Articles | Volume 14, issue 11
https://doi.org/10.5194/gmd-14-6893-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-6893-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
DRYP 1.0: a parsimonious hydrological model of DRYland Partitioning of the water balance
E. Andrés Quichimbo
CORRESPONDING AUTHOR
School of Earth and Environmental Sciences, Cardiff University,
Cardiff, CF10 3AT, UK
Michael Bliss Singer
School of Earth and Environmental Sciences, Cardiff University,
Cardiff, CF10 3AT, UK
Water Research Institute, Cardiff University, Cardiff, CF10 3AX, UK
Earth Research Institute, University of California Santa Barbara,
Santa Barbara, California, USA
Katerina Michaelides
School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS, UK
Earth Research Institute, University of California Santa Barbara,
Santa Barbara, California, USA
Cabot Institute for the Environment, University of Bristol, Bristol, BS8 1QU, UK
Daniel E. J. Hobley
School of Earth and Environmental Sciences, Cardiff University,
Cardiff, CF10 3AT, UK
ADAS RSK Ltd, Bristol, BS3 4EB, UK
Rafael Rosolem
Cabot Institute for the Environment, University of Bristol, Bristol, BS8 1QU, UK
Faculty of Engineering, University of Bristol, Clifton, BS8 1TR, UK
Mark O. Cuthbert
School of Earth and Environmental Sciences, Cardiff University,
Cardiff, CF10 3AT, UK
Water Research Institute, Cardiff University, Cardiff, CF10 3AX, UK
School of Civil and Environmental Engineering, The University of New
South Wales, Sydney, New South Wales, Australia
Related authors
Dagmawi Teklu Asfaw, Michael Bliss Singer, Rafael Rosolem, David MacLeod, Mark Cuthbert, Edisson Quichimbo Miguitama, Manuel F. Rios Gaona, and Katerina Michaelides
Geosci. Model Dev., 16, 557–571, https://doi.org/10.5194/gmd-16-557-2023, https://doi.org/10.5194/gmd-16-557-2023, 2023
Short summary
Short summary
stoPET is a new stochastic potential evapotranspiration (PET) generator for the globe at hourly resolution. Many stochastic weather generators are used to generate stochastic rainfall time series; however, no such model exists for stochastically generating plausible PET time series. As such, stoPET represents a significant methodological advance. stoPET generate many realizations of PET to conduct climate studies related to the water balance, agriculture, water resources, and ecology.
Solomon H. Gebrechorkos, Jian Peng, Ellen Dyer, Diego G. Miralles, Sergio M. Vicente-Serrano, Chris Funk, Hylke E. Beck, Dagmawi T. Asfaw, Michael B. Singer, and Simon J. Dadson
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-276, https://doi.org/10.5194/essd-2023-276, 2023
Preprint under review for ESSD
Short summary
Short summary
Drought is one of the most complex and major natural hazards and it has devastating impacts on the environment, economy, water resources, agriculture and society worldwide. High-resolution drought indices will help assess drought impacts at a global, regional and local scale thereby supporting the development of site-specific adaptation measures.
Eshrat Fatima, Rohini Kumar, Sabine Attinger, Maren Kaluza, Oldrich Rakovec, Corinna Rebmann, Rafael Rosolem, Sascha Oswald, Luis Samaniego, Steffen Zacharias, and Martin Schrön
EGUsphere, https://doi.org/10.5194/egusphere-2023-1548, https://doi.org/10.5194/egusphere-2023-1548, 2023
Short summary
Short summary
This study establishes a framework to incorporate cosmic-ray neutron measurements into the mesoscale Hydrological Model (mHM). We evaluate different approaches to estimate neutron counts within mHM, using the Desilets equation with uniformly and with non-uniformly weighted average soil moisture, and the physically-based code COSMIC. The data not only improved soil moisture simulations, but also the parameterization of evapotranspiration in the model.
Manuel Felipe Rios Gaona, Katerina Michaelides, and Michael Bliss Singer
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-98, https://doi.org/10.5194/gmd-2023-98, 2023
Preprint under review for GMD
Short summary
Short summary
STORM v.2 (short for STOchastic Rainfall Model version 2.0) is an open-source, and user-friendly modeling framework for simulating rainfall fields over a basin. It also allows simulating the impact of plausible climate change either on the total seasonal rainfall or the storm’s maximum intensity.
Dagmawi Teklu Asfaw, Michael Bliss Singer, Rafael Rosolem, David MacLeod, Mark Cuthbert, Edisson Quichimbo Miguitama, Manuel F. Rios Gaona, and Katerina Michaelides
Geosci. Model Dev., 16, 557–571, https://doi.org/10.5194/gmd-16-557-2023, https://doi.org/10.5194/gmd-16-557-2023, 2023
Short summary
Short summary
stoPET is a new stochastic potential evapotranspiration (PET) generator for the globe at hourly resolution. Many stochastic weather generators are used to generate stochastic rainfall time series; however, no such model exists for stochastically generating plausible PET time series. As such, stoPET represents a significant methodological advance. stoPET generate many realizations of PET to conduct climate studies related to the water balance, agriculture, water resources, and ecology.
Shiuan-An Chen, Katerina Michaelides, David A. Richards, and Michael Bliss Singer
Earth Surf. Dynam., 10, 1055–1078, https://doi.org/10.5194/esurf-10-1055-2022, https://doi.org/10.5194/esurf-10-1055-2022, 2022
Short summary
Short summary
Drainage basin erosion rates influence landscape evolution through controlling land surface lowering and sediment flux, but gaps remain in understanding their large-scale patterns and drivers between timescales. We analysed global erosion rates and show that long-term erosion rates are controlled by rainfall, former glacial processes, and basin landform, whilst human activities enhance short-term erosion rates. The results highlight the complex interplay of controls on land surface processes.
William Rust, John P. Bloomfield, Mark Cuthbert, Ron Corstanje, and Ian Holman
Hydrol. Earth Syst. Sci., 26, 2449–2467, https://doi.org/10.5194/hess-26-2449-2022, https://doi.org/10.5194/hess-26-2449-2022, 2022
Short summary
Short summary
We highlight the importance of the North Atlantic Oscillation in controlling droughts in the UK. Specifically, multi-year cycles in the NAO are shown to influence the frequency of droughts and this influence changes considerably over time. We show that the influence of these varying controls is similar to the projected effects of climate change on water resources. We also show that these time-varying behaviours have important implications for water resource forecasts used for drought planning.
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Short summary
Monitoring of increasingly frequent droughts is a prerequisite for climate adaptation strategies. This data paper presents long-term soil moisture measurements recorded by 66 cosmic-ray neutron sensors (CRNS) operated by 24 institutions and distributed across major climate zones in Europe. Data processing followed harmonized protocols and state-of-the-art methods to generate consistent and comparable soil moisture products and to facilitate continental-scale analysis of hydrological extremes.
Shaini Naha, Miguel Angel Rico-Ramirez, and Rafael Rosolem
Hydrol. Earth Syst. Sci., 25, 6339–6357, https://doi.org/10.5194/hess-25-6339-2021, https://doi.org/10.5194/hess-25-6339-2021, 2021
Short summary
Short summary
Rapid growth in population in developing countries leads to an increase in food demand, and as a consequence, percentages of land are being converted to cropland which alters river flow processes. This study describes how the hydrology of a flood-prone river basin in India would respond to the current and future changes in land cover. Our findings indicate that the recurrent flood events occurring in the basin might be influenced by these changes in land cover at the catchment scale.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Geosci. Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021, https://doi.org/10.5194/gmd-14-7545-2021, 2021
Short summary
Short summary
Groundwater is increasingly being included in large-scale (continental to global) land surface and hydrologic simulations. However, it is challenging to evaluate these simulations because groundwater is
hiddenunderground and thus hard to measure. We suggest using multiple complementary strategies to assess the performance of a model (
model evaluation).
Daniel Power, Miguel Angel Rico-Ramirez, Sharon Desilets, Darin Desilets, and Rafael Rosolem
Geosci. Model Dev., 14, 7287–7307, https://doi.org/10.5194/gmd-14-7287-2021, https://doi.org/10.5194/gmd-14-7287-2021, 2021
Short summary
Short summary
Cosmic-ray neutron sensors estimate root-zone soil moisture at sub-kilometre scales. There are national-scale networks of these sensors across the globe; however, methods for converting neutron signals to soil moisture values are inconsistent. This paper describes our open-source Python tool that processes raw sensor data into soil moisture estimates. The aim is to allow a user to ensure they have a harmonized data set, along with informative metadata, to facilitate both research and teaching.
Maria Magdalena Warter, Michael Bliss Singer, Mark O. Cuthbert, Dar Roberts, Kelly K. Caylor, Romy Sabathier, and John Stella
Hydrol. Earth Syst. Sci., 25, 3713–3729, https://doi.org/10.5194/hess-25-3713-2021, https://doi.org/10.5194/hess-25-3713-2021, 2021
Short summary
Short summary
Intensified drying of soil and grassland vegetation is raising the impact of fire severity and extent in Southern California. While browned grassland is a common sight during the dry season, this study has shown that there is a pronounced shift in the timing of senescence, due to changing climate conditions favoring milder winter temperatures and increased precipitation variability. Vegetation may be limited in its ability to adapt to these shifts, as drought periods become more frequent.
William Rust, Mark Cuthbert, John Bloomfield, Ron Corstanje, Nicholas Howden, and Ian Holman
Hydrol. Earth Syst. Sci., 25, 2223–2237, https://doi.org/10.5194/hess-25-2223-2021, https://doi.org/10.5194/hess-25-2223-2021, 2021
Short summary
Short summary
In this paper, we find evidence for the cyclical behaviour (on a 7-year basis) in UK streamflow records that match the main cycle of the North Atlantic Oscillation. Furthermore, we find that the strength of these 7-year cycles in streamflow is dependent on proportional contributions from groundwater and the response times of the underlying groundwater systems. This may allow for improvements to water management practices through better understanding of long-term streamflow behaviour.
Isaac Kipkemoi, Katerina Michaelides, Rafael Rosolem, and Michael Bliss Singer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-48, https://doi.org/10.5194/hess-2021-48, 2021
Manuscript not accepted for further review
Short summary
Short summary
The work is a novel investigation of the role of temporal rainfall resolution and intensity in affecting the water balance of soil in a dryland environment. This research has implications for what rainfall data are used to assess the impact of climate and climate change on the regional water balance. This information is critical for anticipating the impact of a changing climate on dryland communities globally who need it to know when to plant their seeds or where livestock pasture is available.
Gabriel C. Rau, Mark O. Cuthbert, R. Ian Acworth, and Philipp Blum
Hydrol. Earth Syst. Sci., 24, 6033–6046, https://doi.org/10.5194/hess-24-6033-2020, https://doi.org/10.5194/hess-24-6033-2020, 2020
Short summary
Short summary
This work provides an important generalisation of a previously developed method that quantifies subsurface barometric efficiency using the groundwater level response to Earth and atmospheric tides. The new approach additionally allows the quantification of hydraulic conductivity and specific storage. This enables improved and rapid assessment of subsurface processes and properties using standard pressure measurements.
Simon Opie, Richard G. Taylor, Chris M. Brierley, Mohammad Shamsudduha, and Mark O. Cuthbert
Earth Syst. Dynam., 11, 775–791, https://doi.org/10.5194/esd-11-775-2020, https://doi.org/10.5194/esd-11-775-2020, 2020
Short summary
Short summary
Knowledge of the relationship between climate and groundwater is limited and typically undermined by the scale, duration and accessibility of observations. Using monthly satellite measurements newly compiled over 14 years in the tropics and sub-tropics, we show that the imprint of precipitation history on groundwater, i.e. hydraulic memory, is longer in drylands than humid environments with important implications for the understanding and management of groundwater resources under climate change.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-378, https://doi.org/10.5194/hess-2020-378, 2020
Revised manuscript not accepted
Oliver R. Francis, Tristram C. Hales, Daniel E. J. Hobley, Xuanmei Fan, Alexander J. Horton, Gianvito Scaringi, and Runqiu Huang
Earth Surf. Dynam., 8, 579–593, https://doi.org/10.5194/esurf-8-579-2020, https://doi.org/10.5194/esurf-8-579-2020, 2020
Short summary
Short summary
Large earthquakes can build mountains by uplifting bedrock, but they also erode them by triggering large volumes of coseismic landsliding. Using a zero-dimensional numerical model, we identify that the storage of sediment produced by earthquakes can affect surface uplift and exhumation rates across the mountain range. However, the storage also reduces the time span at which the impact of the earthquake can be measured, preventing the recognition of single earthquakes in many long-term records.
Shaini Naha, Miguel A. Rico-Ramirez, and Rafael Rosolem
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-220, https://doi.org/10.5194/hess-2020-220, 2020
Manuscript not accepted for further review
Short summary
Short summary
Rapid growth in population in developing countries leads to an increase in food demand and as a consequence, percentages of land are being converted to cropland which alters the river flow processes. Therefore we try to understand the exact role of these changes in modifying the river flows through the prediction of the impacts of these changes in the future by taking a clue from the past. This study concludes that recurrent flood events might be influenced by these changes in future.
