The spatial discontinuity of FLUXNET certainly limits ET
performance evaluation across the remaining PFCONUSv1
model domain. Eddy covariance ET estimates are applicable
within the fetch of the prevailing winds, which is generally
on the order of ∼ 1 km radius surrounding towers (Wilson
et al., 2001), and statistical interpolation is generally not rec-
ommended without considerable parameterization of atmo-
spheric and vegetative conditions to inform upscaling (Jung
et al., 2009).

To evaluate performance at larger spatial scales, the PF-
CONUSv1 model has also been compared to the MOD16A2
and SSEBop algorithms for MODIS thermal imagery pro-
cessing. These data, along with PFCONUSv1, have been ag-
gregated to HUC8 spatial scale and monthly temporal reso-
lution to help reduce uncertainty associated with cloud cover
in the 8 d product. Cumulative annual evapotranspiration
for MOD16A2, SSEBop, and PFCONUSv1 are shown in
Fig. 6a–c. Both MOD16A2 and SSEBop algorithms should
be considered evapotranspiration modeling techniques pro-
duced from remote sensing observations rather than obser-
vations themselves. However, regions where PFCONUSv1
comparisons to the MOD16A2 and SSEBop agree estab-
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Figure 5. (a) Cumulative annual ET observed at 30 FLUXNET sites across the contiguous United States, (b) percent bias of PFCONUSv1
daily simulated ET at FLUXNET locations, (c) Spearman ρ of PFCONUSv1 daily simulated ET at FLUXNET locations, (d) RSR of
PFCONUSv1 simulated daily ET, and (e–g) examples of observed and simulated daily ET at three FLUXNET sites with complete observation
periods during the simulation timeframe.
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Figure 6. PFCONUSv1 ET estimates compared to results from MODIS remote sensing and thermal imaging algorithms. (a–c) Annual
cumulative ET across HUC8 watersheds, (d–f) differences in annual ET, (g–i) PBIAS of monthly ET, (j–l) Spearman’s ρ of monthly ET, and
(m–o) RSR of monthly ET for PFCONUSv1 and MODIS products (MOD16A2 and SSEBop algorithms).
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lish greater confidence in the model’s bias or timing of ET
estimates. We have therefore used PBIAS, ρ, and RSR er-
ror metrics, with PFCONUSv1 monthly ET observations as
simulated and MODIS datasets as observed values. Multiple
studies to date have compared MOD16A2 and SSEBop per-
formance over a range of geophysical characteristics, vege-
tative types, and aridity indices by comparing to Penman–
Monteith-based estimates (Knipper et al., 2016), lysimet-
ric observations (Senay et al., 2014), FLUXNET observa-
tions or upscaled information from FLUXNET sites, and
vegetative indices (Senay et al., 2013; Velpuri et al., 2013),
with results showing good general agreement and within
∼ 50 % error for annual ET totals at point observations. De-
spite its considerably more simplistic approach for estimat-
ing ET from MODIS thermal land imaging, SSEBop per-
forms nearly as well as or, in the case of the western US,
better than MOD16A2 (Velpuri et al., 2013). Therefore, we
also show MOD16A2 performance relative to SSEBop for
reference (Fig. 6c, f, i, l, and o), where Oi observations are
MOD16A2 and Si observations are MOD16A2 monthly ET
(Eqs. 8 and 10).

PFCONUSv1 shows similar overall agreement with
MOD16A2 and SSEBop algorithms in annual ET, with dif-
ferences within ± 30 mm across the domain. All products
provide similar spatial signatures of ET, with overall higher
ET in the southwest and the lowest ET in the Great Basin
and Colorado River basins. PFCONUSv1 estimates tend to
agree more with SSEBop with regards to timing and residual
variation, and they are more similar to MOD16A2 with re-
gards to PBIAS (particularly in the western United States)
(Fig. 6). The 50th percentiles for PFCONUSv1 PBIAS
against MOD16A2 and SSEBop are 7.5 % and 8 %, respec-
tively; 25th and 75th percentiles of PBIAS are −4.4 % and
24 % for MOD16A2 and −4.4 % and 35 % for SSEBop.
In several regions, PFCONUSv1 shows similar comparisons
with both MODIS products. For instance, in the Upper Mis-
sissippi, both products suggest that PFCONUSv1 overpre-
dicts ET in the north and underpredicts in the south, and
both products suggest PFCONUSv1 underpredicts ET in the
Rocky Mountain headwaters and across most of the Ohio
River Basin (Fig. 6d and e). The approximately 30 % un-
derestimation of ET in the CO headwaters further agrees
with the PFCONUSv1 performance relative to FLUXNET
observations at the Niwot Ridge site in Colorado. However,
most of the Missouri and the Arkansas–Red–White basins
show opposite behavior between PFCONUSv1-MOD16A2
and PFCONUSv1-SSEBop comparisons; in these regions,
we can be less certain of model bias as described by remote
sensing of ET. Broadly, across the western US, PFCONUSv1
shows better agreement with MOD16A2 with regards to ET
magnitude (PBIAS) because SSEBop estimates negligible
ET in the Basin and Range region (Fig. 6e); however, PF-
CONUSv1 shows dramatically better performance relative to
SSEBop in terms of Spearman’s ρ and RSR (Fig. 6g and h).
The 25th, 50th, and 75th percentiles of ρ are 0.38, 0.85, and

0.92 for monthly PFCONUSv1 compared to MOD16A2; the
quantiles for PFCONUSv1 compared to SSEBop are 0.85,
0.91, and 0.93. Similarly, 25th, 50th, and 75th percentiles
of RSR are 0.41, 0.85, and 2.2 for performance relative to
MOD16A2 and 0.38, 0.47, and 0.62 for performance relative
to SSEBop.

Despite differences between PFCONUSv1 comparisons to
the two MODIS algorithms, results shown in Fig. 6 sug-
gest that PFCONUSv1 appropriately estimates the magni-
tude and temporal progression of ET compared to the per-
formance of other LSMs. In a study comparing LSM-based
recharge estimates in the western United States, Niraula et al.
(2017) showed that the LSMs Mosaic, VIC, and Noah sim-
ulated spatially distributed ET with 0.87, 0.77, and 0.75
Pearson’s correlation relative to MODIS. Pearson’s correla-
tions between PFCONUSv1 and MOD16A2, and between
PFCONUSv1 and SSEBop, are 0.9 and 0.95, respectively,
which motivates future comparisons of PFCONUSv1 perfor-
mance relative to other LSMs. However, it is important to
again note that MODIS ET estimates are themselves models,
and as such they are susceptible to epistemic errors in input
data (e.g., inaccuracies in leaf area index or other parameteri-
zations), measurement and remote sensing errors (e.g., cloud
cover), and other uncertainties.

