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Abstract. The Antarctic coastal ocean impacts sea level rise,
deep-ocean circulation, marine ecosystems, and the global
carbon cycle. To better describe and understand these pro-
cesses and their variability, it is necessary to combine the
sparse available observations with the best-possible numer-
ical descriptions of ocean circulation. In particular, high
ice shelf melting rates in the Amundsen Sea have attracted
many observational campaigns, and we now have some lim-
ited oceanographic data that capture seasonal and interan-
nual variability during the past decade. One method to com-
bine observations with numerical models that can maxi-
mize the information extracted from the sparse observa-
tions is the adjoint method, a.k.a. 4D-Var (4-dimensional
variational assimilation), as developed and implemented for
global ocean state estimation by the Estimating the Circu-
lation and Climate of the Ocean (ECCO) project. Here, for
the first time, we apply the adjoint-model estimation method
to a regional configuration of the Amundsen and Belling-
shausen seas, Antarctica, including explicit representation of
sub-ice-shelf cavities. We utilize observations available dur-
ing 2010-2014, including ship-based and seal-tagged CTD
measurements, moorings, and satellite sea-ice concentration
estimates. After 20 iterations of the adjoint-method mini-
mization algorithm, the cost function, here defined as a sum
of the weighted model—data difference, is reduced by 65 %
relative to the baseline simulation by adjusting initial condi-
tions, atmospheric forcing, and vertical diffusivity. The sea-
ice and ocean components of the cost function are reduced
by 59 % and 70 %, respectively. Major improvements include

better representations of (1) Winter Water (WW) characteris-
tics and (2) intrusions of modified Circumpolar Deep Water
(mCDW) towards the Pine Island Glacier. Sensitivity exper-
iments show that ~40% and ~ 10 % of improvements in
sea ice and ocean state, respectively, can be attributed to the
adjustment of air temperature and wind. This study is a pre-
liminary demonstration of adjoint-method optimization with
explicit representation of ice shelf cavity circulation. Despite
the 65 % cost reduction, substantial model-data discrepan-
cies remain, in particular with annual and interannual vari-
ability observed by moorings in front of the Pine Island Ice
Shelf. We list a series of possible causes for these residuals,
including limitations of the model, the optimization method-
ology, and observational sampling. In particular, we hypothe-
size that residuals could be further reduced if the model could
more accurately represent sea-ice concentration and coastal

polynyas.

1 Introduction

The ice shelves and glaciers in the Amundsen Sea (AS) and
Bellingshausen Sea (BS) are melting and thinning rapidly
with consequences for global sea level rise and changes in
ocean circulation and the global carbon cycle (e.g., Arrigo
et al., 2008; Pritchard et al., 2012; Paolo et al., 2015; Bron-
selaer et al., 2018; Rignot et al., 2019). Basal melting of
these ice shelves is caused by warm modified Circumpo-
lar Deep Water (mCDW, 0.5-1.5°C), which intrudes onto
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Figure 1. Model bathymetry (color) with contours of 500, 2000,
and 4000 m in white. The inset (top left) shows Antarctica with the
region surrounded by a black line denoting the location of the en-
larged portion. AS, BS, and AP denote the Amundsen Sea, Belling-
shausen Sea, and Antarctic Peninsula region, respectively. The ice
shelves are indicated with transparent white-outlined patches, and
abbreviations are summarized in Table 4. Letters E, C, and W de-
note the submarine glacial troughs located on the eastern AS conti-
nental shelf. Transparent white-outlined patches (see the red arrow
between Do and Cr) indicate the location of grounded icebergs and
landfast ice. This white region is treated as a barrier in the sea-ice
model, and we do not allow sea-ice exchange to cross this region.
The thick black line represents the vertical section shown in Figs. 4
and 5.

the continental shelf towards the ice shelf cavities following
submarine glacial troughs (Fig. 1) (e.g., Jacobs et al., 1996;
Walker et al., 2007; Jacobs et al., 2011; Nakayama et al.,
2013; Walker et al., 2013; Dutrieux et al., 2014). For this rea-
son, multiple oceanographic observational campaigns have
been collected by the international community to understand
the mechanism of mCDW intrusions onto the AS continental
shelf and towards ice shelf cavities. As part of these efforts,
we now have some limited oceanographic data that capture
seasonal and interannual variability during the past decade
(e.g., Jacobs et al., 2011; Nakayama et al., 2013; Dutrieux
et al., 2014; Heywood et al., 2016; Kim et al., 2017; Webber
et al., 2017; Mallett et al., 2018).

Recent observations as well as modeling studies reveal that
mCDW pathways, ice shelf-ocean interaction, the thermo-
cline depth, and ocean bathymetry below the Pine Island Ice
Shelf (PIIS) are important for controlling the PIIS melt rate
(e.g., Schodlok et al., 2012; Dutrieux et al., 2014; De Rydt
et al., 2014; St-Laurent et al., 2015; Dinniman et al., 2016;
Jourdain et al., 2017; Kimura et al., 2017; Webber et al.,
2019). The thermocline depth was ~ 200 m deeper in 2012
compared to in other years (e.g., 1994, 2007, 2009, and 2010;
see Fig. 2A in Dutrieux et al., 2014), which reduced the
PIIS melt by ~ 50 %. After 2012, the thermocline shoaled
by 200 m returning to its more commonly observed depth
of ~350m (Webber et al., 2017). It is suggested that this
thermocline variability was caused by changes in local and
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remote surface wind and buoyancy forcing (Dutrieux et al.,
2014; Webber et al., 2017).