Katherine R. Barnhart, Eric W. H. Hutton, Gregory E. Tucker, Nicole M. Gasparini, Erkan Istanbulluoglu, Daniel E. J. Hobley, Nathan J. Lyons, Margaux Mouchene, Sai Siddhartha Nudurupati, Jordan M. Adams, and Christina Bandaragoda
Earth Surf. Dynam., 8, 379–397, https://doi.org/10.5194/esurf-8-379-2020, https://doi.org/10.5194/esurf-8-379-2020, 2020
Short summary
Short summary
Landlab is a Python package to support the creation of numerical models in Earth surface dynamics. Since the release of the 1.0 version in 2017, Landlab has grown and evolved: it contains 31 new process components, a refactored model grid, and additional utilities. This contribution describes the new elements of Landlab, discusses why certain backward-compatiblity-breaking changes were made, and reflects on the process of community open-source software development.
Romane Berthelin, Michael Rinderer, Bartolomé Andreo, Andy Baker, Daniela Kilian, Gabriele Leonhardt, Annette Lotz, Kurt Lichtenwoehrer, Matías Mudarra, Ingrid Y. Padilla, Fernando Pantoja Agreda, Rafael Rosolem, Abel Vale, and Andreas Hartmann
Geosci. Instrum. Method. Data Syst., 9, 11–23, https://doi.org/10.5194/gi-9-11-2020, https://doi.org/10.5194/gi-9-11-2020, 2020
Short summary
Short summary
We present the setup of a soil moisture monitoring network, which is implemented at five karstic sites with different climates across the globe. More than 400 soil moisture probes operating at a high spatio-temporal resolution will improve the understanding of groundwater recharge and evapotranspiration processes in karstic areas.
William Rust, Ian Holman, John Bloomfield, Mark Cuthbert, and Ron Corstanje
Hydrol. Earth Syst. Sci., 23, 3233–3245, https://doi.org/10.5194/hess-23-3233-2019, https://doi.org/10.5194/hess-23-3233-2019, 2019
Short summary
Short summary
We show that major groundwater resources in the UK exhibit strong multi-year cycles, accounting for up to 40 % of total groundwater level variability. By comparing these cycles with recorded widespread groundwater droughts over the past 60 years, we provide evidence that climatic systems (such as the North Atlantic Oscillation) ultimately drive drought-risk periods in UK groundwater. The recursive nature of these drought-risk periods may lead to improved preparedness for future droughts.
Seshagiri Rao Kolusu, Mohammad Shamsudduha, Martin C. Todd, Richard G. Taylor, David Seddon, Japhet J. Kashaigili, Girma Y. Ebrahim, Mark O. Cuthbert, James P. R. Sorensen, Karen G. Villholth, Alan M. MacDonald, and Dave A. MacLeod
Hydrol. Earth Syst. Sci., 23, 1751–1762, https://doi.org/10.5194/hess-23-1751-2019, https://doi.org/10.5194/hess-23-1751-2019, 2019
Thomas Turpin-Jelfs, Katerina Michaelides, Joel A. Biederman, and Alexandre M. Anesio
Biogeosciences, 16, 369–381, https://doi.org/10.5194/bg-16-369-2019, https://doi.org/10.5194/bg-16-369-2019, 2019
Short summary
Short summary
Increasing shrub cover promotes land degradation in semi-arid grasslands and has the potential to impact the soil nitrogen pool, which is essential to primary production. Our study showed that increasing shrub cover concentrates soil nitrogen into localised patches beneath shrub canopies. Further, we determined that increasing shrub cover inhibits inputs of nitrogen by the soil microbial community. Thus, we conclude this phenomenon can perturb nitrogen cycling in these ecosystems.
Fanny Sarrazin, Andreas Hartmann, Francesca Pianosi, Rafael Rosolem, and Thorsten Wagener
Geosci. Model Dev., 11, 4933–4964, https://doi.org/10.5194/gmd-11-4933-2018, https://doi.org/10.5194/gmd-11-4933-2018, 2018
Short summary
Short summary
We propose the first large-scale vegetation–recharge model for karst regions (V2Karst), which enables the analysis of the impact of changes in climate and land cover on karst groundwater recharge. We demonstrate the plausibility of V2Karst simulations against observations at FLUXNET sites and of controlling modelled processes using sensitivity analysis. We perform virtual experiments to further test the model and gain insight into its sensitivity to precipitation pattern and vegetation cover.
Michael Bliss Singer, Katerina Michaelides, and Daniel E. J. Hobley
Geosci. Model Dev., 11, 3713–3726, https://doi.org/10.5194/gmd-11-3713-2018, https://doi.org/10.5194/gmd-11-3713-2018, 2018
Short summary
Short summary
For various applications, a regional or local characterization of rainfall is required, particularly at the watershed scale, where there is spatial heterogeneity. Furthermore, simple models are needed that can simulate various scenarios of climate change including changes in seasonal wetness and rainstorm intensity. To this end, we have developed the STOchastic Rainstorm Model (STORM). We explain its developments and data requirements, and illustrate how it simulates rainstorms over a basin.
Gregory E. Tucker, Scott W. McCoy, and Daniel E. J. Hobley
Earth Surf. Dynam., 6, 563–582, https://doi.org/10.5194/esurf-6-563-2018, https://doi.org/10.5194/esurf-6-563-2018, 2018
Short summary
Short summary
This article presents a new technique for computer simulation of slope forms. The method provides a way to study how events that disturb soil or turn rock into soil add up over time to produce landforms. The model represents a cross section of a hypothetical landform as a lattice of cells, each of which may represent air, soil, or rock. Despite its simplicity, the model does a good job of simulating a range of common of natural slope forms.
Martin Schrön, Markus Köhli, Lena Scheiffele, Joost Iwema, Heye R. Bogena, Ling Lv, Edoardo Martini, Gabriele Baroni, Rafael Rosolem, Jannis Weimar, Juliane Mai, Matthias Cuntz, Corinna Rebmann, Sascha E. Oswald, Peter Dietrich, Ulrich Schmidt, and Steffen Zacharias
Hydrol. Earth Syst. Sci., 21, 5009–5030, https://doi.org/10.5194/hess-21-5009-2017, https://doi.org/10.5194/hess-21-5009-2017, 2017
Short summary
Short summary
A field-scale average of near-surface water content can be sensed by cosmic-ray neutron detectors. To interpret, calibrate, and validate the integral signal, it is important to account for its sensitivity to heterogeneous patterns like dry or wet spots. We show how point samples contribute to the neutron signal based on their depth and distance from the detector. This approach robustly improves the sensor performance and data consistency, and even reveals otherwise hidden hydrological features.
Joost Iwema, Rafael Rosolem, Mostaquimur Rahman, Eleanor Blyth, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 21, 2843–2861, https://doi.org/10.5194/hess-21-2843-2017, https://doi.org/10.5194/hess-21-2843-2017, 2017
Short summary
Short summary
We investigated whether the simulation of water flux from the land surface to the atmosphere (using the Joint UK Land Environment Simulator model) could be improved by replacing traditional soil moisture sensor data with data from the more novel Cosmic-Ray Neutron soil moisture sensor. Despite observed differences between the two types of soil moisture measurement data, we found no substantial differences in improvement in water flux estimation, based on multiple calibration experiments.
Jordan M. Adams, Nicole M. Gasparini, Daniel E. J. Hobley, Gregory E. Tucker, Eric W. H. Hutton, Sai S. Nudurupati, and Erkan Istanbulluoglu
Geosci. Model Dev., 10, 1645–1663, https://doi.org/10.5194/gmd-10-1645-2017, https://doi.org/10.5194/gmd-10-1645-2017, 2017
Short summary
Short summary
OverlandFlow is a 2-dimensional hydrology component contained within the Landlab modeling framework. It can be applied in both hydrology and geomorphology applications across real and synthetic landscape grids, for both short- and long-term events. This paper finds that this non-steady hydrology regime produces different landscape characteristics when compared to more traditional steady-state hydrology and geomorphology models, suggesting that hydrology regime can impact resulting morphologies.
Mostaquimur Rahman and Rafael Rosolem
Hydrol. Earth Syst. Sci., 21, 459–471, https://doi.org/10.5194/hess-21-459-2017, https://doi.org/10.5194/hess-21-459-2017, 2017
Short summary
Short summary
Modelling water flow through chalk (a fine-grained porous medium traversed by fractures) is important for optimizing water resource management practices in the UK. However, efficient simulations of water movement through chalk are difficult due to the porous nature of chalk, creating high-velocity preferential flow paths. This paper describes a novel approach to representing chalk hydrology in land surface modelling for large-scale applications.
Daniel E. J. Hobley, Jordan M. Adams, Sai Siddhartha Nudurupati, Eric W. H. Hutton, Nicole M. Gasparini, Erkan Istanbulluoglu, and Gregory E. Tucker
Earth Surf. Dynam., 5, 21–46, https://doi.org/10.5194/esurf-5-21-2017, https://doi.org/10.5194/esurf-5-21-2017, 2017
Short summary
Short summary
Many geoscientists use computer models to understand changes in the Earth's system. However, typically each scientist will build their own model from scratch. This paper describes Landlab, a new piece of open-source software designed to simplify creation and use of models of the Earth's surface. It provides off-the-shelf tools to work with models more efficiently, with less duplication of effort. The paper explains and justifies how Landlab works, and describes some models built with it.
Gregory E. Tucker, Daniel E. J. Hobley, Eric Hutton, Nicole M. Gasparini, Erkan Istanbulluoglu, Jordan M. Adams, and Sai Siddartha Nudurupati
Geosci. Model Dev., 9, 823–839, https://doi.org/10.5194/gmd-9-823-2016, https://doi.org/10.5194/gmd-9-823-2016, 2016
Short summary
Short summary
This paper presents a new Python-language software library, called CellLab-CTS, that enables rapid creation of continuous-time stochastic (CTS) cellular automata models. These models are quite useful for simulating the behavior of natural systems, but can be time-consuming to program. CellLab-CTS allows users to set up models with a minimum of effort, and thereby focus on the science rather than the software.
C. E. M. Lloyd, K. Michaelides, D. R. Chadwick, J. A. J. Dungait, and R. P. Evershed
Biogeosciences, 13, 551–566, https://doi.org/10.5194/bg-13-551-2016, https://doi.org/10.5194/bg-13-551-2016, 2016
Short summary
Short summary
Our interdisciplinary research brings together methodologies from hydrology, soil science and biogeochemistry to address key questions about the transport of cattle slurry in the environment. The paper provides a novel approach to trace dissolved and particulate components of cattle slurry through an experimental hillslope system. This work provides one of the first examples of using biomarkers to assess the effects of slope gradient and rainfall intensity on the movement of slurry derived-OM.
A. F. Charteris, T. D. J. Knowles, K. Michaelides, and R. P. Evershed
SOIL Discuss., https://doi.org/10.5194/soild-2-1135-2015, https://doi.org/10.5194/soild-2-1135-2015, 2015
Manuscript not accepted for further review
X. Han, X. Li, G. He, P. Kumbhar, C. Montzka, S. Kollet, T. Miyoshi, R. Rosolem, Y. Zhang, H. Vereecken, and H.-J. H. Franssen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-8-7395-2015, https://doi.org/10.5194/gmdd-8-7395-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
DasPy is a ready to use open source parallel multivariate land data assimilation framework with joint state and parameter estimation using Local Ensemble Transform Kalman Filter. The Community Land Model (4.5) was integrated as model operator. The Community Microwave Emission Modelling platform, COsmic-ray Soil Moisture Interaction Code and the Two-Source Formulation were integrated as observation operators for the multivariate assimilation of soil moisture and soil temperature, respectively.
J. Iwema, R. Rosolem, R. Baatz, T. Wagener, and H. R. Bogena
Hydrol. Earth Syst. Sci., 19, 3203–3216, https://doi.org/10.5194/hess-19-3203-2015, https://doi.org/10.5194/hess-19-3203-2015, 2015
Short summary
Short summary
The cosmic-ray neutron sensor can provide soil moisture content averages over areas of roughly half a kilometre by half a kilometre. Although this sensor is usually calibrated using soil samples taken on a single day, we found that multiple sampling days are needed. The calibration results were also affected by the soil wetness conditions of the sampling days. The outcome of this study will help researchers to calibrate/validate new cosmic-ray neutron sensor sites more accurately.
P. T. S. Oliveira, E. Wendland, M. A. Nearing, R. L. Scott, R. Rosolem, and H. R. da Rocha
Hydrol. Earth Syst. Sci., 19, 2899–2910, https://doi.org/10.5194/hess-19-2899-2015, https://doi.org/10.5194/hess-19-2899-2015, 2015
Short summary
Short summary
We determined the main components of the water balance for an undisturbed cerrado.
Evapotranspiration ranged from 1.91 to 2.60mm per day for the dry and wet seasons, respectively. Canopy interception ranged from 4 to 20% and stemflow values were approximately 1% of gross precipitation.
The average runoff coefficient was less than 1%, while cerrado deforestation has the potential to increase that amount up to 20-fold.
The water storage may be estimated by the difference between P and ET.
