Articles | Volume 14, issue 8
https://doi.org/10.5194/gmd-14-4909-2021
https://doi.org/10.5194/gmd-14-4909-2021
Development and technical paper
 | 
06 Aug 2021
Development and technical paper |  | 06 Aug 2021

Development of adjoint-based ocean state estimation for the Amundsen and Bellingshausen seas and ice shelf cavities using MITgcm–ECCO (66j)

Yoshihiro Nakayama, Dimitris Menemenlis, Ou Wang, Hong Zhang, Ian Fenty, and An T. Nguyen

Related authors

Stratified suppression of turbulence in an ice shelf basal melt parameterisation
Claire K. Yung, Madelaine G. Rosevear, Adele K. Morrison, Andrew McC Hogg, and Yoshihiro Nakayama
EGUsphere, https://doi.org/10.5194/egusphere-2024-3513,https://doi.org/10.5194/egusphere-2024-3513, 2024
Short summary
Evaluation of MITgcm-based ocean reanalyses for the Southern Ocean
Yoshihiro Nakayama, Alena Malyarenko, Hong Zhang, Ou Wang, Matthis Auger, Yafei Nie, Ian Fenty, Matthew Mazloff, Armin Köhl, and Dimitris Menemenlis
Geosci. Model Dev., 17, 8613–8638, https://doi.org/10.5194/gmd-17-8613-2024,https://doi.org/10.5194/gmd-17-8613-2024, 2024
Short summary
Experimental design for the Marine Ice Sheet–Ocean Model Intercomparison Project – phase 2 (MISOMIP2)
Jan De Rydt, Nicolas C. Jourdain, Yoshihiro Nakayama, Mathias van Caspel, Ralph Timmermann, Pierre Mathiot, Xylar S. Asay-Davis, Hélène Seroussi, Pierre Dutrieux, Ben Galton-Fenzi, David Holland, and Ronja Reese
Geosci. Model Dev., 17, 7105–7139, https://doi.org/10.5194/gmd-17-7105-2024,https://doi.org/10.5194/gmd-17-7105-2024, 2024
Short summary
Hydrography, circulation, and response to atmospheric forcing in the vicinity of the central Getz Ice Shelf, Amundsen Sea, Antarctica
Vår Dundas, Elin Darelius, Kjersti Daae, Nadine Steiger, Yoshihiro Nakayama, and Tae-Wan Kim
Ocean Sci., 18, 1339–1359, https://doi.org/10.5194/os-18-1339-2022,https://doi.org/10.5194/os-18-1339-2022, 2022
Short summary
Impact of West Antarctic ice shelf melting on Southern Ocean hydrography
Yoshihiro Nakayama, Ralph Timmermann, and Hartmut H. Hellmer
The Cryosphere, 14, 2205–2216, https://doi.org/10.5194/tc-14-2205-2020,https://doi.org/10.5194/tc-14-2205-2020, 2020
Short summary

Related subject area

Cryosphere
Computationally efficient subglacial drainage modelling using Gaussian process emulators: GlaDS-GP v1.0
Tim Hill, Derek Bingham, Gwenn E. Flowers, and Matthew J. Hoffman
Geosci. Model Dev., 18, 4045–4074, https://doi.org/10.5194/gmd-18-4045-2025,https://doi.org/10.5194/gmd-18-4045-2025, 2025
Short summary
Anisotropic metric-based mesh adaptation for ice flow modelling in Firedrake
Davor Dundovic, Joseph G. Wallwork, Stephan C. Kramer, Fabien Gillet-Chaulet, Regine Hock, and Matthew D. Piggott
Geosci. Model Dev., 18, 4023–4044, https://doi.org/10.5194/gmd-18-4023-2025,https://doi.org/10.5194/gmd-18-4023-2025, 2025
Short summary
Description and validation of the ice-sheet model Nix v1.0
Daniel Moreno-Parada, Alexander Robinson, Marisa Montoya, and Jorge Alvarez-Solas
Geosci. Model Dev., 18, 3895–3919, https://doi.org/10.5194/gmd-18-3895-2025,https://doi.org/10.5194/gmd-18-3895-2025, 2025
Short summary
The Utrecht Finite Volume Ice-Sheet Model (UFEMISM) version 2.0 – Part 1: Description and idealised experiments
Constantijn J. Berends, Victor Azizi, Jorge A. Bernales, and Roderik S. W. van de Wal
Geosci. Model Dev., 18, 3635–3659, https://doi.org/10.5194/gmd-18-3635-2025,https://doi.org/10.5194/gmd-18-3635-2025, 2025
Short summary
A Flexible Snow Model (FSM 2.1.1) including a forest canopy
Richard Essery, Giulia Mazzotti, Sarah Barr, Tobias Jonas, Tristan Quaife, and Nick Rutter
Geosci. Model Dev., 18, 3583–3605, https://doi.org/10.5194/gmd-18-3583-2025,https://doi.org/10.5194/gmd-18-3583-2025, 2025
Short summary

Cited articles

Arndt, J. E., H. W., Schenke, M., Jakobsson, F., Nitsche, G., Buys, B., Goleby, M., Rebesco, F., Bohoyo, J. K., Hong, J., Black, R., Greku, G., Udintsev, F., Barrios, W., Reynoso-Peralta, T., Morishita, R., and Wigley, R.: The International Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0 A new bathymetric compilation covering circum-Antarctic waters, Geophys. Res. Lett., 40, 3111–3117, 2013. a
Arrigo, K. R., van Dijken, G., and Long, M.: Coastal Southern Ocean: A strong anthropogenic CO2 sink, Geophys. Res. Lett., 35, L21602, https://doi.org/10.1029/2008GL035624, 2008. a
Assmann, K., Darelius, E., Wåhlin, A. K., Kim, T.-W., and Lee, S. H.: Warm Circumpolar Deep Water at the Western Getz Ice Shelf Front, Antarctica, Geophys. Res. Lett., 46, 870–878, 2019. a, b
Bigdeli, A., Nguyen, A. T., Pillar, H., Ocaña, V., and Heimbach, P.: Atmospheric Warming Drives Growth in Arctic Sea-Ice: A Key Role for Snow, Geophys. Res. Lett., 47, e2020GL090236, https://doi.org/10.1029/2020GL090236, 2020. a
Download
Short summary
High ice shelf melting in the Amundsen Sea has attracted many observational campaigns in the past decade. One method to combine observations with numerical models is the adjoint method. After 20 iterations, the cost function, defined as a sum of the weighted model–data difference, is reduced by 65 % by adjusting initial conditions, atmospheric forcing, and vertical diffusivity. This study demonstrates adjoint-method optimization with explicit representation of ice shelf cavity circulation.
Share