3.3 Storage, S

Terrestrial water storage represents all components of the wa-
ter balance stored on and below the Earth’s surface. As such,
total storage S is an aggregate of water stored on land in
surface water bodies or in the canopy, as well as snow wa-
ter equivalent, soil moisture in the vadose zone, and shal-
low or deep saturated aquifer storage. Estimates of overall
S could simply involve measuring and combining individual
components, but these calculations (1) require highly devel-
oped monitoring networks and an impressive amount of in
situ observations and (2) can have large margins of error if
not all of the assorted hydrological stores are accurately re-
solved (Troch et al., 2007). The most common method for S
estimation calculates storage as a remainder of other water
balance terms: P , ET, and R in Eq. (2), (e.g., Rodell et al.,
2011; Tang et al., 2010).

Recent advances in remote sensing have granted hydrol-
ogists an estimate of changes to total S, without partition-
ing out storage sources, by measuring fluctuations of Earth’s
gravity fields as a proxy for mass change. Since water rep-
resents the greatest fluctuation of terrestrial mass, gravity
anomalies can be translated to variability in S. The newly
available GRACE twin satellite mission provides approxi-
mately monthly values of total water storage at the global
scale and at coarse (> 105 km2) resolution (e.g., Strassberg
et al., 2009). Storage anomaly estimates are based on K-band
microwave measurements of the distance between the two
low-flying satellites, which varies as a function of gravity
field fluctuations (as well as atmospheric, oceanic, and solid
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Earth tides, which must be corrected to resolve the global
water budget; Dahle et al., 2019).

The PFCONUSv1 total water storage anomalies (calcu-
lated as a sum of all simulated surface and subsurface hy-
drologic stores) were compared to five monthly gravity field
solutions: the RL06 spherical harmonic solutions provided
by JPL, GFZ, and CSR, as well as the mascon solutions
JPLm and CSRm. Figure 7 shows seasonal storage ampli-
tude in space and basin-aggregate storage change through
time by comparing PFCONUSv1 and GRACE solutions for
six major river basins. Some basins have been left out due
to incompleteness in the model domain or due to size: the
basis function for GRACE solutions is generally on the or-
der of 300 000 km2 such that storage anomaly estimates for
smaller basins (e.g., the Tennessee River Basin) are not well
resolved.

Seasonal storage amplitude represents the average peak-
to-peak storage gain or loss over the course of a water year,
and it is therefore a depiction of seasonality or intra-annual
S signal. The GRACE solution shown in Fig. 7 is the JPL
mascon solution provided at 0.5◦ resolution, and amplitude
for other GRACE products shows similar spatial signals;
however, note that mascon solutions are calculated given a
3◦ equal-area basis function and subsequently downscaled
using forward modeling techniques to account for leakage
errors (Wiese et al., 2016). GRACE mascons are not inde-
pendent of each other, and uncertainty increases dramatically
with decreasing basin size. However, qualitative comparisons
between GRACE and PFCONUSv1 amplitude indicate sev-
eral regions of agreement for high or low seasonality. To-
pographic highs in the Rocky Mountains, where the snow
water equivalent signal likely dominates overall storage vari-
ance and is entirely seasonally dependent, show high am-
plitude for both PFCONUSv1 and GRACE (Fig. 7a and b).
The Upper and Lower Colorado River basins, in particular,
show very similar spatial patterns for overall amplitude. An-
other area of agreement is the comparably high amplitude
in the Lower Mississippi River basin. In both GRACE and
PFCONUSv1, the Arkansas–Red–White region sees higher
seasonality of total water storage in the east and lower in
the west; the locations of highest amplitude for both GRACE
and our model lie in the Pacific Northwest region. However,
broadly speaking the PFCONUSv1 amplitude is lower than
GRACE for the majority of the domain and particularly in the
east. Other continental- or global-scale land surface models
have also underpredicted seasonal storage amplitude across
global river basins relative to GRACE; for example, the Wa-
terGAP (Water Global Assessment and Prognosis) hydro-
logic model consistently underpredicted amplitude for most
of the global land area (Döll et al., 2014), and a validation
of four LSMs and global hydrologic models found that the
numerical models reproduced GRACE storage signals only
to a very limited degree (Zhang et al., 2017). However, LSM
tendency for GRACE mismatch is likely attributed to insuf-

ficient groundwater representation, which is not as likely to
be the cause for PFCONUSv1 and GRACE disparities.

Temporal progression of storage was calculated with the
area-weighted mean of the Colorado, Arkansas, Ohio, Mis-
souri, and Upper Mississippi River basins (Fig. 7c–h). Un-
certainty (shaded regions) shown indicates the leakage er-
ror associated with downscaling 3◦ basis functions to 0.5◦

solutions for the JPL mascon product. We show only the
JPLm uncertainty, simply because uncertainty estimates for
the RL06 products were not yet available at the time of this
analysis. The CSR mascon product is suggested to have an
error of approximately 2 cm that is more or less constant
through time and space.

The PFCONUSv1 model shows good agreement in the
timing storage anomalies for most basins, with Spearman’s ρ
rank correlation ranging from 0.43 to 0.94 relative to the
mean of all GRACE solutions: individual ρ values for major
basins are 0.43 (Missouri), 0.63 (Upper Colorado), 0.76 (Pa-
cific Northwest), 0.79 (Great Basin), 0.81 (Lower Colorado),
0.86 (Upper Mississippi), 0.88 (Ohio), and 0.93 (Arkansas–
Red–White). However, correlation is not necessarily the best
predictor of adequate model performance; for instance, the
Upper Mississippi has the third-highest ρ value out of six
major basins, but more than 80 % of the total anomaly time
series lies within the uncertainty bars provided for the JPLm
product. Further, several discrepancies exist between PF-
CONUSv1 and GRACE trends and amplitude. For example,
despite its monotonic agreement with GRACE storage am-
plitude for the Ohio River Basin, the PFCONUSv1 model
simulates a seasonal storage amplitude that is, on average,
more than 30 % lower than what GRACE observes. The Up-
per Colorado River basin captures seasonal timing, but the
overall storage gain over the simulation period is roughly
3 times that of what GRACE observes.