A. Hartmann, T. Gleeson, R. Rosolem, F. Pianosi, Y. Wada, and T. Wagener
Geosci. Model Dev., 8, 1729–1746, https://doi.org/10.5194/gmd-8-1729-2015, https://doi.org/10.5194/gmd-8-1729-2015, 2015
Short summary
Short summary
We present a new approach to assess karstic groundwater recharge over Europe and the Mediterranean. Cluster analysis is used to subdivide all karst regions into four typical karst landscapes and to simulate karst recharge with a process-based karst model. We estimate its parameters by a combination of a priori information and observations of soil moisture and evapotranspiration. Independent observations of recharge that present large-scale models significantly under-estimate karstic recharge.
X. Han, H.-J. H. Franssen, R. Rosolem, R. Jin, X. Li, and H. Vereecken
Hydrol. Earth Syst. Sci., 19, 615–629, https://doi.org/10.5194/hess-19-615-2015, https://doi.org/10.5194/hess-19-615-2015, 2015
Short summary
Short summary
This paper presents the joint assimilation of cosmic-ray neutron counts and land surface temperature with parameter estimation of leaf area index at an irrigated corn field. The results show that the data assimilation can reduce the systematic input errors due to the lack of irrigation data. The estimations of soil moisture, evapotranspiration and leaf area index can be improved in the joint assimilation framework.
R. Rosolem, T. Hoar, A. Arellano, J. L. Anderson, W. J. Shuttleworth, X. Zeng, and T. E. Franz
Hydrol. Earth Syst. Sci., 18, 4363–4379, https://doi.org/10.5194/hess-18-4363-2014, https://doi.org/10.5194/hess-18-4363-2014, 2014
J. Shuttleworth, R. Rosolem, M. Zreda, and T. Franz
Hydrol. Earth Syst. Sci., 17, 3205–3217, https://doi.org/10.5194/hess-17-3205-2013, https://doi.org/10.5194/hess-17-3205-2013, 2013
T. E. Franz, M. Zreda, R. Rosolem, and T. P. A. Ferre
Hydrol. Earth Syst. Sci., 17, 453–460, https://doi.org/10.5194/hess-17-453-2013, https://doi.org/10.5194/hess-17-453-2013, 2013
Related subject area
Hydrology
Enhancing the representation of water management in global hydrological models
NEOPRENE v1.0.1: a Python library for generating spatial rainfall based on the Neyman–Scott process
Uncertainty estimation for a new exponential-filter-based long-term root-zone soil moisture dataset from Copernicus Climate Change Service (C3S) surface observations
Validating the Nernst–Planck transport model under reaction-driven flow conditions using RetroPy v1.0
DynQual v1.0: a high-resolution global surface water quality model
Data space inversion for efficient uncertainty quantification using an integrated surface and sub-surface hydrologic model
Simulation of crop yield using the global hydrological model H08 (crp.v1)
How is a global sensitivity analysis of a catchment-scale, distributed pesticide transfer model performed? Application to the PESHMELBA model
iHydroSlide3D v1.0: an advanced hydrological–geotechnical model for hydrological simulation and three-dimensional landslide prediction
GEB v0.1: a large-scale agent-based socio-hydrological model – simulating 10 million individual farming households in a fully distributed hydrological model
Tracing and visualisation of contributing water sources in the LISFLOOD-FP model of flood inundation (within CAESAR-Lisflood version 1.9j-WS)
pyESDv1.0.1: An open-source Python framework for empirical-statistical downscaling of climate information
Continental-scale evaluation of a fully distributed coupled land surface and groundwater model, ParFlow-CLM (v3.6.0), over Europe
Evaluating a global soil moisture dataset from a multitask model (GSM3 v1.0) with potential applications for crop threats
SERGHEI (SERGHEI-SWE) v1.0: a performance-portable high-performance parallel-computing shallow-water solver for hydrology and environmental hydraulics
A simple, efficient, mass-conservative approach to solving Richards' equation (openRE, v1.0)
Customized deep learning for precipitation bias correction and downscaling
Implementation and sensitivity analysis of the Dam-Reservoir OPeration model (DROP v1.0) over Spain
Regional coupled surface–subsurface hydrological model fitting based on a spatially distributed minimalist reduction of frequency domain discharge data
Representing the impact of Rhizophora mangroves on flow and sediment transport in a hydrodynamic model (COAWST_rh v1.0): the importance of three-dimensional root system structures
Operational water forecast ability of the HRRR-iSnobal combination: an evaluation to adapt into production environments
Dynamic weighted ensemble of geoscientific models via automated machine learning-based classification
Prediction of algal blooms via data-driven machine learning models: an evaluation using data from a well-monitored mesotrophic lake
UniFHy v0.1.1: a community modelling framework for the terrestrial water cycle in Python
mesas.py v1.0: A flexible Python package for modeling solute transport and transit times using StorAge Selection functions
Basin-scale gyres and mesoscale eddies in large lakes: a novel procedure for their detection and characterization, assessed in Lake Geneva
SIMO v1.0: simplified model of the vertical temperature profile in a small, warm, monomictic lake
Thermal modeling of three lakes within the continuous permafrost zone in Alaska using the LAKE 2.0 model
Water balance model (WBM) v.1.0.0: a scalable gridded global hydrologic model with water-tracking functionality
Coupling a large-scale hydrological model (CWatM v1.1) with a high-resolution groundwater flow model (MODFLOW 6) to assess the impact of irrigation at regional scale
RavenR v2.1.4: an open-source R package to support flexible hydrologic modelling
Developing a parsimonious canopy model (PCM v1.0) to predict forest gross primary productivity and leaf area index of deciduous broad-leaved forest
Synergy between satellite observations of soil moisture and water storage anomalies for runoff estimation
A physically based distributed karst hydrological model (QMG model-V1.0) for flood simulations
Modular Assessment of Rainfall–Runoff Models Toolbox (MARRMoT) v2.1: an object-oriented implementation of 47 established hydrological models for improved speed and readability
CREST-VEC: a framework towards more accurate and realistic flood simulation across scales
Rad-cGAN v1.0: Radar-based precipitation nowcasting model with conditional generative adversarial networks for multiple dam domains
The eWaterCycle platform for open and FAIR hydrological collaboration
Evaluating the Atibaia River hydrology using JULES6.1
A framework for ensemble modelling of climate change impacts on lakes worldwide: the ISIMIP Lake Sector
CLIMFILL v0.9: a framework for intelligently gap filling Earth observations
Modeling subgrid lake energy balance in ORCHIDEE terrestrial scheme using the FLake lake model
Evaluating a reservoir parametrization in the vector-based global routing model mizuRoute (v2.0.1) for Earth system model coupling
Improved runoff simulations for a highly varying soil depth and complex terrain watershed in the Loess Plateau with the Community Land Model version 5
GSTools v1.3: a toolbox for geostatistical modelling in Python
AI4Water v1.0: an open-source python package for modeling hydrological time series using data-driven methods
Modeling of streamflow in a 30 km long reach spanning 5 years using OpenFOAM 5.x
Tree hydrodynamic modelling of the soil–plant–atmosphere continuum using FETCH3
Effects of dimensionality on the performance of hydrodynamic models for stratified lakes and reservoirs
Computation of backwater effects in surface waters of lowland catchments including control structures – an efficient and re-usable method implemented in the hydrological open-source model Kalypso-NA (4.0)
Guta Wakbulcho Abeshu, Fuqiang Tian, Thomas Wild, Mengqi Zhao, Sean Turner, A. F. M. Kamal Chowdhury, Chris R. Vernon, Hongchang Hu, Yuan Zhuang, Mohamad Hejazi, and Hong-Yi Li
Geosci. Model Dev., 16, 5449–5472, https://doi.org/10.5194/gmd-16-5449-2023, https://doi.org/10.5194/gmd-16-5449-2023, 2023
Short summary
Short summary
Most existing global hydrologic models do not explicitly represent hydropower reservoirs. We are introducing a new water management module to Xanthos that distinguishes between the operational characteristics of irrigation, hydropower, and flood control reservoirs. We show that this explicit representation of hydropower reservoirs can lead to a significantly more realistic simulation of reservoir storage and releases in over 44 % of the hydropower reservoirs included in this study.
Javier Diez-Sierra, Salvador Navas, and Manuel del Jesus
Geosci. Model Dev., 16, 5035–5048, https://doi.org/10.5194/gmd-16-5035-2023, https://doi.org/10.5194/gmd-16-5035-2023, 2023
Short summary
Short summary
NEOPRENE is an open-source, freely available library allowing scientists and practitioners to generate synthetic time series and maps of rainfall. These outputs will help to explore plausible events that were never observed in the past but may occur in the near future and to generate possible future events under climate change conditions. The paper shows how to use the library to downscale daily precipitation and how to use synthetic generation to improve our characterization of extreme events.
Adam Pasik, Alexander Gruber, Wolfgang Preimesberger, Domenico De Santis, and Wouter Dorigo
Geosci. Model Dev., 16, 4957–4976, https://doi.org/10.5194/gmd-16-4957-2023, https://doi.org/10.5194/gmd-16-4957-2023, 2023
Short summary
Short summary
We apply the exponential filter (EF) method to satellite soil moisture retrievals to estimate the water content in the unobserved root zone globally from 2002–2020. Quality assessment against an independent dataset shows satisfactory results. Error characterization is carried out using the standard uncertainty propagation law and empirically estimated values of EF model structural uncertainty and parameter uncertainty. This is followed by analysis of temporal uncertainty variations.
Po-Wei Huang, Bernd Flemisch, Chao-Zhong Qin, Martin O. Saar, and Anozie Ebigbo
Geosci. Model Dev., 16, 4767–4791, https://doi.org/10.5194/gmd-16-4767-2023, https://doi.org/10.5194/gmd-16-4767-2023, 2023
Short summary
Short summary
Water in natural environments consists of many ions. Ions are electrically charged and exert electric forces on each other. We discuss whether the electric forces are relevant in describing mixing and reaction processes in natural environments. By comparing our computer simulations to lab experiments in literature, we show that the electric interactions between ions can play an essential role in mixing and reaction processes, in which case they should not be neglected in numerical modeling.
Edward R. Jones, Marc F. P. Bierkens, Niko Wanders, Edwin H. Sutanudjaja, Ludovicus P. H. van Beek, and Michelle T. H. van Vliet
Geosci. Model Dev., 16, 4481–4500, https://doi.org/10.5194/gmd-16-4481-2023, https://doi.org/10.5194/gmd-16-4481-2023, 2023
Short summary
Short summary
DynQual is a new high-resolution global water quality model for simulating total dissolved solids, biological oxygen demand and fecal coliform as indicators of salinity, organic pollution and pathogen pollution, respectively. Output data from DynQual can supplement the observational record of water quality data, which is highly fragmented across space and time, and has the potential to inform assessments in a broad range of fields including ecological, human health and water scarcity studies.
Hugo Delottier, John Doherty, and Philip Brunner
Geosci. Model Dev., 16, 4213–4231, https://doi.org/10.5194/gmd-16-4213-2023, https://doi.org/10.5194/gmd-16-4213-2023, 2023
Short summary
Short summary
Long run times are usually a barrier to the quantification and reduction of predictive uncertainty with complex hydrological models. Data space inversion (DSI) provides an alternative and highly model-run-efficient method for uncertainty quantification. This paper demonstrates DSI's ability to robustly quantify predictive uncertainty and extend the methodology to provide practical metrics that can guide data acquisition and analysis to achieve goals of decision-support modelling.
Zhipin Ai and Naota Hanasaki
Geosci. Model Dev., 16, 3275–3290, https://doi.org/10.5194/gmd-16-3275-2023, https://doi.org/10.5194/gmd-16-3275-2023, 2023
Short summary
Short summary
Simultaneously simulating food production and the requirements and availability of water resources in a spatially explicit manner within a single framework remains challenging on a global scale. Here, we successfully enhanced the global hydrological model H08 that considers human water use and management to simulate the yields of four major staple crops: maize, wheat, rice, and soybean. Our improved model will be beneficial for advancing global food–water nexus studies in the future.
Emilie Rouzies, Claire Lauvernet, Bruno Sudret, and Arthur Vidard
Geosci. Model Dev., 16, 3137–3163, https://doi.org/10.5194/gmd-16-3137-2023, https://doi.org/10.5194/gmd-16-3137-2023, 2023
Short summary
Short summary
Water and pesticide transfer models are complex and should be simplified to be used in decision support. Indeed, these models simulate many spatial processes in interaction, involving a large number of parameters. Sensitivity analysis allows us to select the most influential input parameters, but it has to be adapted to spatial modelling. This study will identify relevant methods that can be transposed to any hydrological and water quality model and improve the fate of pesticide knowledge.
Guoding Chen, Ke Zhang, Sheng Wang, Yi Xia, and Lijun Chao
Geosci. Model Dev., 16, 2915–2937, https://doi.org/10.5194/gmd-16-2915-2023, https://doi.org/10.5194/gmd-16-2915-2023, 2023
Short summary
Short summary
In this study, we developed a novel modeling system called iHydroSlide3D v1.0 by coupling a modified a 3D landslide model with a distributed hydrology model. The model is able to apply flexibly different simulating resolutions for hydrological and slope stability submodules and gain a high computational efficiency through parallel computation. The test results in the Yuehe River basin, China, show a good predicative capability for cascading flood–landslide events.