To better describe and understand these processes and their
variability, it is necessary to combine the sparse available ob-
servations with the best-possible numerical representations
of ocean circulation. One method to combine observations
with numerical models that can maximize the information
extracted from the sparse observations is the adjoint method,
also known as 4-dimensional variational assimilation (4D-
Var), as developed and implemented for global ocean state
estimation by the Estimating the Circulation and Climate of
the Ocean (ECCO) project. To date, the ECCO project has
produced ocean state estimates based on circum-Antarctic or
global model configurations (e.g., Mazloff et al., 2010; For-
get et al., 2015; Zhang et al., 2018; Fukumori et al., 2020).
Employing the adjoint model produced by automatic dif-
ferentiation (Giering and Kaminski, 1998), a.k.a. algorith-
mic differentiation, and utilizing temporally varying oceano-
graphic observations, these ocean state estimates are capable
of simulating the large-scale evolution of the Southern Ocean
consistent with the available observations. Many observa-
tional and modeling studies have been conducted to under-
stand Southern Ocean gyre dynamics, subsurface ocean cir-
culation, the southern shift of various fronts around Antarc-
tica, etc. (e.g., Gille et al., 2016; Jones et al., 2016; Tam-
sitt et al., 2017; Nakayama et al., 2018; Roach and Speer,
2019; Jones et al., 2020). However, despite the importance
of Antarctic coastal regions for global climate, existing mod-
els fail to accurately reproduce the sparse available observa-
tions, likely owing to the difficulty in simulating Antarctic
continental shelf regions and sub-ice-shelf-cavity processes
(Mazloff et al., 2010; Timmermann et al., 2012; Kusahara
and Hasumi, 2013; Nakayama et al., 2014; Rodriguez et al.,
2016; Nakayama et al., 2017; Kusahara, 2020).

For other regions of the globe, ocean state estimates based
on regional configurations have been successfully developed
during the past decades, achieving good model-data agree-
ment and leading to understanding of regional processes
(Fenty and Heimbach, 2013b, a; Verdy et al., 2014, 2017;
Rudnick et al., 2015; Nguyen et al., 2020; Vinogradova et al.,
2014). For Antarctic coastal regions, however, the only pre-
vious attempt to constrain a model with observations was
the study of Nakayama et al. (2017), which used a low-
dimension estimation approach based on the computation of
model Green’s functions. Here we aim to extend the study
of Nakayama et al. (2017) by employing the adjoint method,
which permits a larger number of higher-dimension control
variables than the Green’s functions approach. The objec-
tive is to obtain a closer fit to the available observations than
what was achieved in Nakayama et al. (2017). This objec-
tive is challenging due to several difficulties including that
(1) polar-specific processes (ice shelf and sea ice) are highly
nonlinear and (2) observational data are limited. The ground-
work for making adjoint-method optimization possible in the
presence of ice shelf cavities was laid out in the study of He-
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Figure 2. Evolution of (a) total; (b) ship-based, Argo, and seal-tagged CTD temperature; (c) ship-based, Argo, and seal-tagged CTD salinity;
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Figure 3. The (a) 222 m and (b) 552 m potential temperature used for model—data difference calculation and (c) 222 m and (d) 552 m salinity
used for model—-data difference calculations. Bathymetric contours of 500, 2000, and 4000 m are shown in black. The red arrow indicates the

PIIS front region.
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Table 1. Oceanographic datasets used for ocean state estimates.

Y. Nakayama et al.: Development of adjoint-model-based ocean state estimation for the ABS

Measurements Year Reference Locations
Ship CTD 2010 Nakayama et al. (2013) AS

Ship CTD 2010, 2011,2012  Dutrieux et al. (2014); Kim et al. (2017) AS

Ship CTD 2014 Heywood et al. (2016) AS

Ship CTD 20102014 e.g., Ducklow et al. (2012) BS
Mooring 20102014 Webber et al. (2017) AS
Mooring 20122014 Kim et al. (2017) AS

Seal CTD 2014 Mallett et al. (2018) AS
Sea-ice concentration  2010-2014 Cavalieri et al. (1996) AS, BS

Table 2. Model parameters used for ocean simulations. Most pa-
rameters are chosen based on Nakayama et al. (2017) and Zhang
et al. (2018) with some adjustments.

Parameter

Horizontal diffusivity (m2 57]) 10

Background horizontal viscosity (m2s~1) 1000, 500, 100, 10
Leith biharmonic non-dimensional 0.0

viscosity factor
Modified Leith biharmonic non-dimensional 0.0
viscosity factor

Background vertical diffusivity ) 5.456 x 1070
Background vertical viscosity (m%s—1) 1.0x 1074
KPP critical bulk Richardson number 0.3273

KPP local Richardson number limit 0.8358

for shear instability

Bottom drag coefficient 2.1x1073
Ocean—air drag coefficient scaling factor 0.508
Air—sea-ice drag coefficient 1.0x 1073
Sea-ice—ocean drag coefficient 5.69 x 1073

Sea-ice salt concentration 4.0

Stanton number (stable) 0.0492
Stanton number (unstable) 0.02506
Dalton number 0.0520
Lead closing (m) 1.24

Ice strength (Nrnfz) 1.0 x 10*
Sea-ice dry albedo 0.84
Sea-ice wet albedo 0.78
Snow dry albedo 0.90
Snow wet albedo 0.80

imbach and Losch (2012), who obtained adjoint sensitivities
of sub-ice-shelf melt rates to ocean circulation under the Pine
Island Ice Shelf, West Antarctica.