Differences between the PFCONUSv1 and GRACE stor-
age water anomaly estimates can come from various sources:
(1) model error and uncertainty in PFCONUSv1 model pa-
rameters and configuration, error and uncertainty associ-
ated with GRACE measurement error, or error associated
with the intensive post-processing and filtering on the raw
spherical harmonic GRACE solutions; (2) hydrologic stores
unaccounted for in the PFCONUSv1 model, such as deep
(> 100 m) aquifer storage; or (3) anthropogenic impacts, par-
ticularly from groundwater withdrawals from municipal and
agricultural aquifer depletions (Chen et al., 2016).

3.4 Storage partitioning: Sgw, Ssoil, and Ssnow

Total water storage anomalies were also validated based on
their partitioned components: 1Sgw, 1Ssoil, and 1Ssnow.
First, PFCONUSv1 water table depth (WTD) was com-
pared to USGS well observations across the United States in
Sect. 3.4.1. As discussed below, WTD does not necessarily
translate to1Sgw, but it is still a very informative hydrologic
state. PFCONUSv1 soil moisture was compared to a com-
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Figure 7. Summary of GRACE and PFCONUSv1 comparisons. Seasonal storage amplitude for (a) the JPL mascon solution and (b) PF-
CONUSv1 total water storage, with darker red areas indicating a high degree of seasonality and white areas indicating no sub-annual storage
fluctuation. (c–h) Time series of total water storage anomalies for five GRACE products and for PFCONUSv1 across complete major basins
in the PFCONUSv1 domain. Shaded regions indicate uncertainty in the JPLm product based on leakage and measurement error.

bined active/passive remote sensing product in Sect. 3.4.2,
and PFCONUSv1 snow water equivalent was compared to
snow telemetry measurements in Sect. 3.4.3.

3.4.1 Water table depth

Figure 8 shows observed WTD across the model domain, as
well as difference in observed and modeled heads and corre-
lation for available locations. As a caveat to the results shown
in Fig. 8, while WTD is a visibly appealing metric for mod-
eled groundwater performance, it alone is not translatable to
total storage Sgw or for storage change 1Sgw for several rea-
sons. First, without information regarding aquifer storativ-
ity or in the absence of pumping tests, change in water table
depth does not equate to total water storage fluctuation in an
aquifer of uncertain depth and hydraulic characteristics. Sec-
ond, water flow is governed by hydraulic head rather than
water table depth; therefore, a bias in WTD of tens of meters
within a continental model that spans thousands of meters
of hydraulic head does not necessarily speak to the model’s
ability to laterally move water through the saturated subsur-
face. Finally, perched and confined aquifer systems can com-
pletely disconnect anomalies in total subsurface hydrologic

stores and measurable WTD fluctuations. However, WTD
does indicate vadose-zone-saturated zone connectivity, and
for unconfined aquifers it is a good indicator for loss or gain
in aquifer storage, so we briefly compare observed and sim-
ulated WTDs here.

Observed WTD from over 41 000 aquifers across the con-
tiguous United States spans multiple orders of magnitude and
is shown in Fig. 8. The PFCONUSv1 model demonstrates
a fairly consistent shallow WTD bias across the domain,
with “hot spots” of over 50 m depth difference in the south-
ern reaches of the Ogallala aquifer, in the southern Pacific
Northwest region, and in the Lower Colorado River basin.
However, many of these wells represent locations impacted
by extractions (wells are preferentially drilled in regions pri-
oritizing municipal or agricultural groundwater resources),
wells tapping confined aquifers, or WTDs that simply cannot
be captured by a shallow aquifer model of 102 m depth. In
a 1985 transient simulation of PFCONUSv1, Maxwell and
Condon (2016, supplemental information) found that while
no strong connection exists between water table depth bias
and the model’s geologic properties, WTD bias was aquifer-
dependent, with the greatest positive WTD biases occurring
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Figure 8. (a) Observed water table depth (N = 41 269), (b) difference in observed and PFCONUSv1-simulated WTD, (c) difference in
observed and PFCONUSv1-simulated WTD at filtered locations (N = 2486), and (d) Spearman ρ values at filtered locations using at least
10 instantaneous (daily) observations.

in the High Plains aquifer, which has experienced depletions
in the last several decades.

Further, WTD is only informative as an indicator of pos-
itive or negative 1Sgw if multiple observations are provided
through time. Therefore, the available USGS wells have been
filtered by excluding (1) locations where the observed min-
imum WTD was greater than 60 m (PFCONUSv1 estimates
pressure at cell centers, with the center of the deepest layer
at 52 m), (2) locations providing fewer than 10 observations
during the simulation timeframe, (3) locations flagged by
the USGS as a confined or mixed aquifer system (aquifer
type code aqfr_type_cd in the Groundwater Levels for the
Nation dataset provided by USGS NWIS, https://waterdata.
usgs.gov/nwis/gwlevels/, last access: 9 October 2020), and
(4) locations flagged for pumping (water level site status code
lev_status_cd) during the simulation period.

WTD bias for the remaining 2486 locations is shown in
Fig. 8c. WTD agreement is considerably improved at these
locations, but a shallow WTD bias is still present, with 25th,
50th, and 75th quantiles for simulated minus observed differ-
ence in total water level being 2.5, 5.8, and 13.5 m, respec-
tively. However, ρ values suggest that despite PFCONUSv1
shallower water tables, the model is still able to capture tem-

poral fluctuations in depth to saturation (and by associa-
tion, groundwater 1Sgw) at almost half of the filtered well
sites (Fig. 8d). Quantiles for ρ at the filtered locations are
0.14 (25th), 0.46 (50th), and 0.7 (75th); 46 % of wells show
ρ greater than 0.5, 37 % of wells show ρ greater than 0.6, and
25 % of wells show ρ greater than 0.7.