Jens A. de Bruijn, Mikhail Smilovic, Peter Burek, Luca Guillaumot, Yoshihide Wada, and Jeroen C. J. H. Aerts
Geosci. Model Dev., 16, 2437–2454, https://doi.org/10.5194/gmd-16-2437-2023, https://doi.org/10.5194/gmd-16-2437-2023, 2023
Short summary
Short summary
We present a computer simulation model of the hydrological system and human system, which can simulate the behaviour of individual farmers and their interactions with the water system at basin scale to assess how the systems have evolved and are projected to evolve in the future. For example, we can simulate the effect of subsidies provided on investment in adaptation measures and subsequent effects in the hydrological system, such as a lowering of the groundwater table or reservoir level.
Matthew D. Wilson and Thomas J. Coulthard
Geosci. Model Dev., 16, 2415–2436, https://doi.org/10.5194/gmd-16-2415-2023, https://doi.org/10.5194/gmd-16-2415-2023, 2023
Short summary
Short summary
During flooding, the sources of water that inundate a location can influence impacts such as pollution. However, methods to trace water sources in flood events are currently only available in complex, computationally expensive hydraulic models. We propose a simplified method which can be added to efficient, reduced-complexity model codes, enabling an improved understanding of flood dynamics and its impacts. We demonstrate its application for three sites at a range of spatial and temporal scales.
Daniel Boateng and Sebastian G. Mutz
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-67, https://doi.org/10.5194/gmd-2023-67, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
We present an open-source python framework for performing empirical statistical downscaling of climate information, such as precipitation. The user-friendly package comprises all the downscaling cycles including data preparation, model selection, training, and evaluation, designed in an efficient and flexible manner, allowing for quick and reproducible downscaling products. The framework would contribute to climate change impact assessments by generating high-resolution accurate climate data.
Bibi S. Naz, Wendy Sharples, Yueling Ma, Klaus Goergen, and Stefan Kollet
Geosci. Model Dev., 16, 1617–1639, https://doi.org/10.5194/gmd-16-1617-2023, https://doi.org/10.5194/gmd-16-1617-2023, 2023
Short summary
Short summary
It is challenging to apply a high-resolution integrated land surface and groundwater model over large spatial scales. In this paper, we demonstrate the application of such a model over a pan-European domain at 3 km resolution and perform an extensive evaluation of simulated water states and fluxes by comparing with in situ and satellite data. This study can serve as a benchmark and baseline for future studies of climate change impact projections and for hydrological forecasting.
Jiangtao Liu, David Hughes, Farshid Rahmani, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 16, 1553–1567, https://doi.org/10.5194/gmd-16-1553-2023, https://doi.org/10.5194/gmd-16-1553-2023, 2023
Short summary
Short summary
Under-monitored regions like Africa need high-quality soil moisture predictions to help with food production, but it is not clear if soil moisture processes are similar enough around the world for data-driven models to maintain accuracy. We present a deep-learning-based soil moisture model that learns from both in situ data and satellite data and performs better than satellite products at the global scale. These results help us apply our model globally while better understanding its limitations.
Daniel Caviedes-Voullième, Mario Morales-Hernández, Matthew R. Norman, and Ilhan Özgen-Xian
Geosci. Model Dev., 16, 977–1008, https://doi.org/10.5194/gmd-16-977-2023, https://doi.org/10.5194/gmd-16-977-2023, 2023
Short summary
Short summary
This paper introduces the SERGHEI framework and a solver for shallow-water problems. Such models, often used for surface flow and flood modelling, are computationally intense. In recent years the trends to increase computational power have changed, requiring models to adapt to new hardware and new software paradigms. SERGHEI addresses these challenges, allowing surface flow simulation to be enabled on the newest and upcoming consumer hardware and supercomputers very efficiently.
Andrew M. Ireson, Raymond J. Spiteri, Martyn P. Clark, and Simon A. Mathias
Geosci. Model Dev., 16, 659–677, https://doi.org/10.5194/gmd-16-659-2023, https://doi.org/10.5194/gmd-16-659-2023, 2023
Short summary
Short summary
Richards' equation (RE) is used to describe the movement and storage of water in a soil profile and is a component of many hydrological and earth-system models. Solving RE numerically is challenging due to the non-linearities in the properties. Here, we present a simple but effective and mass-conservative solution to solving RE, which is ideal for teaching/learning purposes but also useful in prototype models that are used to explore alternative process representations.
Fang Wang, Di Tian, and Mark Carroll
Geosci. Model Dev., 16, 535–556, https://doi.org/10.5194/gmd-16-535-2023, https://doi.org/10.5194/gmd-16-535-2023, 2023
Short summary
Short summary
Gridded precipitation datasets suffer from biases and coarse resolutions. We developed a customized deep learning (DL) model to bias-correct and downscale gridded precipitation data using radar observations. The results showed that the customized DL model can generate improved precipitation at fine resolutions where regular DL and statistical methods experience challenges. The new model can be used to improve precipitation estimates, especially for capturing extremes at smaller scales.
Malak Sadki, Simon Munier, Aaron Boone, and Sophie Ricci
Geosci. Model Dev., 16, 427–448, https://doi.org/10.5194/gmd-16-427-2023, https://doi.org/10.5194/gmd-16-427-2023, 2023
Short summary
Short summary
Predicting water resource evolution is a key challenge for the coming century.
Anthropogenic impacts on water resources, and particularly the effects of dams and reservoirs on river flows, are still poorly known and generally neglected in global hydrological studies. A parameterized reservoir model is reproduced to compute monthly releases in Spanish anthropized river basins. For global application, an exhaustive sensitivity analysis of the model parameters is performed on flows and volumes.
Nicolas Flipo, Nicolas Gallois, and Jonathan Schuite
Geosci. Model Dev., 16, 353–381, https://doi.org/10.5194/gmd-16-353-2023, https://doi.org/10.5194/gmd-16-353-2023, 2023
Short summary
Short summary
A new approach is proposed to fit hydrological or land surface models, which suffer from large uncertainties in terms of water partitioning between fast runoff and slow infiltration from small watersheds to regional or continental river basins. It is based on the analysis of hydrosystem behavior in the frequency domain, which serves as a basis for estimating water flows in the time domain with a physically based model. It opens the way to significant breakthroughs in hydrological modeling.
Masaya Yoshikai, Takashi Nakamura, Eugene C. Herrera, Rempei Suwa, Rene Rollon, Raghab Ray, Keita Furukawa, and Kazuo Nadaoka
EGUsphere, https://doi.org/10.5194/egusphere-2022-1350, https://doi.org/10.5194/egusphere-2022-1350, 2023
Short summary
Short summary
Due to complex root system structures, representing the impacts of Rhizophora mangroves on flow and sediment transport in hydrodynamic models has been challenging. This study presents a new drag and turbulence model that leverages an empirical model for root systems. The model can be applied without rigorous measurements of root structures and showed high performance in flow simulations, which may provide a better understanding of sedimentary processes in Rhizophora mangrove forests.
Joachim Meyer, John Horel, Patrick Kormos, Andrew Hedrick, Ernesto Trujillo, and S. McKenzie Skiles
Geosci. Model Dev., 16, 233–250, https://doi.org/10.5194/gmd-16-233-2023, https://doi.org/10.5194/gmd-16-233-2023, 2023
Short summary
Short summary
Freshwater resupply from seasonal snow in the mountains is changing. Current water prediction methods from snow rely on historical data excluding the change and can lead to errors. This work presented and evaluated an alternative snow-physics-based approach. The results in a test watershed were promising, and future improvements were identified. Adaptation to current forecast environments would improve resilience to the seasonal snow changes and helps ensure the accuracy of resupply forecasts.
Hao Chen, Tiejun Wang, Yonggen Zhang, Yun Bai, and Xi Chen
EGUsphere, https://doi.org/10.5194/egusphere-2022-1326, https://doi.org/10.5194/egusphere-2022-1326, 2023
Short summary
Short summary
Effectively assembling multiple models for approaching a benchmark solution remains a long-standing issue for various geoscience domains. We here proposed an automated machine learning-assisted ensemble framework (AutoML-Ens) that attempts to resolve this challenge. Results demonstrated the great potential of AutoML-Ens for improving estimations due to its two unique features, i.e., assigning dynamic weights for candidate models and taking full advantage of AutoML-assisted workflow.
Shuqi Lin, Donald C. Pierson, and Jorrit P. Mesman
Geosci. Model Dev., 16, 35–46, https://doi.org/10.5194/gmd-16-35-2023, https://doi.org/10.5194/gmd-16-35-2023, 2023
Short summary
Short summary
The risks brought by the proliferation of algal blooms motivate the improvement of bloom forecasting tools, but algal blooms are complexly controlled and difficult to predict. Given rapid growth of monitoring data and advances in computation, machine learning offers an alternative prediction methodology. This study tested various machine learning workflows in a dimictic mesotrophic lake and gave promising predictions of the seasonal variations and the timing of algal blooms.
Thibault Hallouin, Richard J. Ellis, Douglas B. Clark, Simon J. Dadson, Andrew G. Hughes, Bryan N. Lawrence, Grenville M. S. Lister, and Jan Polcher
Geosci. Model Dev., 15, 9177–9196, https://doi.org/10.5194/gmd-15-9177-2022, https://doi.org/10.5194/gmd-15-9177-2022, 2022
Short summary
Short summary
A new framework for modelling the water cycle in the land system has been implemented. It considers the hydrological cycle as three interconnected components, bringing flexibility in the choice of the physical processes and their spatio-temporal resolutions. It is designed to foster collaborations between land surface, hydrological, and groundwater modelling communities to develop the next-generation of land system models for integration in Earth system models.
Ciaran Harman and Esther Xu Fei
EGUsphere, https://doi.org/10.5194/egusphere-2022-1262, https://doi.org/10.5194/egusphere-2022-1262, 2022
Short summary
Short summary
Over the last 10 years scientists have developed a new way of modeling how material is transported through complex systems, called StorAge Selection. Here we present some new code implementing this method that is easy to use, but also flexible and very accurate. We show that for cases where we know exactly what the answer should be, our code gets the right answer. We also show that our code is closer than some other people's code to the right answer in an important way: it conserves mass.
Seyed Mahmood Hamze-Ziabari, Ulrich Lemmin, Frédéric Soulignac, Mehrshad Foroughan, and David Andrew Barry
Geosci. Model Dev., 15, 8785–8807, https://doi.org/10.5194/gmd-15-8785-2022, https://doi.org/10.5194/gmd-15-8785-2022, 2022
Short summary
Short summary
A procedure combining numerical simulations, remote sensing, and statistical analyses is developed to detect large-scale current systems in large lakes. By applying this novel procedure in Lake Geneva, strategies for detailed transect field studies of the gyres and eddies were developed. Unambiguous field evidence of 3D gyre/eddy structures in full agreement with predictions confirmed the robustness of the proposed procedure.
Kristina Šarović, Melita Burić, and Zvjezdana B. Klaić
Geosci. Model Dev., 15, 8349–8375, https://doi.org/10.5194/gmd-15-8349-2022, https://doi.org/10.5194/gmd-15-8349-2022, 2022
Short summary
Short summary
We develop a simple 1-D model for the prediction of the vertical temperature profiles in small, warm lakes. The model uses routinely measured meteorological variables as well as UVB radiation and yearly mean temperature data. It can be used for the assessment of the onset and duration of lake stratification periods when water temperature data are unavailable, which can be useful for various lake studies performed in other scientific fields, such as biology, geochemistry, and sedimentology.
Jason A. Clark, Elchin E. Jafarov, Ken D. Tape, Benjamin M. Jones, and Victor Stepanenko
Geosci. Model Dev., 15, 7421–7448, https://doi.org/10.5194/gmd-15-7421-2022, https://doi.org/10.5194/gmd-15-7421-2022, 2022
Short summary
Short summary
Lakes in the Arctic are important reservoirs of heat. Under climate warming scenarios, we expect Arctic lakes to warm the surrounding frozen ground. We simulate water temperatures in three Arctic lakes in northern Alaska over several years. Our results show that snow depth and lake ice strongly affect water temperatures during the frozen season and that more heat storage by lakes would enhance thawing of frozen ground.
Danielle S. Grogan, Shan Zuidema, Alex Prusevich, Wilfred M. Wollheim, Stanley Glidden, and Richard B. Lammers
Geosci. Model Dev., 15, 7287–7323, https://doi.org/10.5194/gmd-15-7287-2022, https://doi.org/10.5194/gmd-15-7287-2022, 2022
Short summary
Short summary
This paper describes the University of New Hampshire's water balance model (WBM). This model simulates the land surface components of the global water cycle and includes water extractions for use by humans for agricultural, domestic, and industrial purposes. A new feature is described that permits water source tracking through the water cycle, which has implications for water resource management. This paper was written to describe a long-used model and presents its first open-source version.