In this study, we present our attempt at the development of
Amundsen Sea—Bellingshausen Sea ocean state estimates by
employing the adjoint-model-based data assimilation method
developed by ECCO for regional and global ocean state esti-
mation (Mazloff et al., 2010; Forget et al., 2015; Zhang et al.,
2018; Fukumori et al., 2020). We focus on the years 2010-
2014 when oceanographic observations were collected fre-
quently and the largest interannual variability was observed
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(Dutrieux et al., 2014; Webber et al., 2017). Our simulations
are carried out for a subregion of the global 1/3° ECCO so-
lution, a.k.a. ECCO LLC270 (Zhang et al., 2018). Using the
ECCO LLC270 solution both provides lateral boundary con-
ditions for this study and enables this work to be a stepping
stone towards improved representation of ice shelf—ocean in-
teractions in ECCO global ocean retrospective analyses. We
note, however, that the LLC270 horizontal and vertical reso-
lutions are insufficient to resolve critical ocean and ice shelf
processes, e.g., eddy transport and mean-flow—topography
interactions. Hence, these sub-grid-scale processes need to
be parameterized and adjusted.

2 Data and methods
2.1 Observations

In the Amundsen Sea, oceanographic observational cam-
paigns were carried out in 2010, 2012, and 2014 (Nakayama
et al., 2013; Dutrieux et al., 2014; Heywood et al., 2016;
Kim et al., 2017). Several mooring observations were also
obtained, with the moorings at the PIIS front capturing the
largest interannual variability observed in the region between
2009-2014 (Dutrieux et al., 2014; Webber et al., 2017).
We also utilize seal-tagged CTD observations obtained in
2014, which contain over 10000 profiles between February
and November (Heywood et al., 2016). In the central part
of the Bellingshausen Sea, no oceanographic observations
were collected between 2010-2014. Recently, we have be-
come aware that seal-tagged CTD observations, mostly in
the Bellingshausen Sea (Roquet et al., 2013; Zhang et al.,
2016), are available for inclusion in future studies. For the
Antarctic Peninsula region, oceanographic observations were
collected by the Palmer Antarctic Long-Term Ecological Re-
search project (PAL-LTER; Ducklow et al., 2012). For sea
ice, we use satellite-based estimates of daily sea-ice concen-
tration with grid resolutions of 25 km (Cavalieri et al., 1996).
The datasets used in this study are summarized in Figs. 2 and
3 and Table 1.
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Table 3. Adjustments to model parameters in addition to optimization using adjoint sensitivities.

Iterations Adjustment

Iteration 10
Iteration 11
Iteration 15
Iteration 20

change background horizontal viscosity from 1000 to 500 m2 s~
heat and salt transfer coefficients for PIIS and Thwaites Ice Shelf reduced by 70 % and 63 %, respectively
change background horizontal viscosity from 500 to 100 m
change background horizontal viscosity from 100 to 20 m

1

24-1
241

2.2 Numerical model

We employ the Massachusetts Institute of Technology Gen-
eral Circulation Model (MITgcm), which includes dynamic—
thermodynamic sea-ice (Losch et al., 2010) and thermody-
namic ice shelf (Losch, 2008) capabilities. Following the
model configuration from Nakayama et al. (2017), we ex-
tract the regional grid from a global LLC270 configuration
for the AS and BS regions (Fig. 1). In the AS and BS domain,
horizontal grid spacing is approximately 10km (Fig. 1). The
vertical discretization of the ECCO LLC270 configuration
comprises 50 levels varying in thickness from 10 m near the
surface to 70-90 m in the 500—-1000 m depth range and 450 m
at the deepest level of 6000 m. Model bathymetry is derived
from the International Bathymetric Chart of the Southern
Ocean (IBCSO; Arndt et al., 2013), and the model ice draft is
based on Antarctic Bedrock Mapping (BEDMAP2; Fretwell
et al., 2013). Following Nakayama et al. (2017), we simulate
the effect of the ice barrier (shown in white indicated by the
red arrow in Fig. 1) by limiting sea-ice transport between the
eastern and central AS. Such a barrier is necessary to sim-
ulate sea-ice concentration, and thus air—ocean interaction,
closer to observations.

The first guess of the model initial state is a simulated 2010
oceanographic condition based on the Green’s functions-
based solution of Nakayama et al. (2017). Lateral bound-
ary conditions for hydrography, currents, and sea ice are
provided by the ECCO LLC270 optimization (Zhang et al.,
2018). The initial guess of surface forcing for the 2010-2014
period is from ERA-Interim (Dee et al., 2011). There is no
additional freshwater runoff above and beyond the meltwa-
ter computed by the MITgcm ice shelf package. The model
parameters used for this state estimate are shown in Table 2.