3.4.2 Soil moisture, Ssoil

Soil moisture (SM) anomalies (analogous to Ssoil) at the top
layer of PFCONUSv1 (up to 0.1 m depth) were compared to
the ESA CCI soil moisture product at 0.25◦ resolution and
aggregated to weekly totals. Results are shown in Fig. 9. As
in GRACE comparisons, we compared seasonal amplitude
spatial signals across the PFCONUSv1 domain and basin-
scale aggregates through time. The ESA CCI record is a
state-of-the-art, multi-decadal, global satellite observation of
SM created from combining single-sensor active and pas-
sive microwave sensors; since its release, the literature has
shown good agreement between the ESA CCI product and
spatial and LSM-modeled temporal SM patterns of soil mois-
ture, and the harmonized product has shown better perfor-
mance than any of its individual single-sensor inputs (Dorigo

https://doi.org/10.5194/gmd-14-7223-2021 Geosci. Model Dev., 14, 7223–7254, 2021

https://waterdata.usgs.gov/nwis/gwlevels/
https://waterdata.usgs.gov/nwis/gwlevels/


7242 M. M. F. O’Neill et al.: Assessment of the ParFlow–CLM CONUS 1.0 integrated hydrologic model

Figure 9. Summary of ESACCI and PFCONUSv1 soil moisture comparisons. Seasonal SM amplitude for (a) the ESACCI solution and
(b) PFCONUSv1–ESACCI amplitude difference. Stippling in (b) indicates that the ESACCI product time series was less than 50 % complete
during the simulation period (fewer than 750 available observation days). Grey areas (excluded) indicate that the average ESACCI annual
cycle had at least 3 months with zero available observations (and therefore the annual amplitude is uncertain). (c–h) Time series of weekly
SM anomalies across complete major basins in the CONUSv1 domain. Shaded regions indicate± 1 standard deviation taken spatially across
the basin.

et al., 2017; Gruber et al., 2019). Because we are interested in
1Ssoil over time rather than the total water stored in the soil
at any one moment, comparisons were made to SM anoma-
lies, or relative change in soil moisture with respect to the
mean value.

Broadly speaking, the PFCONUSv1 shows overall lower
amplitude in the west and higher amplitude in the east rela-
tive to the CCI product (Fig. 9a and b). While this could be
a result of PFCONUSv1 bias in evapotranspiration or other
fluxes in which seasonal signal is dominant, it is also possi-
ble that amplitude differences are simply a result of temporal
coverage or blending algorithms in the ESA CCI product. For

instance, for the combined SM product, blending weights are
higher for active microwave sensors in the eastern US and
high-elevation Rockies, while the rest of the southwest and
the northern Great Plains region favored passive microwave
sensors (Dorigo et al., 2017). Further, ESA CCI SM is lim-
ited by temporal coverage; note that in the majority of the
eastern PFCONUSv1 domain, fewer than 365 observation
days are available (most likely a product of high humidity
and cloud cover) (Fig. 9b), which makes us less confident in
Ssoil amplitude estimates.

At the aggregated basin scale, however, temporal pro-
gression of SM shows temporal agreement between PF-

Geosci. Model Dev., 14, 7223–7254, 2021 https://doi.org/10.5194/gmd-14-7223-2021



M. M. F. O’Neill et al.: Assessment of the ParFlow–CLM CONUS 1.0 integrated hydrologic model 7243

Figure 10. Summary of PFCONUSv1-modeled snow water equivalent performance relative to SNOTEL sites. Shown are observed peak
SWE at SNOTEL sites (a), percent bias for peak SWE (b) and 1 April SWE (c), daily spatial fraction of stations with snow coverage (d),
and mean daily SWE (e). In (e), shaded regions indicate ± 1 standard deviation in space.

CONUSv1 and CCI SM for most major basins: individ-
ual ρ values for major basins are 0.25 (Upper Colorado),
0.79 (Lower Colorado), 0.75 (Arkansas–Red–White), 0.75
(Ohio), 0.43 (Missouri), 0.65 (Great Basin), 0.72 (Ten-
nessee), and 0.55 (Upper Mississippi). The very weak cor-
relation in the Upper Colorado basin may be indicative of
large uncertainties in the ESA CCI SM product that have
been observed with particular surface conditions: for regions
of dense vegetation, topographic complexity, snow cover,
or frozen soils, uncertainty in ESA CCI SM is very high

(Dorigo et al., 2017), and we therefore have low confidence
in ESACCI comparisons in Rocky Mountain headwater re-
gions.

3.4.3 Snow water equivalent, Ssnow

Finally, the modeled PFCONUSv1 Ssnow storage component
was validated against snow telemetry data in the mountain-
ous west of the model domain (Fig. 10). An important caveat
to note is that point-measured snow water equivalent (SWE)
is likely to consistently overestimate gridded land surface
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model products, given that coarse-resolution model cells (in
our case, 1 km lateral discretization) represent an aggregate
of highly heterogenous SWE and canopy interference across
a wide spatial area. Telemetry stations are frequently situ-
ated in clearings or in breaks in canopy density in order
to maximize throughfall. For instance, Molotch and Bales
(2005) characterized the distribution of SWE depth in 16,
4, and 1 km2 grid elements surrounding SNOTEL stations in
Rio Grande headwaters using a combination of field observa-
tions, remote sensing products, and snowpack mass balance
modeling. They found that at the majority of the sites, the
SNOTEL station represented high percentiles of SWE rela-
tive to the surrounding land area and that SNOTEL site con-
ditions (such as vegetation density, solar radiation index, and
terrain indices) were not representative of the vast majority
of grid element space. In some regions, SNOTEL SWE was
more than 200 % greater than the mean grid element value.

As would therefore be expected, the 1 km resolution PF-
CONUSv1 model underestimates annual peak SWE (snow
water equivalent at maximum accumulation) and 1 April
SWE (snow water equivalent during ablation). PBIAS for
annual peak SWE was −50.6 %, −33.5 %, and −14.7 % at
the 25th, 50th, and 75th percentiles, respectively. 1 April
SWE PBIAS was similar, with some individual SNOTEL
stations showing more than double the SWE compared
to PFCONUSv1 simulations (Fig. 10c). However, the PF-
CONUSv1 model clearly captures timing for snow accu-
mulation and ablation, with the fraction of snow-covered
sites tracking almost identically between SNOTEL and PF-
CONUSv1 (Fig. 10d). Percentiles for Spearman’s ρ values
for cool season daily SWE (Fig. 10d) are 0.85 (25th per-
centile), 0.92 (50th), and 0.96 (75th).