Luca Guillaumot, Mikhail Smilovic, Peter Burek, Jens de Bruijn, Peter Greve, Taher Kahil, and Yoshihide Wada
Geosci. Model Dev., 15, 7099–7120, https://doi.org/10.5194/gmd-15-7099-2022, https://doi.org/10.5194/gmd-15-7099-2022, 2022
Short summary
Short summary
We develop and test the first large-scale hydrological model at regional scale with a very high spatial resolution that includes a water management and groundwater flow model. This study infers the impact of surface and groundwater-based irrigation on groundwater recharge and on evapotranspiration in both irrigated and non-irrigated areas. We argue that water table recorded in boreholes can be used as validation data if water management is well implemented and spatial resolution is ≤ 100 m.
Robert Chlumsky, James R. Craig, Simon G. M. Lin, Sarah Grass, Leland Scantlebury, Genevieve Brown, and Rezgar Arabzadeh
Geosci. Model Dev., 15, 7017–7030, https://doi.org/10.5194/gmd-15-7017-2022, https://doi.org/10.5194/gmd-15-7017-2022, 2022
Short summary
Short summary
We introduce the open-source RavenR package, which has been built to support the use of the hydrologic modelling framework Raven. The R package contains many functions that may be useful in each step of the model-building process, including preparing model input files, running the model, and analyzing the outputs. We present six reproducible use cases of the RavenR package for the Liard River basin in Canada to demonstrate how it may be deployed.
Bahar Bahrami, Anke Hildebrandt, Stephan Thober, Corinna Rebmann, Rico Fischer, Luis Samaniego, Oldrich Rakovec, and Rohini Kumar
Geosci. Model Dev., 15, 6957–6984, https://doi.org/10.5194/gmd-15-6957-2022, https://doi.org/10.5194/gmd-15-6957-2022, 2022
Short summary
Short summary
Leaf area index (LAI) and gross primary productivity (GPP) are crucial components to carbon cycle, and are closely linked to water cycle in many ways. We develop a Parsimonious Canopy Model (PCM) to simulate GPP and LAI at stand scale, and show its applicability over a diverse range of deciduous broad-leaved forest biomes. With its modular structure, the PCM is able to adapt with existing data requirements, and run in either a stand-alone mode or as an interface linked to hydrologic models.
Stefania Camici, Gabriele Giuliani, Luca Brocca, Christian Massari, Angelica Tarpanelli, Hassan Hashemi Farahani, Nico Sneeuw, Marco Restano, and Jérôme Benveniste
Geosci. Model Dev., 15, 6935–6956, https://doi.org/10.5194/gmd-15-6935-2022, https://doi.org/10.5194/gmd-15-6935-2022, 2022
Short summary
Short summary
This paper presents an innovative approach, STREAM (SaTellite-based Runoff Evaluation And Mapping), to derive daily river discharge and runoff estimates from satellite observations of soil moisture, precipitation, and terrestrial total water storage anomalies. Potentially useful for multiple operational and scientific applications, the added value of the STREAM approach is the ability to increase knowledge on the natural processes, human activities, and their interactions on the land.
Ji Li, Daoxian Yuan, Fuxi Zhang, Jiao Liu, and Mingguo Ma
Geosci. Model Dev., 15, 6581–6600, https://doi.org/10.5194/gmd-15-6581-2022, https://doi.org/10.5194/gmd-15-6581-2022, 2022
Short summary
Short summary
A new karst hydrological model (the QMG model) is developed to simulate and predict the floods in karst trough valley basins. Unlike the complex structure and parameters of current karst groundwater models, this model has a simple double-layered structure with few parameters and decreases the demand for modeling data in karst areas. The flood simulation results based on the QMG model of the Qingmuguan karst trough valley basin are satisfactory, indicating the suitability of the model simulation.
Luca Trotter, Wouter J. M. Knoben, Keirnan J. A. Fowler, Margarita Saft, and Murray C. Peel
Geosci. Model Dev., 15, 6359–6369, https://doi.org/10.5194/gmd-15-6359-2022, https://doi.org/10.5194/gmd-15-6359-2022, 2022
Short summary
Short summary
MARRMoT is a piece of software that emulates 47 common models for hydrological simulations. It can be used to run and calibrate these models within a common environment as well as to easily modify them. We restructured and recoded MARRMoT in order to make the models run faster and to simplify their use, while also providing some new features. This new MARRMoT version runs models on average 3.6 times faster while maintaining very strong consistency in their outputs to the previous version.
Zhi Li, Shang Gao, Mengye Chen, Jonathan Gourley, Naoki Mizukami, and Yang Hong
Geosci. Model Dev., 15, 6181–6196, https://doi.org/10.5194/gmd-15-6181-2022, https://doi.org/10.5194/gmd-15-6181-2022, 2022
Short summary
Short summary
Operational streamflow prediction at a continental scale is critical for national water resources management. However, limited computational resources often impede such processes, with streamflow routing being one of the most time-consuming parts. This study presents a recent development of a hydrologic system that incorporates a vector-based routing scheme with a lake module that markedly speeds up streamflow prediction. Moreover, accuracy is improved and flood false alarms are mitigated.
Suyeon Choi and Yeonjoo Kim
Geosci. Model Dev., 15, 5967–5985, https://doi.org/10.5194/gmd-15-5967-2022, https://doi.org/10.5194/gmd-15-5967-2022, 2022
Short summary
Short summary
Here we present the cGAN-based precipitation nowcasting model, named Rad-cGAN, trained to predict a radar reflectivity map with a lead time of 10 min. Rad-cGAN showed superior performance at a lead time of up to 90 min compared with the reference models. Furthermore, we demonstrate the successful implementation of the transfer learning strategies using pre-trained Rad-cGAN to develop the models for different dam domains.
Rolf Hut, Niels Drost, Nick van de Giesen, Ben van Werkhoven, Banafsheh Abdollahi, Jerom Aerts, Thomas Albers, Fakhereh Alidoost, Bouwe Andela, Jaro Camphuijsen, Yifat Dzigan, Ronald van Haren, Eric Hutton, Peter Kalverla, Maarten van Meersbergen, Gijs van den Oord, Inti Pelupessy, Stef Smeets, Stefan Verhoeven, Martine de Vos, and Berend Weel
Geosci. Model Dev., 15, 5371–5390, https://doi.org/10.5194/gmd-15-5371-2022, https://doi.org/10.5194/gmd-15-5371-2022, 2022
Short summary
Short summary
With the eWaterCycle platform, we are providing the hydrological community with a platform to conduct their research that is fully compatible with the principles of both open science and FAIR science. The eWatercyle platform gives easy access to well-known hydrological models, big datasets and example experiments. Using eWaterCycle hydrologists can easily compare the results from different models, couple models and do more complex hydrological computational research.
Hsi-Kai Chou, Ana Maria Heuminski de Avila, and Michaela Bray
Geosci. Model Dev., 15, 5233–5240, https://doi.org/10.5194/gmd-15-5233-2022, https://doi.org/10.5194/gmd-15-5233-2022, 2022
Short summary
Short summary
Land surface models allow us to understand and investigate the cause and effect of environmental process changes. Therefore, this type of model is increasingly used for hydrological assessments. Here we explore the possibility of this approach using a case study in the Atibaia River basin, which serves as a major water supply for the metropolitan regions of Campinas and São Paulo, Brazil. We evaluated the model performance and use the model to simulate the basin hydrology.
Malgorzata Golub, Wim Thiery, Rafael Marcé, Don Pierson, Inne Vanderkelen, Daniel Mercado-Bettin, R. Iestyn Woolway, Luke Grant, Eleanor Jennings, Benjamin M. Kraemer, Jacob Schewe, Fang Zhao, Katja Frieler, Matthias Mengel, Vasiliy Y. Bogomolov, Damien Bouffard, Marianne Côté, Raoul-Marie Couture, Andrey V. Debolskiy, Bram Droppers, Gideon Gal, Mingyang Guo, Annette B. G. Janssen, Georgiy Kirillin, Robert Ladwig, Madeline Magee, Tadhg Moore, Marjorie Perroud, Sebastiano Piccolroaz, Love Raaman Vinnaa, Martin Schmid, Tom Shatwell, Victor M. Stepanenko, Zeli Tan, Bronwyn Woodward, Huaxia Yao, Rita Adrian, Mathew Allan, Orlane Anneville, Lauri Arvola, Karen Atkins, Leon Boegman, Cayelan Carey, Kyle Christianson, Elvira de Eyto, Curtis DeGasperi, Maria Grechushnikova, Josef Hejzlar, Klaus Joehnk, Ian D. Jones, Alo Laas, Eleanor B. Mackay, Ivan Mammarella, Hampus Markensten, Chris McBride, Deniz Özkundakci, Miguel Potes, Karsten Rinke, Dale Robertson, James A. Rusak, Rui Salgado, Leon van der Linden, Piet Verburg, Danielle Wain, Nicole K. Ward, Sabine Wollrab, and Galina Zdorovennova
Geosci. Model Dev., 15, 4597–4623, https://doi.org/10.5194/gmd-15-4597-2022, https://doi.org/10.5194/gmd-15-4597-2022, 2022
Short summary
Short summary
Lakes and reservoirs are warming across the globe. To better understand how lakes are changing and to project their future behavior amidst various sources of uncertainty, simulations with a range of lake models are required. This in turn requires international coordination across different lake modelling teams worldwide. Here we present a protocol for and results from coordinated simulations of climate change impacts on lakes worldwide.
Verena Bessenbacher, Sonia Isabelle Seneviratne, and Lukas Gudmundsson
Geosci. Model Dev., 15, 4569–4596, https://doi.org/10.5194/gmd-15-4569-2022, https://doi.org/10.5194/gmd-15-4569-2022, 2022
Short summary
Short summary
Earth observations have many missing values. They are often filled using information from spatial and temporal contexts that mostly ignore information from related observed variables. We propose the gap-filling method CLIMFILL that additionally uses information from related variables. We test CLIMFILL using gap-free reanalysis data of variables related to soil–moisture climate interactions. CLIMFILL creates estimates for the missing values that recover the original dependence structure.
Anthony Bernus and Catherine Ottlé
Geosci. Model Dev., 15, 4275–4295, https://doi.org/10.5194/gmd-15-4275-2022, https://doi.org/10.5194/gmd-15-4275-2022, 2022
Short summary
Short summary
The lake model FLake was coupled to the ORCHIDEE land surface model to simulate lake energy balance at global scale with a multi-tile approach. Several simulations were performed with various atmospheric reanalyses and different lake depth parameterizations. The simulated lake surface temperature showed good agreement with observations (RMSEs of the order of 3 °C). We showed the large impact of the atmospheric forcing on lake temperature. We highlighted systematic errors on ice cover phenology.
Inne Vanderkelen, Shervan Gharari, Naoki Mizukami, Martyn P. Clark, David M. Lawrence, Sean Swenson, Yadu Pokhrel, Naota Hanasaki, Ann van Griensven, and Wim Thiery
Geosci. Model Dev., 15, 4163–4192, https://doi.org/10.5194/gmd-15-4163-2022, https://doi.org/10.5194/gmd-15-4163-2022, 2022
Short summary
Short summary
Human-controlled reservoirs have a large influence on the global water cycle. However, dam operations are rarely represented in Earth system models. We implement and evaluate a widely used reservoir parametrization in a global river-routing model. Using observations of individual reservoirs, the reservoir scheme outperforms the natural lake scheme. However, both schemes show a similar performance due to biases in runoff timing and magnitude when using simulated runoff.
Jiming Jin, Lei Wang, Jie Yang, Bingcheng Si, and Guo-Yue Niu
Geosci. Model Dev., 15, 3405–3416, https://doi.org/10.5194/gmd-15-3405-2022, https://doi.org/10.5194/gmd-15-3405-2022, 2022
Short summary
Short summary
This study aimed to improve runoff simulations and explore deep soil hydrological processes for a highly varying soil depth and complex terrain watershed in the Loess Plateau, China. The actual soil depths and river channels were incorporated into the model to better simulate the runoff in this watershed. The soil evaporation scheme was modified to better describe the evaporation processes. Our results showed that the model significantly improved the runoff simulations.
Sebastian Müller, Lennart Schüler, Alraune Zech, and Falk Heße
Geosci. Model Dev., 15, 3161–3182, https://doi.org/10.5194/gmd-15-3161-2022, https://doi.org/10.5194/gmd-15-3161-2022, 2022
Short summary
Short summary
The GSTools package provides a Python-based platform for geoostatistical applications. Salient features of GSTools are its random field generation, its kriging capabilities and its versatile covariance model. It is furthermore integrated with other Python packages, like PyKrige, ogs5py or scikit-gstat, and provides interfaces to meshio and PyVista. Four presented workflows showcase the abilities of GSTools.
Ather Abbas, Laurie Boithias, Yakov Pachepsky, Kyunghyun Kim, Jong Ahn Chun, and Kyung Hwa Cho
Geosci. Model Dev., 15, 3021–3039, https://doi.org/10.5194/gmd-15-3021-2022, https://doi.org/10.5194/gmd-15-3021-2022, 2022
Short summary
Short summary
The field of artificial intelligence has shown promising results in a wide variety of fields including hydrological modeling. However, developing and testing hydrological models with artificial intelligence techniques require expertise from diverse fields. In this study, we developed an open-source framework based upon the python programming language to simplify the process of the development of hydrological models of time series data using machine learning.