The MITgcm adjoint assimilation system iteratively min-
imizes a scalar cost function, defined as the weighted least-
squares difference between simulation and observations and
between prior and adjusted control parameters (e.g., Wun-
sch et al., 2009; Wunsch and Heimbach, 2013; Forget et al.,
2015). The observation weights are spatially homogeneous
but depth-varying and defined as the inverse of the sim-
ulated variance for potential temperature and salinity at
each depth. For example, the estimated error in potential
temperature varies from 0.73 °C at the surface to 0.16°C
at a depth of 1000m. The control vector consists of ini-
tial potential temperature and salinity conditions, vertical

https://doi.org/10.5194/gmd-14-4909-2021

diffusivity, and time-evolving atmospheric surface bound-
ary conditions (air temperature, specific humidity, precip-
itation, shortwave radiation, longwave radiation, and east-
ward and northward winds). Weights for initial temperature
and salinity conditions are prescribed to be the inverse vari-
ance of the baseline ECCO LLC270 simulation (Zhang et al.,
2018). The weight for vertical diffusivity is the squared in-
verse of the prior value, 5.0 x 1079 m?s~!. Weights for sur-
face boundary conditions are from Chaudhuri et al. (2013).
The gradient of the cost function is obtained by integrat-
ing the adjoint of the tangent linear model backward in time
(Le Dimet and Talagrand, 1986) and is used with the quasi-
Newton M1QN3 conjugate-gradient algorithm (Gilbert and
Lemaréchal, 1989) to adjust the control variables so as to
iteratively reduce the cost function towards its minimum.
The adjoint model is generated using Transformation of Al-
gorithms in Fortran (TAF; Gilbert and Lemaréchal, 1989),
commercial software developed and distributed by FastOpt
GmbH (Giering and Kaminski, 2003). Despite successful
adjoint simulations with particular versions of the sea-ice
model (e.g., Fenty and Heimbach, 2013a), the sea-ice adjoint
is not used in this study due to persistent instability issues.
Sea-ice concentration is instead constrained using a pseudo-
sea-ice adjoint as is done in Forget et al. (2015). Where the
model has an excess (deficiency) of sea ice, extra heat is
added to (removed from) the system to bring the sea sur-
face to above (below) the freezing temperature. However,
these heat fluxes are only applied when the model has sea ice
and observations do not or vice versa. In this scheme, simu-
lated sea-ice concentration can not be directly optimized. We
also note that background horizontal viscosity has to be ar-
tificially increased at the early stage of the optimization for
model stability, and we manually lowered the values of vis-
cosity at iterations 10, 15, and 20 (Tables 2 and 3).

For the static ice shelf component, the freezing—melting
process in the sub-ice-shelf cavity is parameterized by
the three-equation thermodynamics of Hellmer and Olbers
(1989) and Jenkins (1991). We use constant turbulent heat
and salt exchange coefficients for individual ice shelves,
which are already adjusted in Nakayama et al. (2017). How-
ever, only for Pine Island and Thwaites ice shelves do we
further modify these coefficients for simulations after itera-
tion 11 (Table 3), as their ice shelf melt rates become too
large. Changes in these coefficients do not highly alter on-
shelf circulation (see Fig. S18 in Nakayama et al., 2018), and

Geosci. Model Dev., 14, 4909-4924, 2021
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Figure 4. Simulated vertical sections of monthly mean potential temperature (a, b) and salinity (c, d) in January 2010 along the thick
black line in Fig. 1 for the (a, ¢) unoptimized and (b, d) iteration-20 simulations. The red arrow indicates the central part of the AS where
thermocline depth is compared.
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adjustments of these coefficients in addition to optimizations
based on adjoint sensitivities are possible.

3 Results
3.1 Unoptimized simulation (iteration 0)

As we initialize the unoptimized simulation (iteration 0) with
simulated oceanographic conditions based on the Green’s
functions approach (Nakayama et al., 2017), its 2010 sim-
ulated vertical section shows a good agreement with obser-
vations (Fig. 4). Detailed model-data comparisons are pre-
sented for the same section in Nakayama et al. (2017). Simu-
lated vertical sections present mCDW below 400-500 m and
WW above 250—400 m, consistent with observations (Fig. 2
in Jacobs et al., 2011, and Fig. 4 in Nakayama et al., 2013).
Similarly to Nakayama et al. (2017), slight differences can
still be found for WW properties close to the surface (salin-
ity being still too saline (~ 0.1 psu)) and PIIS front mCDW
properties (~ 0.1 psu for salinity and ~ 0.2 °C for potential
temperature, Fig. 4).

We find, however, that the time evolution of iteration O
between 2010-2014 does not agree well with observations.
For example, oceanographic conditions at the PIIS front in
the iteration-0 simulation become too cold and fresh by ~
2°C and ~ 0.25 psu compared to observations, respectively
(Figs. 4 and 5). This is clearly different from observations
because WW becomes dense, convects to the bottom, and
prevents mCDW intrusions into the PIIS cavity in iteration O
(Fig. 5). Furthermore, the horizontal section of potential tem-
perature at 552 m depth illustrates the formation of cold and
fresh water masses (ca. —1 °C and 34.4 psu) in the vicinity
of the PIIS (the red arrows in Fig. 6) in contrast to observa-
tions (Fig. 3). This water spreads along the coast and induces
unrealistic cooling in the large area of the AS (Figs. 6 and
7). Simulated time series of potential temperature and salin-
ity at the PIIS front mooring (Fig. 8) show that these changes
occur as a result of intense cooling by the atmosphere in the
austral winter of 2013, and this cooling leads to a reduction
in the PIIS melt rate by ~ 100 Gtyr~! (Fig. 9a).