4 Discussion: known and unknown sources of model
bias

In Sect. 3, outputs from an integrated surface water–
groundwater hydrologic model, PFCONUSv1, were com-
pared to available point-scale monitoring networks and re-
mote sensing products in an effort to evaluate the model’s
ability to reliably reproduce components of the water budget
listed in Eq. (1).

Broadly, results suggest that PFCONUSv1 shows promis-
ing ability to reproduce the timing, mean states, and inter-
and intra-annual variability of continental-scale water bal-
ance components. However, the PFCONUSv1 model should
be considered a work in progress; with approximately 31 mil-
lion cells in the domain, PFCONUSv1 bias can originate
from errors associated with model physics, inputs, process
representation, or epistemic uncertainty (Table 2). The best
publicly available datasets were used to populate and drive
this simulation, but such inputs are certainly subject to their
own errors and uncertainties and must be continuously re-
visited to improve their fidelity. In this section, we discuss

identifiable errors in model inputs and implications for fu-
ture model development.

4.1 Meteorological forcing errors and topographic
processing

Major biases exist in preprocessing of PFCONUSv1 mete-
orological forcing and topography, which are peripheral to
but act simultaneously with all other sources of bias (Ta-
ble 2). In this way, isolating the effects of a single bias source
can be challenging. Streamflow itself is sensitive to errors in
drainage area, topographic relief, and precipitation or tem-
perature bias, and the errors in surface and subsurface mois-
ture flux can propagate downstream to impact moisture avail-
ability and evapotranspiration in areas remote from the orig-
inal bias source.

4.1.1 Terrain processing and drainage area

Topographic slopes were defined from a digital elevation
model (DEM) generated by HydroSHEDS and subsequently
subjected to a hydrologic processing algorithm, which ad-
justed drainage networks to remove true and artificial pits,
depressions, and barriers and ensure complete river network
connectivity (Barnes et al., 2016). However, both loss of res-
olution in DEMs and the topographic processing can result
in loss of topographic relief and change in drainage area.
Therefore, PFCONUSv1 streamflow percent bias should in
theory reflect fidelity of upstream watershed area. We com-
pared PFCONUSv1 drainage area with “true” drainage area
determined based on geospatial stream properties obtained
from the GAGES-II (Falcone, 2002).

Figure 11 shows the relationship between percent differ-
ence in observed and simulated streamflow versus percent
difference in observed and processed drainage area for all
2392 USGS stream gauges. There are three primary conclu-
sions to be drawn from this relationship (Fig. 11a): (1) a
clear, linearly proportional correlation exists between per-
cent difference in drainage and percent difference in stream-
flow. For streamflow percent difference from observed rang-
ing from −200 % to 200 %, we find that 977 out of 2392
stream gauges fall within ± 30 % of this flow–drainage re-
lationship. Essentially, this means that for 41 % of gauges
in PFCONUSv1, the percent bias in annual flow can be pri-
marily attributed to errors in topographic processing. (2) A
considerable number of gauges exhibit positive percent dif-
ference between observed and simulated annual streamflow,
and these gauges are typically those with very low runoff
ratios. Such a finding is not surprising in that streams with
low RR will be particularly sensitive to external drivers. And
(3) a certain amount of noise exists in these drainage–flow
relationships, with many locations exhibiting higher or lower
error in annual flow than that expected by drainage errors re-
gardless of runoff ratio.
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Table 2. Examples of potential sources of bias acting on PFCONUSv1 results.

Bias category Bias source examples Components directly affected

Topographic processing Watershed drainage area Surface flow volume
Topographic relief Surface flow volume and timing
Stream network mapping Surface flow volume and timing

Atmospheric forcing Precipitation volume Surface flow volume and SWE
Precipitation timing and intensity Storm hydrographs
Temperature trends and diurnal, seasonal cycles Evapotranspiration, snowmelt amount and timing
Humidity Evapotranspiration
Wind speed Evapotranspiration

Anthropogenic Dams and reservoirs Surface flow volume and timing
Groundwater extractions Groundwater storage
Land disturbance Evapotranspiration, snow accumulation

Model parameters Hydraulic conductivity Infiltration, recharge
Porosity Subsurface storage
Manning’s n Surface flow timing and hydrograph
Land and vegetation (albedo, LAI) Evapotranspiration, snow accumulation and melt
Aquifer model depth Groundwater storage
Initial conditions of pressure and saturation Groundwater depth

Epistemic uncertainty Scalability of model physics All/unknown
Vertical and lateral parameter aggregation
Process interaction; groundwater–surface water and
land–atmosphere exchange at various spatial and
temporal scales

Figure 11. (a) Percent difference between observed and simulated annual flow volume as a function of percent difference in true and
PFCONUSv1 drainage area, colored by annual runoff ratio. (b) Locations where error in simulated flow volume is greater than, less than, or
expected from drainage area bias. Expected behavior was defined as locations that lie within the ± 30 % dashed error bars shown in (a).

Figure 11b shows locations where the flow–drainage re-
lationship was expected or unexpected. For the majority of
the eastern United States, bias in streamflow is simply a
function of drainage area bias from topographic processing.
The mountainous west was considerably noisier, exhibiting
in somewhat equal parts lower, higher, or expected annual

flow behavior from drainage bias. We expect that much of
the noise in annual flow bias is a function of precipitation
and temperature bias and timing and, subsequently, snow-
pack. However, in the Great Plains region, the considerable
positive annual flow bias shown in Fig. 3 cannot be attributed
to the error in drainage area. In fact, for 600 gauges in the
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Figure 12. Observed precipitation and temperature at GHCND meteorological stations compared to interpolated NLDAS at their nearest-
neighbor PFCONUSv1 cell. (a) Observed cumulative annual precipitation, (b) percent bias in annual precipitation, (c) Spearman’s ρ between
simulated and observed daily precipitation. Also shown are observed average daily minimum (d), average (g), and maximum (j) temperature,
the total bias in minimum (e), average (h), and maximum daily temperature (k), and the Spearman correlation for minimum (f), average (i),
and maximum (l) daily temperature.