Yunxiang Chen, Jie Bao, Yilin Fang, William A. Perkins, Huiying Ren, Xuehang Song, Zhuoran Duan, Zhangshuan Hou, Xiaoliang He, and Timothy D. Scheibe
Geosci. Model Dev., 15, 2917–2947, https://doi.org/10.5194/gmd-15-2917-2022, https://doi.org/10.5194/gmd-15-2917-2022, 2022
Short summary
Short summary
Climate change affects river discharge variations that alter streamflow. By integrating multi-type survey data with a computational fluid dynamics tool, OpenFOAM, we show a workflow that enables accurate and efficient streamflow modeling at 30 km and 5-year scales. The model accuracy for water stage and depth average velocity is −16–9 cm and 0.71–0.83 in terms of mean error and correlation coefficients. This accuracy indicates the model's reliability for evaluating climate impact on rivers.
Marcela Silva, Ashley M. Matheny, Valentijn R. N. Pauwels, Dimetre Triadis, Justine E. Missik, Gil Bohrer, and Edoardo Daly
Geosci. Model Dev., 15, 2619–2634, https://doi.org/10.5194/gmd-15-2619-2022, https://doi.org/10.5194/gmd-15-2619-2022, 2022
Short summary
Short summary
Our study introduces FETCH3, a ready-to-use, open-access model that simulates the water fluxes across the soil, roots, and stem. To test the model capabilities, we tested it against exact solutions and a case study. The model presented considerably small errors when compared to the exact solutions and was able to correctly represent transpiration patterns when compared to experimental data. The results show that FETCH3 can correctly simulate above- and below-ground water transport.
Mayra Ishikawa, Wendy Gonzalez, Orides Golyjeswski, Gabriela Sales, J. Andreza Rigotti, Tobias Bleninger, Michael Mannich, and Andreas Lorke
Geosci. Model Dev., 15, 2197–2220, https://doi.org/10.5194/gmd-15-2197-2022, https://doi.org/10.5194/gmd-15-2197-2022, 2022
Short summary
Short summary
Reservoir hydrodynamics is often described in numerical models differing in dimensionality. 1D and 2D models assume homogeneity along the unresolved dimension. We compare the performance of models with 1 to 3 dimensions. All models presented reasonable results for seasonal temperature dynamics. Neglecting longitudinal transport resulted in the largest deviations in temperature. Flow velocity could only be reproduced by the 3D model. Results support the selection of models and their assessment.
Sandra Hellmers and Peter Fröhle
Geosci. Model Dev., 15, 1061–1077, https://doi.org/10.5194/gmd-15-1061-2022, https://doi.org/10.5194/gmd-15-1061-2022, 2022
Short summary
Short summary
A hydrological method to compute backwater effects in surface water streams and on adjacent lowlands caused by mostly complex flow control systems is presented. It enables transfer of discharges to water levels and calculation of backwater volume routing along streams and lowland areas by balancing water level slopes. The developed, implemented and evaluated method extends the application range of hydrological models significantly for flood-routing simulation in backwater-affected catchments.
Cited articles
Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'Connell, P. E., and
Rasmussen, J.: An introduction to the European Hydrological System –
Systeme Hydrologique Europeen, “SHE”, 2: Structure of a physically-based,
distributed modelling system, J. Hydrol., 87, 61–77,
https://doi.org/10.1016/0022-1694(86)90115-0, 1986.
Abdulrazzak, M. J.: Losses of flood water from alluvial channels, Arid Soil
Res. Rehab., 9, 15–24, https://doi.org/10.1080/15324989509385870, 1995.
Albergel, C., Rüdiger, C., Pellarin, T., Calvet, J.-C., Fritz, N., Froissard, F., Suquia, D., Petitpa, A., Piguet, B., and Martin, E.: From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model simulations, Hydrol. Earth Syst. Sci., 12, 1323–1337, https://doi.org/10.5194/hess-12-1323-2008, 2008.
Albergel, C., Dutra, E., Munier, S., Calvet, J.-C., Munoz-Sabater, J., de Rosnay, P., and Balsamo, G.: ERA-5 and ERA-Interim driven ISBA land surface model simulations: which one performs better?, Hydrol. Earth Syst. Sci., 22, 3515–3532, https://doi.org/10.5194/hess-22-3515-2018, 2018.
Alfieri, L., Lorini, V., Hirpa, F. A., Harrigan, S., Zsoter, E., Prudhomme,
C., and Salamon, P.: A global streamflow reanalysis for 1980–2018, J.
Hydrol. X, 6, 100049, https://doi.org/10.1016/j.hydroa.2019.100049, 2020.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop
evapotranspiration-Guidelines for computing crop water requirements-FAO
Irrigation and drainage paper 56, FAO Rome, 300, D05109, 1998.
Anderson, M. P., Woessner, W. W., and Hunt, R. J.: Applied Groundwater
Modeling: Simulation of Flow and Advective Transport, Academic Press – Elsevier, the Netherlands, 632 pp., 2015.
Aryal, S. K., Silberstein, R. P., Fu, G., Hodgson, G., Charles, S. P., and
McFarlane, D.: Understanding spatio-temporal rainfall-runoff changes in a
semi-arid region, Hydrol. Process., 34, 2510–2530,
https://doi.org/10.1002/hyp.13744, 2020.
Assouline, S.: Infiltration into soils: Conceptual approaches and solutions,
Water Resour. Res., 49, 1755–1772, https://doi.org/10.1002/wrcr.20155,
2013.
Atmospheric and Geospace Sciences Division of the National Science Foundation: Kendall, available at: http://cosmos.hwr.arizona.edu/Probes/StationDat/010/index.php, last access: 20 June 2021.
Bakker, M., Post, V., Langevin, C. D., Hughes, J. D., White, J., Starn, J.,
and Fienen, M. N.: FloPy: Python package for creating, running, and
post-processing MODFLOW-based models, U.S. Geological Survey,
https://doi.org/10.5066/F7BK19FH, 2016a.
Bakker, M., Post, V., Langevin, C. D., Hughes, J. D., White, J. T., Starn,
J. J., and Fienen, M. N.: Scripting MODFLOW Model Development Using Python
and FloPy, Groundwater, 54, 733–739, https://doi.org/10.1111/gwat.12413,
2016b.
Barnhart, K. R., Hutton, E. W. H., Tucker, G. E., Gasparini, N. M., Istanbulluoglu, E., Hobley, D. E. J., Lyons, N. J., Mouchene, M., Nudurupati, S. S., Adams, J. M., and Bandaragoda, C.: Short communication: Landlab v2.0: a software package for Earth surface dynamics, Earth Surf. Dynam., 8, 379–397, https://doi.org/10.5194/esurf-8-379-2020, 2020.
Batelaan, O. and Smedt, F. D.: SEEPAGE, a New MODFLOW DRAIN Package,
Groundwater, 42, 576–588,
https://doi.org/10.1111/j.1745-6584.2004.tb02626.x, 2004.
Batelis, S.-C., Rahman, M., Kollet, S., Woods, R., and Rosolem, R.: Towards
the representation of groundwater in the Joint UK Land Environment
Simulator, Hydrol. Process., 34, 2843–2863,
https://doi.org/10.1002/hyp.13767, 2020.
Becker, R., Gebremichael, M., and Märker, M.: Impact of soil surface and
subsurface properties on soil saturated hydraulic conductivity in the
semi-arid Walnut Gulch Experimental Watershed, Arizona, USA, Geoderma, 322,
112–120, https://doi.org/10.1016/j.geoderma.2018.02.023, 2018.
Beven, K. and Binley, A.: The future of distributed models: model
calibration and uncertainty prediction, Hydrol. Process., 6, 279–298, 1992.
Braun, J. and Willett, S. D.: A very efficient O(n), implicit and parallel
method to solve the stream power equation governing fluvial incision and
landscape evolution, Geomorphology, 180–181, 170–179,
https://doi.org/10.1016/j.geomorph.2012.10.008, 2013.
Brooks, R. H. and Corey, A. T.: Hydraulic Properties of Porous Media,
Hydrology Paper No. 3, Fort Collins,
Colorado State University, 40 pp., 1964.
Chen, F. and Dudhia, J.: Coupling an Advanced Land Surface–Hydrology Model
with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation
and Sensitivity, Mon. Weather Rev., 129, 569–585,
https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2, 2001.
Cherlet, M., Hutchinson, C., Reynolds, J., Hill, J., Sommer, S., and von
Maltitz, G.: World atlas of desertification, Publication Office
of the European Union, Luxembourg, 3rd ed., 295 pp., 2018.
Chow, V. T., Maidment, D. R., and Mays, L. W.: Applied Hydrology, McGraw-Hill Companies, Singapore, 588 pp., 1988.
Clapp, R. B. and Hornberger, G. M.: Empirical equations for some soil
hydraulic properties, Water Resour. Res., 14, 601–604,
https://doi.org/10.1029/WR014i004p00601, 1978.
Clark, M. P., Fan, Y., Lawrence, D. M., Adam, J. C., Bolster, D., Gochis, D.
J., Hooper, R. P., Kumar, M., Leung, L. R., Mackay, D. S., Maxwell, R. M.,
Shen, C., Swenson, S. C., and Zeng, X.: Improving the representation of
hydrologic processes in Earth System Models, Water Resour. Res., 51,
5929–5956, https://doi.org/10.1002/2015WR017096, 2015.
Coes, A. L. and Pool, D. R.: Ephemeral-stream channel and basin-floor
infiltration and recharge in the Sierra Vista subwatershed of the Upper San
Pedro Basin, Southeastern Arizona: Chapter J in Ground-water recharge in the
arid and semiarid southwestern United States, Professional Paper 1703, U.S.
Geological Survey, 2007.
Craig, J. R., Liu, G., and Soulis, E. D.: Runoff–infiltration partitioning
using an upscaled Green–Ampt solution, Hydrol. Process., 24, 2328–2334,
https://doi.org/10.1002/hyp.7601, 2010.
Cuthbert, M. O., Acworth, R. I., Andersen, M. S., Larsen, J. R., McCallum,
A. M., Rau, G. C., and Tellam, J. H.: Understanding and quantifying focused,
indirect groundwater recharge from ephemeral streams using water table
fluctuations, Water Resour. Res., 52, 827–840,
https://doi.org/10.1002/2015WR017503, 2016.
Cuthbert, M. O., Gleeson, T., Moosdorf, N., Befus, K. M., Schneider, A.,
Hartmann, J., and Lehner, B.: Global patterns and dynamics of
climate–groundwater interactions, Nat. Clim. Change, 9, 137–141,
https://doi.org/10.1038/s41558-018-0386-4, 2019a.
Cuthbert, M. O., Taylor, R. G., Favreau, G., Todd, M. C., Shamsudduha, M.,
Villholth, K. G., MacDonald, A. M., Scanlon, B. R., Kotchoni, D. O. V.,
Vouillamoz, J.-M., Lawson, F. M. A., Adjomayi, P. A., Kashaigili, J.,
Seddon, D., Sorensen, J. P. R., Ebrahim, G. Y., Owor, M., Nyenje, P. M.,
Nazoumou, Y., Goni, I., Ousmane, B. I., Sibanda, T., Ascott, M. J.,
Macdonald, D. M. J., Agyekum, W., Koussoubé, Y., Wanke, H., Kim, H.,
Wada, Y., Lo, M.-H., Oki, T., and Kukuric, N.: Observed controls on
resilience of groundwater to climate variability in sub-Saharan Africa,
Nature, 572, 230–234, https://doi.org/10.1038/s41586-019-1441-7, 2019b.
Dai, Y., Xin, Q., Wei, N., Zhang, Y., Shangguan, W., Yuan, H., Zhang, S.,
Liu, S., and Lu, X.: A Global High-Resolution Data Set of Soil Hydraulic and
Thermal Properties for Land Surface Modeling, J. Adv. Model. Earth Sy.,
11, 2996–3023, https://doi.org/10.1029/2019MS001784, 2019.
Datry, T., Bonada, N., and Boulton, A. (Eds.): Intermittent Rivers and
Ephemeral Streams, Ecology and Management, Academic Press – Elsevier, the Netherlands,
https://doi.org/10.1016/B978-0-12-803835-2.09997-6, 2017.
de Graaf, I. E. M., Sutanudjaja, E. H., van Beek, L. P. H., and Bierkens, M. F. P.: A high-resolution global-scale groundwater model, Hydrol. Earth Syst. Sci., 19, 823–837, https://doi.org/10.5194/hess-19-823-2015, 2015.
Desilets, D. and Zreda, M.: Footprint diameter for a cosmic-ray soil
moisture probe: Theory and Monte Carlo simulations, Water Resour. Res., 49,
3566–3575, https://doi.org/10.1002/wrcr.20187, 2013.
Desilets, D., Zreda, M., and Ferré, T. P. A.: Nature’s neutron probe: Land surface hydrology at an elusive scale with cosmic rays, Water Resour. Res., 46, W11505, https://doi.org/10.1029/2009WR008726, 2010.
Emmerich, W. E. and Verdugo, C. L.: Long-term carbon dioxide and water flux
database, Walnut Gulch Experimental Watershed, Arizona, United States, Water
Resour. Res., 44, W05S09, https://doi.org/10.1029/2006WR005693, 2008.
European Centre for Medium-Range Weather Forecasts: ERA5 hourly data, ECMWF [data set], available at:
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form (last access: 20 June 2021), 2018.
