Articles | Volume 14, issue 11
Model evaluation paper
11 Nov 2021
Model evaluation paper |  | 11 Nov 2021

Turbidity maximum zone index: a novel model for remote extraction of the turbidity maximum zone in different estuaries

Chongyang Wang, Li Wang, Danni Wang, Dan Li, Chenghu Zhou, Hao Jiang, Qiong Zheng, Shuisen Chen, Kai Jia, Yangxiaoyue Liu, Ji Yang, Xia Zhou, and Yong Li

Related authors

A Landsat-based model for retrieving total suspended solids concentration of estuaries and coasts in China
Chongyang Wang, Shuisen Chen, Dan Li, Danni Wang, Wei Liu, and Ji Yang
Geosci. Model Dev., 10, 4347–4365,,, 2017
Short summary

Related subject area

Earth and space science informatics
The Common Community Physics Package (CCPP) Framework v6
Dominikus Heinzeller, Ligia Bernardet, Grant Firl, Man Zhang, Xia Sun, and Michael Ek
Geosci. Model Dev., 16, 2235–2259,,, 2023
Short summary
Causal deep learning models for studying the Earth system
Tobias Tesch, Stefan Kollet, and Jochen Garcke
Geosci. Model Dev., 16, 2149–2166,,, 2023
Short summary
A methodological framework for improving the performance of data-driven models: a case study for daily runoff prediction in the Maumee domain, USA
Yao Hu, Chirantan Ghosh, and Siamak Malakpour-Estalaki
Geosci. Model Dev., 16, 1925–1936,,, 2023
Short summary
SHAFTS (v2022.3): a deep-learning-based Python package for simultaneous extraction of building height and footprint from sentinel imagery
Ruidong Li, Ting Sun, Fuqiang Tian, and Guang-Heng Ni
Geosci. Model Dev., 16, 751–778,,, 2023
Short summary
Bayesian atmospheric correction over land: Sentinel-2/MSI and Landsat 8/OLI
Feng Yin, Philip E. Lewis, and Jose L. Gómez-Dans
Geosci. Model Dev., 15, 7933–7976,,, 2022
Short summary

Cited articles

Asp, N. E., Gomes, V., Schettini, C. A. F., Filho, P. W. S., Siegle, E., Ogston, A. S., Nittrouer, C. A., Silva, J. N. S., Nascimento Jr., W. R., Souza, S. R., Pereira, L. C. C., and Queiroz, M. C.: Sediment dynamics of a tropical tide-dominated estuary: Turbidity maximum, mangroves and the role of the Amazon River sediment load, Estuar. Coast. Shelf S., 214, 10–24,, 2018. 
Attila, J., Kauppila, P., Kallio, K. Y., Alasalmi, H., Keto, V., Bruun, E., and Koponen, S.: Applicability of Earth Observation chlorophyll-a data in assessment of water status via MERIS-With implications for the use of OLCI sensor, Remote Sens. Environ., 212, 273–287,, 2018. 
Azhikodan, G. and Yokoyama, K.: Seasonal morphodynamic evolution in a meandering channel of a macrotidal estuary, Sci. Total Environ., 684, 281–295,, 2019. 
Brenon, I. and Hir, P. L.: Modelling the Turbidity Maximum in the Seine Estuary (France): Identification of Formation Processes, Estuar. Coast. Shelf S., 49, 525–544,, 1999. 
Cai, L., Shi, W., Miao, Z., and Hao, M.: Accuracy Assessment Measures for Object Extraction from Remote Sensing Images, Remote Sens., 10, 303,, 2018. 
Short summary
The turbidity maximum zone (TMZ) is a special phenomenon in estuaries worldwide. However, the extraction methods and criteria used to describe the TMZ vary significantly both spatially and temporally. This study proposes an new index, the turbidity maximum zone index, based on the corresponding relationship of total suspended solid concentration and Chl a concentration, which could better extract TMZs in different estuaries and on different dates.