3.2 Model-observation differences and improvements

As aresult of the iterative optimization, we are able to reduce
the cost, which is defined as a sum of the weighted model—
data difference, by 65 % by adjusting initial ocean tempera-
ture and salinity, atmospheric surface parameters, and ver-
tical diffusivity (Fig. 2). The cost reduction occurs more
quickly in the first 10 iterations (Fig. 2). Throughout the op-
timization, sea-ice and ocean costs are reduced by 59 % and
70 %, respectively.

https://doi.org/10.5194/gmd-14-4909-2021

3.2.1 Seaice

In the iteration-20 simulation, spatial patterns of sea-ice con-
centrations show better agreement with observations. For
September, the simulated sea-ice area over the entire model
domain in iteration O is larger than observations by 0.08 x
10°km? (3.5 % difference), while in iteration 20 it is larger
by only 0.03 x 10° km? (1.2 % difference). September sim-
ulated sea-ice concentration is overestimated in iteration O
at the northern model boundary but becomes much closer to
observations in iteration 20 (Fig. 10). For March in the AS,
simulated sea ice in iteration O is larger than observations
by 0.12 x 10° km? (57 % difference), and in iteration 20 it is
larger by 0.08 x 10° km? (37 % difference). In the BS, sim-
ulated sea ice in iteration O is larger than observations by
0.13 x 10%km? (144 % difference), and in iteration 20 it is
larger by 0.05 x 10 km? (56 % difference).

3.2.2 Ocean

For the AS, there are two major improvements for the
oceanographic condition: (1) representation of mCDW intru-
sions towards the ice shelf cavities and (2) properties of WW.
For the BS, we do not include enough observational data in
the current version of the ocean state estimate and are not
able to judge the capability of our state estimation.

As the model—-data difference becomes larger towards the
end of the 2010-2014 unoptimized simulation, we com-
pare 2014 oceanographic conditions between iteration-0 and
iteration-20 simulations to assess improvements. At greater
depths, mCDW penetrates along the submarine glacial
troughs towards the Pine Island and Thwaites ice shelf cavi-
ties (the red arrows in Fig. 6a, b) in the iteration-20 simula-
tion, which is qualitatively similar to observations (Fig. 3b)
and other model studies (Jacobs et al., 2011; Nakayama et al.,
2013, 2018, 2019; Dutrieux et al., 2014). The 552 m potential
temperature and salinity difference between iteration-0 and
iteration-20 simulations are ~ 0.5 °C and ~ 0.1 psu along the
coast of the AS, respectively (Fig. 6). Simulated time series
of potential temperature and salinity at the PIIS front moor-
ing also show the continuous intrusion of mCDW into the
PIIS cavity from 2010-2014, consistent with observations
(e.g., Jacobs et al., 2011; Dutrieux et al., 2014; Kim et al.,
2017; Jenkins et al., 2018; Assmann et al., 2019).

At shallower depths, the thermocline is located deeper by
~ 150m in the AS in 2014 compared to in 2010 (Figs. 4
and 5), which seems to be consistent with observations (Ja-
cobs et al., 2011; Nakayama et al., 2013; Dutrieux et al.,
2014; Heywood et al., 2016). The 222 m salinity difference
between iteration-0 and iteration-20 simulations shows fresh-
ening by 0.05-0.1 almost everywhere in the AS (the red ar-
rows in Fig. 7d and e). This is a good improvement as WW
tends to become too saline in most numerical models (e.g.,
St-Laurent et al., 2015; Nakayama et al., 2018) and good rep-
resentations of surface hydrographic conditions as well as of

Geosci. Model Dev., 14, 4909-4924, 2021



4916

(a) 2014 Jan Temp. at 552 m, iter0

(b) 2014 Jan Temp. at 552 m, iter20
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Figure 6. Simulated monthly mean (a, b) potential temperature and (d, e) salinity at 552 m depth in January 2014 for (a, d) unoptimized
and (b, e) iteration-20 simulations. (c¢) Potential temperature and (f) salinity differences between unoptimized and iteration-20 simulations.
Bathymetric contours of 500, 2000, and 4000 m are shown in black. Red arrows indicate the PIIS front region, and pink arrows indicate
regions in the deep troughs in the AS. In the iteration-20 simulation, potential temperature in these regions becomes warmer as mCDW

intrusion into the ice shelf cavities in the AS is correctly represented

(a) 2014 Temp. at 222 m, iter0

(b) 2014 Temp. at 222 m, iter20

(c) Temp. diff. at 222 m (iter20-iter0)

(e) 2014 Salinity at 222 m, iter20

130W  110W aPow 70w 130W

110W

90w 70W 130W 110W  90W

Figure 7. Simulated yearly mean (a, b) potential temperature and (d, e) salinity at 222 m depth in 2014 for (a, d) unoptimized and
(b, e) iteration-20 simulations. (c¢) Potential temperature and (f) salinity differences between unoptimized and iteration-20 simulations.
Bathymetric contours of 500, 2000, and 4000 m are shown in black. Red arrows indicate the eastern AS region, where salinity becomes

fresher by ~ 0.1, showing an improvement in WW properties.

stratification are necessary for the better representation of in-
terannual variabilities.