Ewen, J., Parkin, G., and O'Connell, P. E.: SHETRAN: Distributed River Basin
Flow and Transport Modeling System, J. Hydrol. Eng., 5, 250–258,
https://doi.org/10.1061/(ASCE)1084-0699(2000)5:3(250), 2000.
Fan, Y., Li, H., and Miguez-Macho, G.: Global Patterns of Groundwater Table
Depth, Science, 339, 940–943, https://doi.org/10.1126/science.1229881,
2013.
Franz, T. E., Zreda, M., Ferre, T. P. A., Rosolem, R., Zweck, C., Stillman,
S., Zeng, X., and Shuttleworth, W. J.: Measurement depth of the cosmic ray
soil moisture probe affected by hydrogen from various sources, Water Resour.
Res., 48, W08515, https://doi.org/10.1029/2012WR011871, 2012.
Franz, T. E., Zreda, M., Rosolem, R., and Ferre, T. P. A.: A universal calibration function for determination of soil moisture with cosmic-ray neutrons, Hydrol. Earth Syst. Sci., 17, 453–460, https://doi.org/10.5194/hess-17-453-2013, 2013.
Giordano, M.: Global Groundwater? Issues and Solutions, Annu. Rev. Env.
Resour., 34, 153–178,
https://doi.org/10.1146/annurev.environ.030308.100251, 2009.
Goodrich, D. C., Lane, L. J., Shillito, R. M., Miller, S. N., Syed, K. H.,
and Woolhiser, D. A.: Linearity of basin response as a function of scale in
a semiarid watershed, Water Resour. Res., 33, 2951–2965,
https://doi.org/10.1029/97WR01422, 1997.
Goodrich, D. C., Keefer, T. O., Unkrich, C. L., Nichols, M. H., Osborn, H.
B., Stone, J. J., and Smith, J. R.: Long-term precipitation database, Walnut
Gulch Experimental Watershed, Arizona, United States, Water Resour. Res.,
44, W08515, https://doi.org/10.1029/2006WR005782, 2008.
Goodrich, D. C., Williams, D. G., Unkrich, C. L., Hogan, J. F., Scott, R.
L., Hultine, K. R., Pool, D., Goes, A. L., and Miller, S.: Comparison of
Methods to Estimate Ephemeral Channel Recharge, Walnut Gulch, San Pedro
River Basin, Arizona, in: Groundwater Recharge in a Desert Environment: The
Southwestern United States, American Geophysical Union (AGU), 77–99,
2013.
Goodrich, D. C., Kepner, W. G., Levick, L. R., and Wigington, P. J.:
Southwestern Intermittent and Ephemeral Stream Connectivity, JAWRA J. Am.
Water Resour. Assoc., 54, 400–422, https://doi.org/10.1111/1752-1688.12636,
2018.
Harbaugh, A. W.: MODFLOW-2005, The U.S. Geological Survey Modular
Ground-Water Model – the Ground-Water Flow Process, U.S. Geological Survey
Techniques and Methods 6-A16, 2005.
Harbaugh, A. W., Banta, E. R., Hill, M. C., and McDonald, M. G.: MODFLOW-2000, The U.S. Geological Survey Modular Ground-Water Model – User Guide to Modularization Concepts and the Ground-Water Flow Process, Geological Survey (U.S.), Denver, CO, https://doi.org/10.3133/ofr200092, 2000-92, 121, 2000.
Heilman, P., Nichols, M. H., Goodrich, D. C., Miller, S. N., and Guertin, D.
P.: Geographic information systems database, Walnut Gulch Experimental
Watershed, Arizona, United States, Water Resour. Res., 44, W05S11,
https://doi.org/10.1029/2006WR005777, 2008.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G. D., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.
de, Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Hobley, D. E. J., Adams, J. M., Nudurupati, S. S., Hutton, E. W. H., Gasparini, N. M., Istanbulluoglu, E., and Tucker, G. E.: Creative computing with Landlab: an open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics, Earth Surf. Dynam., 5, 21–46, https://doi.org/10.5194/esurf-5-21-2017, 2017.
Holtan, H. N.: Time-condensation in hydrograph-analysis, EOS T. Am.
Geophys. Union, 26, 407–413, https://doi.org/10.1029/TR026i003p00407, 1945.
Huang, J., Yu, H., Guan, X., Wang, G., and Guo, R.: Accelerated dryland
expansion under climate change, Nat. Clim. Change, 6, nclimate2837,
https://doi.org/10.1038/nclimate2837, 2015.
Huang, J., Li, Y., Fu, C., Chen, F., Fu, Q., Dai, A., Shinoda, M., Ma, Z.,
Guo, W., Li, Z., Zhang, L., Liu, Y., Yu, H., He, Y., Xie, Y., Guan, X., Ji,
M., Lin, L., Wang, S., Yan, H., and Wang, G.: Dryland climate change: Recent
progress and challenges, Rev. Geophys., 55, 719–778,
https://doi.org/10.1002/2016RG000550, 2017.
Hughes, A., Mansour, M., Robins, N., and Peach, D.: Numerical Modelling of
Run-off Recharge in a Catchment in the West Bank, MODFLOW More 2006 Manag.
Ground-Water Syst. Conf. Proc., 1, 385–389, 2006.
Hughes, D. A.: A simple approach to estimating channel transmission losses
in large South African river basins, J. Hydrol., 25, 100619,
https://doi.org/10.1016/j.ejrh.2019.100619, 2019.
Ivanov, V. Y., Vivoni, E. R., Bras, R. L., and Entekhabi, D.: Catchment
hydrologic response with a fully distributed triangulated irregular network
model, Water Resour. Res., 40, W11102, https://doi.org/10.1029/2004WR003218, 2004.
Kampf, S. K. and Burges, S. J.: A framework for classifying and comparing
distributed hillslope and catchment hydrologic models, Water Resour. Res.,
43, W05423, https://doi.org/10.1029/2006WR005370, 2007.
Keefer, T. O., Moran, M. S., and Paige, G. B.: Long-term meteorological and
soil hydrology database, Walnut Gulch, W05S07, https://doi.org/10.1029/2006WR005702,
2008.
Kipkemoi, I., Michaelides, K., Rosolem, R., and Singer, M. B.: Climatic expression of rainfall on soil moisture dynamics in drylands, Hydrol. Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-2021-48, 2021.
Lahmers, T. M., Gupta, H., Castro, C. L., Gochis, D. J., Yates, D., Dugger,
A., Goodrich, D., and Hazenberg, P.: Enhancing the Structure of the
WRF-Hydro Hydrologic Model for Semiarid Environments, J. Hydrometeorol., 20,
691–714, https://doi.org/10.1175/JHM-D-18-0064.1, 2019.
Leenaars, J. G. B., Claessens, L., Heuvelink, G. B. M., Hengl, T., Ruiperez
González, M., van Bussel, L. G. J., Guilpart, N., Yang, H., and Cassman,
K. G.: Mapping rootable depth and root zone plant-available water holding
capacity of the soil of sub-Saharan Africa, Geoderma, 324, 18–36,
https://doi.org/10.1016/j.geoderma.2018.02.046, 2018.
Marçais, J., de Dreuzy, J.-R., and Erhel, J.: Dynamic coupling of
subsurface and seepage flows solved within a regularized partition
formulation, Adv. Water Resour., 109, 94–105,
https://doi.org/10.1016/j.advwatres.2017.09.008, 2017.
Maxwell, R. M. and Condon, L. E.: Connections between groundwater flow and
transpiration partitioning, Science, 353, 377–380,
https://doi.org/10.1126/science.aaf7891, 2016.
Mayes, M., Caylor, K. K., Singer, M. B., Stella, J. C., Roberts, D., and
Nagler, P.: Climate sensitivity of water use by riparian woodlands at
landscape scales, Hydrol. Process., 34, 4884–4903,
https://doi.org/10.1002/hyp.13942, 2020.
Mein, R. G. and Larson, C. L.: Modeling infiltration during a steady rain,
Water Resour. Res., 9, 384–394, https://doi.org/10.1029/WR009i002p00384,
1973.
Messager, M. L., Lehner, B., Cockburn, C., Lamouroux, N., Pella, H.,
Snelder, T., Tockner, K., Trautmann, T., Watt, C., and Datry, T.: Global
prevalence of non-perennial rivers and streams, Nature, 594, 391–397,
https://doi.org/10.1038/s41586-021-03565-5, 2021.
Michaelides, K. and Wainwright, J.: Modelling the effects of
hillslope–channel coupling on catchment hydrological response, Earth Surf.
Proc. Land., 27, 1441–1457, https://doi.org/10.1002/esp.440, 2002.
Michaelides, K. and Wilson, M. D.: Uncertainty in predicted runoff due to
patterns of spatially variable infiltration, Water Resour. Res., 43, W02415,
https://doi.org/10.1029/2006WR005039, 2007.
Michaelides, K., Hollings, R., Singer, M. B., Nichols, M. H., and Nearing,
M. A.: Spatial and temporal analysis of hillslope–channel coupling and
implications for the longitudinal profile in a dryland basin, Earth Surf.
Proc. Land., 43, 1608–1621, https://doi.org/10.1002/esp.4340, 2018.
Miller, S. N., Youberg, A., Guertin, D. P., and Goodrich, D. C.: Channel morphology investigations using Geographic Information Systems and field research, in: Land Stewardship in the 21st Century: The Contributions of Watershed Management, Tucson, Arizona, 13–16 March 2000, 415–419, 2000.
Mudd, S. M.: Investigation of the hydrodynamics of flash floods in ephemeral
channels: Scaling analysis and simulation using a shock-capturing flow model
incorporating the effects of transmission losses, J. Hydrol., 324, 65–79,
https://doi.org/10.1016/j.jhydrol.2005.09.012, 2006.
Nash, I. E. and Sutcliffe, I. V.: River flow forecasting through conceptual
models, J. Hydrol., 10, 282–290, 1970.
Noorduijn, S. L., Shanafield, M., Trigg, M. A., Harrington, G. A., Cook, P.
G., and Peeters, L.: Estimating seepage flux from ephemeral stream channels
using surface water and groundwater level data, Water Resour. Res., 50,
1474–1489, https://doi.org/10.1002/2012WR013424, 2014.
Pelletier, J. D., Broxton, P. D., Hazenberg, P., Zeng, X., Troch, P. A.,
Niu, G.-Y., Williams, Z., Brunke, M. A., and Gochis, D.: A gridded global
data set of soil, intact regolith, and sedimentary deposit thicknesses for
regional and global land surface modeling, J. Adv. Model. Earth Sy., 8,
41–65, https://doi.org/10.1002/2015MS000526, 2016.
Philip, J. R.: Theory of Infiltration: The infiltration equation and its solutions, Soil Sci., 171, S34–S46, 1957.
Pilgrim, D. H., Chapman, T. G., and Doran, D. G.: Problems of
rainfall-runoff modelling in arid and semiarid regions, Hydrolog. Sci. J., 33,
379–400, https://doi.org/10.1080/02626668809491261, 1988.
Power, D., Rico-Ramirez, M. A., Desilets, S., Desilets, D., and Rosolem, R.: Cosmic-Ray neutron Sensor PYthon tool (crspy): An open-source tool for the processing of cosmic-ray neutron and soil moisture data, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2021-77, in review, 2021.
Quichimbo, E. A., Singer, M. B., and Cuthbert, M. O.: Characterising
groundwater–surface water interactions in idealised ephemeral stream
systems, Hydrol. Process., 34, 3792–3806,
https://doi.org/10.1002/hyp.13847, 2020.
Quichimbo, E. A., Cuthbert, M. O., Singer, M. B., Michaelides, K., Rosolem, R., and Hobley, D. E. J.: DRYP 1.0: A parsimonious hydrological model of DRYland Partitioning of the water balance, In DRYP 1.0: A parsimonious hydrological model of DRYland Partitioning of the water balance (1.0), Zenodo, https://doi.org/10.5281/zenodo.5061988, 2021.
Rahman, M., Rosolem, R., Kollet, S. J., and Wagener, T.: Towards a
computationally efficient free-surface groundwater flow boundary condition
for large-scale hydrological modelling, Adv. Water Resour., 123, 225–233,
https://doi.org/10.1016/j.advwatres.2018.11.015, 2019.
Rawls, W. J., Brakensiek, D. L., and Saxtonn, K. E.: Estimation of Soil
Water Properties, T. ASAE, 25, 1316–1320,
https://doi.org/10.13031/2013.33720, 1982.
Reinecke, R., Foglia, L., Mehl, S., Trautmann, T., Cáceres, D., and Döll, P.: Challenges in developing a global gradient-based groundwater model (G3M v1.0) for the integration into a global hydrological model, Geosci. Model Dev., 12, 2401–2418, https://doi.org/10.5194/gmd-12-2401-2019, 2019.
Renard, K. G.: The hydrology of semiarid rangeland watersheds, Rep. ARS-41-162, Agricultural Research Service, United States Department of Agriculture, Washington, D.C., 28 pp., 1970.
Renard, K. G., Nichols, M. H., Woolhiser, D. A., and Osborn, H. B.: A brief
background on the U.S. Department of Agriculture Agricultural Research
Service Walnut Gulch Experimental Watershed, Water Resour. Res., 44, W05S02,
https://doi.org/10.1029/2006WR005691, 2008.