Great Plains area (∼ 20 % of all locations), the percent dif-
ference between PFCONUSv1 and true drainage area is near
0, but percent difference in streamflow is between 30 and
200 %. We believe that the greatest driver of this bias is the
lack of groundwater extractions in the PFCONUSv1 model.
Note that not only is the PFCONUSv1 model naturalized for
the 2002–2006 simulation period, but its initial condition is
also informed by 1985 naturalized spin-up, which does not
include at least 50 years of groundwater depletion. However,
some of the positive annual flow bias behavior in this region
could be attributed to some biases in cumulative precipita-
tion, which is detailed in Sect. 4.1.2.

4.1.2 Atmospheric forcing bias

The NLDAS meteorological forcing, which is described in
Sect. 2.2, was bilinearly interpolated across the PFCONUSv1

domain; biases in precipitation, evaporation, wind speed, hu-
midity, and radiation can therefore come from either the
NLDAS product or its statistical downscaling. We com-
pared daily total precipitation and average daily air tempera-
ture from the interpolated NLDAS product at 9139 (P ) and
1678 (temperature) GHCND meteorological stations across
the PFCONUSv1 domain by calculating relative bias and
Spearman’s ρ at each location. Figure 12 summarizes these
comparisons. Broadly, we can identify several examples for
which NLDAS biases are potential drivers of the bias in tim-
ing and volume of hydrologic fluxes.

PFCONUSv1 annual precipitation over the Kansas–
Nebraska border in the Great Plains region is 10 %–25 %
greater than observed (Fig. 12b). This bias could be one
source of positive flow bias at USGS stream gauges east of
the High Plains aquifer.
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Figure 13. Meteorological forcing, SWE, and ET bias at SNOTEL and FLUXNET stations. At SNOTEL locations, colored by elevation:
(a) mean NLDAS mean cool season temperature versus observed cool season temperature, (b) mean NLDAS annual temperature versus
observed cool season temperature, (c) NLDAS annual cumulative precipitation versus observed, and (d) PFCONUSv1 annual peak SWE
versus observed. At FLUXNET locations, colored by the major basin location of the FLUXNET site: (e) daily NLDAS vapor pressure deficit
versus observed, (f) daily NLDAS near-surface lateral wind speed versus observed, (g) daily NLDAS mean air temperature versus observed,
and (h) PFCONUSv1 daily ET versus observed. Lines show linear regression with p < 0.05 in all cases.

Fidelity in streamflow timing will of course be a function
of accurate precipitation timing and intensity. A hydrologic
model cannot be expected to perform considerably better
than its recharge forcing, or results could be considered spu-
rious. Areas with the weakest correlation between observed
and NLDAS daily precipitation are in the Rocky Mountain
headwater region (Fig. 12c). In the Upper Colorado water-
shed as a whole, the 50th percentile ρ value for daily precip-
itation is 0.56, or the lowest of all other major basins. The
Upper Colorado is also the basin with poorest overall daily
streamflow timing, with ρ50th= 0.33.

Our interpolated NLDAS product underestimates the
diurnal temperature fluctuations, primarily by consider-
ably overestimating minimum (nighttime) daily temperature
(Fig. 12e), which is likely a considerable driver of under-
estimated SWE. Further, maximum daily temperature is un-
derestimated over the Rockies (Fig. 12h). Given that ET is
largely dependent upon available radiative forcing, this could
explain some of PFCONUSv1 negative bias at FLUXNET
stations over the Rockies.

Annual temperature errors could also explain several re-
gions where PFCONUSv1 comparisons to MOD16A2 and
to SSEBop MODIS algorithms agree. For example, warm
temperature biases and positive ET biases (relative to both
MODIS algorithms; Fig. 6g and h) are seen in much of the
lower elevations of the mountainous west and in the major-

ity of the Pacific Northwest. Spatial patterns of ET biases
(Fig. 7g and h) in the Upper Mississippi and Ohio River
basins seem to instead follow the spatial pattern of precip-
itation bias (Fig. 11b), with regions receiving higher precipi-
tation also experiencing higher ET.

NLDAS-simulated daily temperature timing is excellent.
However, temperature was not deseasonalized before corre-
lation was calculated, and the seasonal signal will certainly
account for the majority of temperature variance.

More specifically, we can verify specific impacts of NL-
DAS bias on SWE and ET at individual SNOTEL and
FLUXNET sites. Figure 13 shows observed and simulated
(or interpolated) meteorological conditions and water bal-
ance components for snow and evapotranspiration.

SWE bias at SNOTEL sites is preferentially low at higher
elevations (Fig. 13d). While this difference, as discussed
above, can to a certain extent be attributed to differences
in heterogeneous land and vegetation between the point and
grid scale (Molotch and Bales, 2005), we also find that bi-
ases in temperature and precipitation likely drive the PF-
CONUSv1 low bias in snowpack. PFCONUSv1 SWE expe-
riences a low bias in cumulative annual precipitation at SNO-
TEL sites (Fig. 13c), and lower elevations exhibit a warm
cool season and annual temperature bias (Fig. 13a and b),
both of which would contribute to low accumulation and high
ablation rates.
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While NLDAS shows good agreement with observed
FLUXNET temperature (Fig. 13g), comparisons between
NLDAS and observed vapor pressure deficit and wind speed
both exhibit a considerable amount of scatter (Fig. 13e
and f). Overall, the poorest-performing sites for vapor pres-
sure (those in the Upper Colorado River basin) also exhibited
the highest-magnitude ET biases (Fig. 13h). PFCONUSv1
underestimates (overestimates) relatively high (low) daily
evapotranspiration rates (Fig. 13h). For FLUXNET loca-
tions and days exhibiting ET rates over (under) 4 mmd−1,
mean daily bias is −1.2 mm (0.3 mm). Biases in NLDAS va-
por pressure and wind speed could be a contributing factor.
Lower vapor pressure deficits (0 to 20 Pa) and lower wind
speeds (0 to 6 ms−1) have an overall positive bias and could
explain PFCONUSv1 overpredicting low ET days. Simi-
larly, we believe the bias on high-evapotranspiration days
(ET> 4 mmd−1), which PFCONUSv1 preferentially under-
predicts, could be attributed to NLDAS underpredicting wind
speeds greater than ∼ 10 ms−1.