3.2.3 Ice shelf

Heat and salt transfer coefficients are kept constant, and we
do not allow them to change over time for each model it-
eration. Thus, time series of ice shelf melt rates simply re-
flect changes in oceanographic conditions in the ice shelf
cavities. We note, however, that these coefficients are ad-
justed once at iteration 11 for Pine Island and Thwaites ice
shelves (Tables 3 and 4). In iteration 0, simulated time se-
ries of Pine Island and Thwaites ice shelf melt rates show

Geosci. Model Dev., 14, 4909-4924, 2021

a reduction of ~ 100 Gtyr~! between 2010-2014 (Fig. 9).
In the iteration-20 simulation, however, time series of both
Pine Island and Thwaites ice shelf melt rates become rather
stable at ~ 110 Gtyr~! but show slight decreasing trends of
~ 4 and ~ 3 Gtyr~2, respectively. The simulated Pine Island
melt rate shows a reduction in 2012 by ~ 30 Gtyr~!, and the
simulated Thwaites melt rate shows reductions of ~ 20 and
~ 50 Gtyr~! in 2012 and 2013, respectively. For ice shelves
in the BS, melt rates remain almost constant (e.g., Fig. 9).
Based on observations, it is suggested that melt rates
of Pine Island and Thwaites ice shelves should have de-
creased between 2012-2014 due to a deepened thermocline
(Dutrieux et al., 2014; Webber et al., 2017), and estimated ice

https://doi.org/10.5194/gmd-14-4909-2021
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Figure 8. Simulated time series of (a, ¢, g) potential temperature and (b, d. f) salinity at BSRS and iSTAR9 mooring locations for
(a, b) iteration-0 (unoptimized), (¢, d) iteration-10, and (g, f) iteration-20 simulations. Observed mooring time series are shown in Figs. 12

and 2c in Webber et al. (2017).
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Figure 9. Simulated monthly mean basal melt rates from 2010 to 2015 for the Pine Island, Thwaites, and George VI ice shelves for (a) un-

optimized and (b) iteration-20 simulations.

shelf melt rates from oceanographic observations are ~ 75
and ~ 40 thr‘1 based on 2009/10 and 2012 observations,
respectively. However, these estimates rely on single snap-
shots of ice shelf front oceanographic observations. Satellite-
based estimates of ice shelf melt rates are 101 and 98 Gtyr~!
for Pine Island and Thwaites ice shelves, respectively. These
estimates are derived from volume flux divergence of Antarc-
tic ice shelves in 2007 and 2008 with 1979-2010 surface ac-

https://doi.org/10.5194/gmd-14-4909-2021

cumulation and 2003-2008 thinning (Rignot et al., 2013) and
may represent ice shelf melt rates in warm oceanographic
conditions in the eastern AS.

In general, heat and salt transfer coefficients are already
adjusted in Nakayama et al. (2017), and melt rates of ice
shelves in the AS and BS are consistent with satellite-based
estimates (Table 4). The interannual variability in the sim-
ulated ice shelf melt rates may be too weakened compared

Geosci. Model Dev., 14, 4909-4924, 2021
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Table 4. Satellite-based estimates of basal melt rate (Rignot et al., 2013) and model mean basal melt rates (2010-2014) for West Antarctic
ice shelves for iteration 20. The values of heat transfer coefficient yT used for the optimized simulation are also shown. We use constant
turbulent heat and salt exchange coefficients for individual ice shelves, which are already adjusted in Nakayama et al. (2017). However, only
for Pine Island and Thwaites ice shelves (bold) do we further modify these coefficients for simulations after iteration 11.

Name YT yr  Observation-based estimates  Optimized simulation
(iterations 0-10)  (iterations 11-20) (Rignot et al., 2013)

(><10_4ms_1) (x10_4ms_1) (thr_l) (thr_l)
George VI (Geo) 0.11 0.11 89.0+17 85.6
Wilkins (Wi) 0.11 0.11 18.44+17 11.5
Bach (Ba) 0.57 0.57 104+1 11.8
Stange (St) 0.35 0.35 28.0+6 33.0
Ferrigno (Fe) 2.2 2.2 5.1£2 1.7
Venable (Ve) 0.35 0.35 19442 20.0
Abbot (Ab) 0.27 0.27 51.8+19 53.0
Cosgrove (Co) 0.079 0.079 8.5+2 9.8
Pine Island (PI) 1.25 0.86 101.2+8 118.3
Thwaites (Th) 0.91 0.57 97.5+7 108.8
Crosson (Cr) 15.2 15.2 38.5+4 44.0
Dotson (Do) 33 3.3 452+4 40.6
Getz (Get) 0.26 0.26 1449+ 14 128.1

Iter0 Iter20 Observations

[:[:X] (a) Seaiice Conc. March (b) Sea ice Conc. March (c) Sea ice Conc. March

668 (d) Sea ice Conc. Sep.

130w 110W 90w 70w 130w 110W  90W 70W  130W 110W  90W 70W
- " —
0 0.5 1.0
Figure 10. Simulated mean sea-ice concentrations for (a, b) March and (d, e) September for unoptimized and iteration-20 simulations, re-

spectively. The observed mean sea-ice concentrations for (¢) March and (f) September based on satellite sea-ice concentration measurements
between 2010-2014.

to observations possibly because (1) the coarse horizontal 4 Discussion

and vertical grids used in this configuration may not allow

the realistic representation of ocean cavity circulation and 4.1 Sensitivity studies
(2) the observed reduction in ice shelf melt rates is caused
by changes in ice shelf geometry and it can not be simulated
in static ice shelf cavity configurations. Satellite-based esti-
mates of time-evolving ice shelf melt rates are required for
further comparison.