Reynolds, J. F., Smith, D. M. S., Lambin, E. F., Turner, B. L., Mortimore,
M., Batterbury, S. P. J., Downing, T. E., Dowlatabadi, H., Fernández, R.
J., Herrick, J. E., Huber-Sannwald, E., Jiang, H., Leemans, R., Lynam, T.,
Maestre, F. T., Ayarza, M., and Walker, B.: Global Desertification: Building
a Science for Dryland Development, Science, 316, 847–851,
https://doi.org/10.1126/science.1131634, 2007.
Richardson, A. D., Hollinger, D. Y., Burba, G. G., Davis, K. J., Flanagan,
L. B., Katul, G. G., William Munger, J., Ricciuto, D. M., Stoy, P. C.,
Suyker, A. E., Verma, S. B., and Wofsy, S. C.: A multi-site analysis of
random error in tower-based measurements of carbon and energy fluxes, Agr.
Forest Meteorol., 136, 1–18, https://doi.org/10.1016/j.agrformet.2006.01.007,
2006.
Rosolem, R., Shuttleworth, W. J., Zreda, M., Franz, T. E., Zeng, X., and
Kurc, S. A.: The Effect of Atmospheric Water Vapor on Neutron Count in the
Cosmic-Ray Soil Moisture Observing System, J. Hydrometeorol., 14,
1659–1671, https://doi.org/10.1175/JHM-D-12-0120.1, 2013.
Schaake, J. C., Koren, V. I., Duan, Q.-Y., Mitchell, K., and Chen, F.:
Simple water balance model for estimating runoff at different spatial and
temporal scales, J. Geophys. Res.-Atmos., 101, 7461–7475,
https://doi.org/10.1029/95JD02892, 1996.
Schmidt, A., Hanson, C., Chan, W. S., and Law, B. E.: Empirical assessment
of uncertainties of meteorological parameters and turbulent fluxes in the
AmeriFlux network, J. Geophys. Res.-Biogeo., 117, G04014,
https://doi.org/10.1029/2012JG002100, 2012.
Schreiner-McGraw, A., Ajami, H., and Vivoni, E. R.: Extreme weather events
and transmission losses in arid streams, Environ. Res. Lett., 14, 084002,
https://doi.org/10.1088/1748-9326/ab2949, 2019.
Schrön, M., Köhli, M., Scheiffele, L., Iwema, J., Bogena, H. R., Lv, L., Martini, E., Baroni, G., Rosolem, R., Weimar, J., Mai, J., Cuntz, M., Rebmann, C., Oswald, S. E., Dietrich, P., Schmidt, U., and Zacharias, S.: Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity, Hydrol. Earth Syst. Sci., 21, 5009–5030, https://doi.org/10.5194/hess-21-5009-2017, 2017.
Scoging, H. M. and Thornes, J. B.: Infiltration characteristics in a semiarid environment, in: The Hydrology of areas of low precipitation, Canberra Symposium, Paris, 1979, International Association of Hydrological Sciences, 128, 159–168, 1979.
Scott, R. L.: Using watershed water balance to evaluate the accuracy of eddy
covariance evaporation measurements for three semiarid ecosystems, Agr.
Forest Meteorol., 150, 219–225,
https://doi.org/10.1016/j.agrformet.2009.11.002, 2010.
Scott, R.: US-Wkg: Walnut Gulch Kendall Grasslands, (2021), AmeriFlux BASE US-Wkg Walnut Gulch Kendall Grasslands, Ver. 17-5, AmeriFlux AMP [data set], https://doi.org/10.17190/AMF/1246112, 2021.
Scott, R. L., Biederman, J. A., Hamerlynck, E. P., and Barron-Gafford, G.
A.: The carbon balance pivot point of southwestern U.S. semiarid ecosystems:
Insights from the 21st century drought, J. Geophys. Res.-Biogeo.,
120, 2612–2624, https://doi.org/10.1002/2015JG003181, 2015.
Shanafield, M. and Cook, P. G.: Transmission losses, infiltration and
groundwater recharge through ephemeral and intermittent streambeds: A review
of applied methods, J. Hydrol., 511, 518–529,
https://doi.org/10.1016/j.jhydrol.2014.01.068, 2014.
Sherman, L. K.: Comparison f-curves derived by the methods of sharp and
Holtan and of Sherman and Mayer, EOS T. Am. Geophys. Union, 24,
465–467, https://doi.org/10.1029/TR024i002p00465, 1943.
Siebert, S., Burke, J., Faures, J. M., Frenken, K., Hoogeveen, J., Döll, P., and Portmann, F. T.: Groundwater use for irrigation – a global inventory, Hydrol. Earth Syst. Sci., 14, 1863–1880, https://doi.org/10.5194/hess-14-1863-2010, 2010.
Šimunek, J., Van Genuchten, M. T., and Šejna, M.: The HYDRUS
software package for simulating two-and three-dimensional movement of water,
heat, and multiple solutes in variably-saturated media, Tech. Man. Version,
1, 241, 2006.
Singer, M. B. and Michaelides, K.: How is topographic simplicity maintained
in ephemeral dryland channels?, Geology, 42, 1091–1094,
https://doi.org/10.1130/G36267.1, 2014.
Singer, M. B. and Michaelides, K.: Deciphering the expression of climate
change within the Lower Colorado River basin by stochastic simulation of
convective rainfall, Environ. Res. Lett., 12, 104011,
https://doi.org/10.1088/1748-9326/aa8e50, 2017.
Singer, M. B., Michaelides, K., and Hobley, D. E. J.: STORM 1.0: a simple, flexible, and parsimonious stochastic rainfall generator for simulating climate and climate change, Geosci. Model Dev., 11, 3713–3726, https://doi.org/10.5194/gmd-11-3713-2018, 2018.
Singer, M. B., Asfaw, D. T., Rosolem, R., Cuthbert, M. O., Miralles, D. G.,
MacLeod, D., Quichimbo, E. A., and Michaelides, K.: Hourly potential
evapotranspiration at 0.1∘ resolution for the global land surface
from 1981-present, Sci. Data, 8, 224,
https://doi.org/10.1038/s41597-021-01003-9, 2021.
Sivapalan, M. and Milly, P. C. D.: On the relationship between the time
condensation approximation and the flux concentration relation, J. Hydrol.,
105, 357–367, https://doi.org/10.1016/0022-1694(89)90113-3, 1989.
Sourthwest Watershed Research Center: Online Data access, available at: https://www.tucson.ars.ag.gov/dap/runoff_aggregate.asp, last access: 20 June 2021.
Stone, J. J., Nichols, M. H., Goodrich, D. C., and Buono, J.: Long-term
runoff database, Walnut Gulch Experimental Watershed, Arizona, United
States, Water Resour. Res., 44, W05S05, https://doi.org/10.1029/2006WR005733, 2008.
Tarek, M., Brissette, F. P., and Arsenault, R.: Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America, Hydrol. Earth Syst. Sci., 24, 2527–2544, https://doi.org/10.5194/hess-24-2527-2020, 2020.
Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., Beek, R. van, Wada,
Y., Longuevergne, L., Leblanc, M., Famiglietti, J. S., Edmunds, M., Konikow,
L., Green, T. R., Chen, J., Taniguchi, M., Bierkens, M. F. P., MacDonald,
A., Fan, Y., Maxwell, R. M., Yechieli, Y., Gurdak, J. J., Allen, D. M.,
Shamsudduha, M., Hiscock, K., Yeh, P. J.-F., Holman, I., and Treidel, H.:
Ground water and climate change, Nat. Clim. Change, 3, nclimate1744,
https://doi.org/10.1038/nclimate1744, 2012.
Taylor, R. G., Todd, M. C., Kongola, L., Maurice, L., Nahozya, E., Sanga,
H., and MacDonald, A. M.: Evidence of the dependence of groundwater
resources on extreme rainfall in East Africa, Nat. Clim. Change, 3,
374–378, https://doi.org/10.1038/nclimate1731, 2013.
Twine, T. E., Kustas, W. P., Norman, J. M., Cook, D. R., Houser, P. R.,
Meyers, T. P., Prueger, J. H., Starks, P. J., and Wesely, M. L.: Correcting
eddy-covariance flux underestimates over a grassland, Agr. Forest Meteorol.,
103, 279–300, https://doi.org/10.1016/S0168-1923(00)00123-4, 2000.
Vergnes, J.-P., Decharme, B., Alkama, R., Martin, E., Habets, F., and
Douville, H.: A Simple Groundwater Scheme for Hydrological and Climate
Applications: Description and Offline Evaluation over France, J.
Hydrometeorol., 13, 1149–1171, https://doi.org/10.1175/JHM-D-11-0149.1,
2012.
Wagner, W., Lemoine, G., and Rott, H.: A Method for Estimating Soil Moisture
from ERS Scatterometer and Soil Data, Remote Sens. Environ., 70, 191–207,
https://doi.org/10.1016/S0034-4257(99)00036-X, 1999.
Walker, W. R.: Guidelines for Designing and Evaluating Surface Irrigation Systems, FAO Irrigation and Drainage Paper No. 45, FAO, Rome, 1989.
Wang, H. F. and Anderson, M. P.: Introduction to Groundwater Modeling:
Finite Difference and Finite Element Methods, W.H.Freeman & Co Ltd, San
Francisco, 237 pp., 1982.
Wang, L., Chen, W., Huang, G., and Zeng, G.: Changes of the transitional
climate zone in East Asia: past and future, Clim. Dynam., 49, 1463–1477,
https://doi.org/10.1007/s00382-016-3400-4, 2017.
Wheater, H., Sorooshian, S., and Sharma, K. D. (Eds.): Hydrological
Modelling in Arid and Semi-Arid Areas, 1 edition, Cambridge University
Press, Cambridge, New York, 222 pp., 2007.
White, R. P. and Nackoney, J.: Drylands, People, and Ecosystem Goods and Services, World Resources Institute, Washington, D.C., 58 pp., 2003.
Wood, E. F., Lettenmaier, D. P., Liang, X., Lohmann, D., Boone, A., Chang,
S., Chen, F., Dai, Y., Dickinson, R. E., Duan, Q., Ek, M., Gusev, Y. M.,
Habets, F., Irannejad, P., Koster, R., Mitchel, K. E., Nasonova, O. N.,
Noilhan, J., Schaake, J., Schlosser, A., Shao, Y., Shmakin, A. B., Verseghy,
D., Warrach, K., Wetzel, P., Xue, Y., Yang, Z. L., and Zeng, Q. C.: The
project for intercomparison of land-surface parameterization schemes (PILPS)
phase 2(c) Red-Arkansas River basin experiment: 1. Experiment description
and summary intercomparisons, Global Planet. Change, 19, 115–135,
https://doi.org/10.1016/S0921-8181(98)00044-7, 1998.
Woodward, C. S. and Dawson, C. N.: Analysis of Expanded Mixed Finite Element
Methods for a Nonlinear Parabolic Equation Modeling Flow into Variably
Saturated Porous Media, SIAM J. Numer. Anal. Phila., 37, 701–724,
https://doi.org/10.1137/S0036142996311040, 2000.
Woolhiser, D. A., Smith, R., and Goodrich, D. C.: KINEROS: a kinematic runoff and erosion model: documentation and user manual, U.S. Department of Agriculture, Washington, D.C., 77 pp., 1990.
Zimmer, M. A., Kaiser, K. E., Blaszczak, J. R., Zipper, S. C., Hammond, J.
C., Fritz, K. M., Costigan, K. H., Hosen, J., Godsey, S. E., Allen, G. H.,
Kampf, S., Burrows, R. M., Krabbenhoft, C. A., Dodds, W., Hale, R., Olden,
J. D., Shanafield, M., DelVecchia, A. G., Ward, A. S., Mims, M. C., Datry,
T., Bogan, M. T., Boersma, K. S., Busch, M. H., Jones, C. N., Burgin, A. J.,
and Allen, D. C.: Zero or not? Causes and consequences of zero-flow stream
gage readings, WIREs Water, 7, e1436, https://doi.org/10.1002/wat2.1436,
2020.
Zoccatelli, D., Marra, F., Armon, M., Rinat, Y., Smith, J. A., and Morin, E.: Contrasting rainfall-runoff characteristics of floods in desert and Mediterranean basins, Hydrol. Earth Syst. Sci., 23, 2665–2678, https://doi.org/10.5194/hess-23-2665-2019, 2019.
Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., and Rosolem, R.: COSMOS: the COsmic-ray Soil Moisture Observing System, Hydrol. Earth Syst. Sci., 16, 4079–4099, https://doi.org/10.5194/hess-16-4079-2012, 2012.
Short summary
Understanding and quantifying water partitioning in dryland regions are of key importance to anticipate the future impacts of climate change in water resources and dryland ecosystems. Here, we have developed a simple hydrological model (DRYP) that incorporates the key processes of water partitioning in drylands. DRYP is a modular, versatile, and parsimonious model that can be used to anticipate and plan for climatic and anthropogenic changes to water fluxes and storage in dryland regions.
Understanding and quantifying water partitioning in dryland regions are of key importance to...