Errors in atmospheric forcing products often necessitate
statistical bias correction before simulations are run (Piani
et al., 2010). NLDAS has been specifically validated in its
ability to reproduce meteorological conditions for stream-
flow (Xia et al., 2012a), soil moisture (Xia et al., 2015a), and
evapotranspiration (Xia et al., 2015b) prediction by LSMs.
While long-term spatial patterns and seasonal signals were
captured for soil moisture and evapotranspiration, NLDAS
fidelity at daily or weekly timescales is less certain. In this
study, it is difficult to directly attribute the portion of stream-
flow, SWE, or ET errors that occur from atmospheric forc-
ing bias, but these water balance components would cer-
tainly improve with continued progress in meteorological
forcing datasets. The ParFlow–CLM water budget has been
shown to be particularly sensitive to uncertainty in both pre-
cipitation and temperature forcings in mountainous regions,
largely due to their additive influence on snow accumulation,
melt, and subsequent mountain block recharge (Schreiner-
McGraw and Ajami, 2021). Other studies have also high-
lighted the persistent biases in precipitation and temperature
estimates from continental or global meteorological prod-
ucts, which can propagate into hydrologic model predictions
(e.g., Ashfaq et al., 2010; Sperna Weiland et al., 2015).

4.2 Anthropogenic process representation and other
epistemic errors

Plenty of sources of uncertainty can contribute to biases not
discussed in Sect. 4.1 (Table 2). We have chosen to ad-
dress meteorological forcing and topographic processing er-
rors above simply because they are somewhat readily quan-
tifiable, while parameter values and other epistemic uncer-
tainties, such as simplification or scaling of model physics,
are poorly constrained or simply unknown. Other biases in-
clude population of model parameter fields.

While we do not discuss model parameter uncertainty,
such as conductivity, porosity, van Genuchten parameters,
Manning’s surface roughness, land and vegetation parame-
ters, or model horizontal and vertical discretization, these
are also areas for improvement. For example, Maxwell
et al. (2015) show that national geologic and soil parame-
ter datasets are prone to errors via political boundaries, such
as state lines, and the PFCONUSv1 model oversimplifies
deeper geology, with a 100 m vertically homogenous layer.

However, as mentioned above, these fields are poorly con-
strained at the continental scale, and simulations are neces-
sarily limited by availability of appropriate distributed prod-
ucts. Model parameter population is often addressed through
calibration, but population of parameter fields becomes in-
creasingly difficult as resolution increases and calibration be-
comes more computationally demanding. Future model it-
erations may need to take advantage of methods that al-
low transfer of parameters (e.g., conductivity) from coarse-
resolution, efficient models to high-resolution ones (Foster
and Maxwell, 2019). Model discretization is another con-
cern. Coarsening of vertical and lateral resolution is a ne-
cessity at the continental scale, but aggregating to ∼ 1 km
resolution certainly comes with inherent uncertainties and
loss of information. DEMs in particular will lose topographic
drivers with scale (Wu et al., 2008), resulting in loss of re-
lief; on the other hand, coarse-resolution cells could result
in inappropriately steep pressure gradients as a function of
Richards’ equation parameterization and pressure-dependent
permeability (Maxwell and Condon, 2016), and suitable ver-
tical length scales for Richards’ equations generally do not
exceed several meters (Or et al., 2015). This calls into ques-
tion the scalability of model physics; as Beven and Cloke
(2012) rightly point out, whether or not governing partial dif-
ferential equations will scale linearly is a concern. However,
the current governing equations for PFCONUSv1 are simply
the best currently known representation of hydrologic pro-
cesses at this scale.

Finally, process representation is certainly a concern.
Transient anthropogenic modules, such as urban hydrol-
ogy models, pumping and injections, or surface water di-
versions, are currently possible but add to computational
demand and require detailed historical data on water use
with temporal and spatial coverage simply not yet avail-
able. As a naturalized model, the PFCONUSv1 simulations
presented here will necessarily overpredict water tables and
baseflow in regions where extractions are apparent. For in-
stance, Maxwell and Condon (2016, supplemental informa-
tion) show streamflow examples at the Lees Ferry USGS
gauge, where timing and volume of streamflow are entirely
governed by dam hydraulics. Condon and Maxwell (2019)
show that incorporating a century of groundwater deple-
tion across the PFCONUSv1 domain considerably decreases
streamflow, with sensitivity to pumping concentrating down-
stream; more specifically, they found that long-term deple-
tions over the High Plains aquifer resulted in a swap of dis-

Geosci. Model Dev., 14, 7223–7254, 2021 https://doi.org/10.5194/gmd-14-7223-2021



M. M. F. O’Neill et al.: Assessment of the ParFlow–CLM CONUS 1.0 integrated hydrologic model 7249

charging to recharging groundwater. However, naturalized
continental models with high fidelity in non-anthropogenic
settings could be used to estimate impact from human influ-
ence simply by examining the difference between observed
and simulated conditions.

5 Conclusions and implications

In this study, we present the detailed evaluation of a tran-
sient, coupled hydrologic–land surface simulation at the con-
tinental scale and at hyper-resolution using a diverse set
of monitoring networks and state-of-the-art remote sensing
products. We found that PFCONUSv1 reproduced tempo-
ral patterns for continental-scale water budget components
with an accuracy of at least ρ= 0.5. The following are
50th percentile (in space, over the entire domain) Spear-
man’s rank correlations ρ for individual water balance com-
ponents: ρ50th= 0.65 for R, with evaluation against daily
USGS stream gauge observations; ρ50th= 0.72 for ET, with
evaluation against daily FLUXNET eddy covariance ob-
servations (for monthly HUC8-aggregated remote sensing
products, ρ50th= 0.85 for ET relative to MOD16A2 algo-
rithm, and ρ50th= 0.91 for ET relative to SSEBop algo-
rithm); ρ50th= 0.80 for major basin-aggregate S, with eval-
uation against monthly GRACE remote gravity field sens-
ing; ρ50th= 0.46 for filtered USGS well observations, which
are related but not equivalent to Sgw; ρ50th= 0.69 for ma-
jor basin-aggregate Ssoil, with evaluation against ESA CCI
weekly SM from active/passive microwave sensors (Up-
per Colorado is not excluded, but note the uncertainties in
ESA CCI over snow-covered, densely forested, and topo-
graphically complex land area); and ρ50th= 0.92 for Ssnow,
with evaluation against daily SNOTEL point observations.
In terms of temporally aggregated annual fluxes, which
represent long-term water budget component states, PF-
CONUSv1 simulates 50th percentile |PBIAS| of 41.3 % for
streamflow relative to USGS gauges: 14.2 % for ET rela-
tive to MOD16A2 and 13.2 % for ET relative to SSEBop
at the aggregated monthly and HUC8 scales, 37.9 % for
ET relative to FLUXNET sites, and 35.3 % for peak an-
nual SWE relative to SNOTEL locations. We also found
RSR for PFCONUSv1 performance at point locations, with
RSR50th= 0.92 at FLUXNET sites and RSR50th= 1.2 at
USGS streams, while RSR values for PFCONUSv1 relative
to MODIS products aggregated at the monthly and HUC8
scale are 0.85 and 0.47 for MOD16A2 and SSEBop, respec-
tively. Performance varies widely across the model domain,
with the eastern United States showing better overall perfor-
mance at USGS stream gauges and relative to MODIS re-
mote sensing products than the western US. In terms of S,
PFCONUSv1-simulated SM is best for the Tennessee, Ohio,
and Lower Colorado River basins relative to the spatially ag-
gregated ESACCI soil moisture product; total water storage
performance is best for the Upper Mississippi River basin