To investigate the reason for the improvements, we con-
ducted three sensitivity experiments (Table 5) as air tem-
perature, precipitation, and wind are considered the main
drivers of oceanographic variabilities at the PIIS front region.
For the NoWindAdj, NoPrepAdj, and NoAtempAdj cases,
we re-ran the iteration-20 simulation but excluded adjust-
ments for wind, precipitation, and air temperature, respec-
tively. The total costs are 2.9 x 106, 3.1x 106, 2.9 x 106, and
4.1 x 10° for the iteration-20, NoWindAdj, NoPrepAdj, and
NoAtempAdj cases, respectively, showing that adjustments

Geosci. Model Dev., 14, 4909-4924, 2021 https://doi.org/10.5194/gmd-14-4909-2021
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Table 5. Description of all the sensitivity simulations.
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Total cost Ocean cost  Sea-ice cost
Case Description increase (%) increase (%) increase (%)
NoWindAdj iteration-20 simulation but excluding adjustment 7.6 % 32.9% —7.6%
for wind
NoPrepAdj iteration-20 simulation but excluding adjustment —-0.4 % 0.5% —1.0%
for precipitation
NoAtempAdj iteration-20 simulation but excluding adjustment 41.9% 1.1% 71.0 %

for air temperature

70S (a) iter20

(b) NoWindAdj-iter20

120W

100W 120W

Figure 11. (a) Simulated January 2014 mean 552 m potential tem-
perature for iteration 20. Simulated potential temperature differ-
ences of (b) NoWindAdj, (¢) NoPrepAdj, and (d) NoAtempAdj
compared to the iteration-20 simulation. Bathymetric contours of
500 and 2000 m are shown in black. Spatial averages of 552 m po-
tential temperature are calculated for the region enclosed by the red
boxes.

of wind and atmospheric temperature play important roles
in reducing both sea-ice and ocean costs. Sea-ice costs are
1.7x 10°%, 1.6x 10%, 1.7 x 10°, and 2.9 x 10° for the iteration-
20, NoWindAdj, NoPrepAdj, and NoAtempAd; cases, re-
spectively. Ocean costs are 1.1 x 106, 1.5%x 106, 1.1x 106, and
1.2 x 10° for the iteration-20, NoWindAdj, NoPrepAdj, and
NoAtempAdj cases, respectively. Cost function increases in
these sensitivity experiments compared to the control are
summarized in Table 5, showing that adjustment of wind has
the strongest impact on the ocean, while adjustment of air
temperature has the strongest impact on sea ice.

Among these sensitivity experiments, the January 2014
mean potential temperature at 552 m depth shows a simi-
lar spatial pattern for all cases for open ocean and in the
BS (not shown), and differences can only be found in the
AS especially at the PIIS front (Fig. 11). Spatially aver-
aged 552 m potential temperatures at the PIIS front (aver-
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Figure 12. Time series of simulated potential temperature at
(a) 409 m, (b) 34 m, and (c¢) 909 m for unoptimized (iteration 0) and
iteration-20 simulations. Time series of observed potential tempera-
ture at BSRS and iISTAR9 mooring sites at depths of approximately
(a) 400m; (b) 600, 650, 700m; and (¢) 780 and 900 m are also
shown in black. Time series of (d) spatially averaged (74.8-75.0° S,
102.4-104.0° W) sea-ice concentration for the unoptimized simula-
tion (iteration 0), iteration 20, and observations.

aged for the region enclosed by the red box in Fig. 11a) are
0.61, 0.23, 0.56, and 0.53 °C for the iteration-20, NoWin-
dAdj, NoPrepAdj, and NoAtempAdj cases, respectively. Ver-
tically integrated heat contents, which are strongly controlled
by thermocline depth (Nakayama et al., 2018), reduced by
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Figure 13. Taylor diagram listing the statistical properties of 400 m (red) and 900 m (blue) potential temperature at PIIS front from mooring
observations and simulations from iterations 0 and 20. The radial distances from the center of the semi-circle represent the standard deviation
of each time series. The angle represents the correlation coefficient between the observed and simulated daily time series of potential
temperature. The dashed green curves centered on the “Obs” point are a scale for the root mean square differences (between the observed
time series and each simulated time series). The Taylor diagram was drawn using the MATLAB routine TAYLORDIAG developed by

Guillaume Maze.

11%, 5%, and 12 % for the NoWindAdj, NoPrepAdj, and
NoAtemAdj cases, respectively, compared to the iteration-
20 solution. This implies that (1) PIIS front mCDW temper-
ature and thus mCDW pathways as well as strength of in-
trusions are dominantly controlled by wind and (2) the PIIS
front thermocline depth is influenced rather equally by wind,
precipitation, and air temperature.

4.2 Seasonal and interannual variability

Mooring observations at the PIIS front were conducted from
2009-2014, which provide us with potential temperature
measurements at various depths (Webber et al., 2017). At
depths below 800 m, the observed potential temperature re-
mains rather stable at ~ 1°C (Fig. 12c¢). At 600-700 m
depths, the potential temperature also remains stable at 1 °C
and shows gradual cooling and warming between 2010-2012
and 2013-2015, respectively (Fig. 12). Between 2012-2013,
however, the potential temperature time series shows spo-
radic emergence of cold water masses (ca. —0.5 °C). At 400—
500 m depths, the time series of potential temperature fluctu-
ates between —1.8 °C and 0 °C and seasonal and interannual
variabilities are large.

For iteration 0, we find three major differences with re-
spect to the observations (Fig. 12); (1) simulated potential
temperature shows rapid cooling between 2013-2015 and
potential temperature at all depths changes from ca. 1°C to
ca. —1°C; (2) simulated time series of potential temperature
shows sudden emergence of cold water at all depths through-
out the simulated period, while it occurs only for shallower
depths for observations; and (3) the timing of cooling and

Geosci. Model Dev., 14, 4909-4924, 2021

warming does not agree with observations. These sporadic
coolings are likely associated with strong wind events which
lead to the formation of cold and dense water and deep con-
vection.

For the iteration-20 simulation, simulated time series show
improvements at all depths (Fig. 12). At greater depths (800—
900 m), the potential temperature remains rather stable at
~ 1 °C, consistent with observations (Fig. 12¢), and the sud-
den emergence of cold water only occurs at shallower depths.
However, the long-term and short-term variabilities have
large differences between observations and the iteration-20
simulation, and the timings of cooling and warming still do
not agree with observations. Such differences are also pre-
sented in Taylor diagrams based on simulated and observed
time series of 400 and 900 m potential temperature at the
PIIS front (Fig. 13). The root mean square differences re-
duce by 23 % and 80 % for iterations 0 and 20, respectively.
However, standard deviations and correlation coefficients of
both the iteration-0 and the iteration-20 solutions retain large
differences compared to observations. This means that cur-
rent states of the optimized solution achieve better agreement
in terms of mean states, but it remains difficult to capture
shorter timescale variability for both time series at the mid-
dle and close to the bottom of the water column.

One possible reason for the difference is deficiencies in the
simulated sea-ice concentration near the coast. In our current
configuration using a pseudo-sea-ice adjoint sensitivity, we
are not able to directly adjust sea-ice concentration: simu-
lated sea-ice concentration at the PIIS front remains almost
the same between the iteration-0 and iteration-20 simulations
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(Fig. 12). More accurate representations of sea ice would
likely allow us to capture, for example, wind-driven trans-
ports of sea ice away from the coast, surface ocean cooling,
and sea-ice formation. Such processes likely change the lo-
cal stratification, which possibly impacts warm mCDW in-
trusions into the PIIS cavity.

5 Conclusions

In previous work, Nakayama et al. (2017) employed a
Green’s functions approach to adjust a numerical simulation
of 2010 AS conditions close to observations. However, we
find that continuation of the Nakayama et al. (2017) setup
until the year 2014 leads to unrealistic cooling and fresh-
ening at the PIIS front and other coastal regions of the AS
(Figs. 4-6, 8).

In this work, we develop an Amundsen Sea—
Bellingshausen Sea ocean simulation following Nakayama
et al. (2017) and employ the ECCO ocean state estimation
tools based on adjoint sensitivities (Forget et al., 2015;
Zhang et al., 2018) to develop an ocean state estimate for the
AS and BS for the time period of 2010-2014. We choose this
time window because the largest interannual variability was
observed after the first observations in 1994 (Dutrieux et al.,
2014) and a good number of oceanographic observations
are available. After 20 iterations, the cost function, which is
defined as a sum of the weighted model-data difference, is
reduced by 65 % by adjusting initial conditions, atmospheric
forcing, and vertical diffusivity (Fig. 2). The iteration-20
simulation can simulate oceanographic conditions much
closer to observations for the 2010-2014 period compared to
the unoptimized iteration-0 simulation. The main improve-
ments are (1) simulated sea-ice extent for the AS and BS,
(2) simulated WW properties and thermocline depths in the
AS (Fig. 12), and (3) simulated mCDW intrusions towards
AS ice shelf cavities and their pathways (Figs. 5-7). Despite
the improvements listed above, the seasonal and interannual
variability in oceanographic conditions at the PIIS front is
not simulated well compared to the mooring observations
and it remains difficult to simulate seasonal and interannual
changes in oceanographic conditions on the AS continental
shelf (Fig. 12).

There are several lines of investigation that can improve
upon the technical foundation discussed hereinabove. This
includes new sea-ice adjoint optimization code (Fenty and
Heimbach, 2013a; Bigdeli et al., 2020), improved methods of
calculating costs to put more emphasis on the seasonal and
interannual variabilities (Forget et al., 2015), adding other
oceanographic datasets not used in the current optimization
such as additional mooring observations (Assmann et al.,
2019) and instrumented pinnipeds (Roquet et al., 2013),
more careful estimation of model and data prior uncertainty,
and a number of new optimizations from different initial con-
ditions and parameter guesses to ensure the robustness of the

https://doi.org/10.5194/gmd-14-4909-2021
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optimized solution. Considering the grid resolution selected
for this regional model (10 km horizontal grid spacing), this
work is a step towards the improved representation of ice
shelf—ocean interaction in the ECCO (Estimating the Circu-
lation and Climate of the Ocean) global ocean retrospective
analysis as well as in current-generation IPCC (Intergovern-
mental Panel on Climate Change) global climate models.

Data availability. The model code, input, and results of itera-
tion 20 are available at https://doi.org/10.5281/zenodo.4541036
(Nakayama, 2021). They are also available at https://ecco.jpl.
nasa.gov/drive/files/ECCO2/LLC270/ABS_ADJOINT/results (last
access: 1 August 2021; Nakayama, 2021). We note that a commer-
cial TAF license is required to fully reproduce the optimization steps
described in this study.
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