relative to the GRACE TWS anomaly products. Further, we
discussed three primary sources of model bias: terrain pro-
cessing, errors in atmospheric forcing, and lack of anthro-
pogenic influence.

The results presented here provide benefits to the high-
resolution, continental-scale (and above) hydrologic commu-
nity. First, our level of agreement with observations and re-
mote sensing products suggests great promise for extreme-
scale and high-resolution modeling to become a reality. We
argue that PFCONUSv1 and similar models are feasible and
will certainly see improvements in the near future with in-
creased availability of open-access and distributed datasets,
remote sensing advancements, improved monitoring net-
works, and advancements in highly parallelized computing.

Second, these results provide a guide for PFCONUS de-
velopment. Some areas for model improvement that were
immediately identified in this study include the following:
(1) the source of high positive bias in the Central Plains
should be further addressed. While we propose that this bias
is largely attributed to the lack of groundwater pumping in
the model (we estimate that at least 25 % of stream gauges
are impacted by High Plains aquifer depletions), other poten-
tial sources of error could include inappropriate soil or geol-
ogy hydraulic conductivity or van Genuchten parameters, the
lack of spatially distributed Manning’s coefficient (Maxwell
et al., 2015), or loss of topographic relief associated with
1 km lateral resolution. (2) We show that topographic pro-
cessing has resulted in considerable error in drainage area
for approximately 40 % of stream gauges. Accessible im-
provements could be made to streamflow bias with improved
topographic processing algorithms. And (3) interpolated at-
mospheric forcing from NLDAS reanalysis has two primary
biases that, if corrected with statistical bias correction or
other methods, would immediately benefit streamflow, ET,
and snow water equivalent. First, precipitation timing is lack-
ing in many areas of the domain, particularly over the Rocky
Mountain region. Second, mean nighttime air temperature
exhibits a high temperature bias, resulting in an underesti-
mated diurnal temperature fluctuation for the majority of the
domain. Average daytime maximum temperature is also un-
derestimated over the Rocky Mountains.

Finally, we argue that model fidelity can only be reliably
understood at a process-based level if all water balance com-
ponents available in the model outputs are evaluated. While
single-parameter validation may be effective for operational
forecasts, we do risk the equifinality dilemma of arriving
at the right answer for the wrong reasons (Kirchner, 2006).
The value in the type of validation exercise presented here is
clearly a mechanistic understanding of model performance
and a higher level of confidence in overall water balance
modeling skill. Further work should be done to continue to
incorporate additional observational and remote sensing net-
works as they become available. Also, while explicit com-
parisons with observations and simulations, like those pre-
sented here, are valuable, comparisons with other models are
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equally an asset used to build confidence in the plausibility
of parameterization, outputs, and their mechanistic relation-
ships. Gleeson et al. (2021) stress the importance of model
intercomparison projects, such as IH-MIP2 (Kollet et al.,
2017), as tools for model evaluation for global groundwater
simulations. Impressive model validation toolkits that exist in
the land surface community, such as the Land surface Valida-
tion Toolkit (LVT) (Kumar et al., 2012) and the International
Land Model Benchmarking (ILAMB) system (Collier et al.,
2018), as well as nascent model comparisons in the conti-
nental hydrology community, such as the Continental Hydro-
logic Intercomparison Project (CHIP) (Tijerina et al., 2021),
are inspiring collaborative efforts to streamline and standard-
ize model evaluation. We hope to take advantage of the LVT
and ILAMB platforms in the future to compare model per-
formance to other similar continental- and global-scale sim-
ulations, to standardize our model evaluation, and to add to
our existing observation datasets. Further work is also needed
to assess the scale gaps prevalent in observation and remote
sensing data. Specifically, point-scale observations sensitive
to small-scale heterogeneity, such as in situ soil moisture ob-
servations, are unlikely to be applicable to the 1 km scale,
resulting in commensurability errors (Gleeson et al., 2021);
conversely, we cannot guarantee that PFCONUSv1 outputs
scale linearly to coarser-resolution products and models. Im-
proved understanding of how model bias scales with loss of
spatial or temporal resolution is a vital area of research.

Code and data availability. ParFlow–CLM is an open-source, par-
allel, modular hydrologic model that is freely available on GitHub at
https://github.com/parflow/parflow.git (last access: 4 March 2021).
The version of ParFlow–CLM used in this study, v3.6, is archived
on Zenodo at https://doi.org/10.5281/zenodo.4639761 (Smith et al.,
2019). All data generated from the ParFlow–CLM CONUS config-
uration version 1.0 are available upon request. Given the consid-
erable storage demand (approximately 60 TB for 4 water years of
hourly data, including forcing and daily or monthly processed cli-
matologies), the model outputs are stored on a private server. The
authors will coordinate with the HydroFrame project team, funded
through the NSF Cyberinfrastructure for Sustained Scientific Inno-
vation (CSSI) project, to ultimately provide a FAIR-aligned, pub-
licly accessible data repository of all raw model results. A primary
objective of the HydroFrame project is to provide a platform for
users to freely access PFCONUS model results, as well as to sub-
set or modify inputs and forcing to locally run their own ParFlow–
CLM simulations. As HydroFrame capabilities develop and future
versions are completed, we plan to make PFCONUS results pub-
licly available through this platform.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-14-7223-2021-supplement.
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