Articles | Volume 14, issue 1
Geosci. Model Dev., 14, 239–258, 2021
https://doi.org/10.5194/gmd-14-239-2021
Geosci. Model Dev., 14, 239–258, 2021
https://doi.org/10.5194/gmd-14-239-2021
Methods for assessment of models
15 Jan 2021
Methods for assessment of models | 15 Jan 2021

Snow profile alignment and similarity assessment for aggregating, clustering, and evaluating snowpack model output for avalanche forecasting

Florian Herla et al.

Related authors

A data exploration tool for averaging and accessing large data sets of snow stratigraphy profiles useful for avalanche forecasting
Florian Herla, Pascal Haegeli, and Patrick Mair
The Cryosphere, 16, 3149–3162, https://doi.org/10.5194/tc-16-3149-2022,https://doi.org/10.5194/tc-16-3149-2022, 2022
Short summary

Related subject area

Cryosphere
Modeling the small-scale deposition of snow onto structured Arctic sea ice during a MOSAiC storm using snowBedFoam 1.0.
Océane Hames, Mahdi Jafari, David Nicholas Wagner, Ian Raphael, David Clemens-Sewall, Chris Polashenski, Matthew D. Shupe, Martin Schneebeli, and Michael Lehning
Geosci. Model Dev., 15, 6429–6449, https://doi.org/10.5194/gmd-15-6429-2022,https://doi.org/10.5194/gmd-15-6429-2022, 2022
Short summary
Benchmarking the vertically integrated ice-sheet model IMAU-ICE (version 2.0)
Constantijn J. Berends, Heiko Goelzer, Thomas J. Reerink, Lennert B. Stap, and Roderik S. W. van de Wal
Geosci. Model Dev., 15, 5667–5688, https://doi.org/10.5194/gmd-15-5667-2022,https://doi.org/10.5194/gmd-15-5667-2022, 2022
Short summary
SnowClim v1.0: high-resolution snow model and data for the western United States
Abby C. Lute, John Abatzoglou, and Timothy Link
Geosci. Model Dev., 15, 5045–5071, https://doi.org/10.5194/gmd-15-5045-2022,https://doi.org/10.5194/gmd-15-5045-2022, 2022
Short summary
Snow Multidata Mapping and Modeling (S3M) 5.1: a distributed cryospheric model with dry and wet snow, data assimilation, glacier mass balance, and debris-driven melt
Francesco Avanzi, Simone Gabellani, Fabio Delogu, Francesco Silvestro, Edoardo Cremonese, Umberto Morra di Cella, Sara Ratto, and Hervé Stevenin
Geosci. Model Dev., 15, 4853–4879, https://doi.org/10.5194/gmd-15-4853-2022,https://doi.org/10.5194/gmd-15-4853-2022, 2022
Short summary
MPAS-Seaice (v1.0.0): sea-ice dynamics on unstructured Voronoi meshes
Adrian K. Turner, William H. Lipscomb, Elizabeth C. Hunke, Douglas W. Jacobsen​​​​​​​, Nicole Jeffery, Darren Engwirda, Todd D. Ringler, and Jonathan D. Wolfe
Geosci. Model Dev., 15, 3721–3751, https://doi.org/10.5194/gmd-15-3721-2022,https://doi.org/10.5194/gmd-15-3721-2022, 2022
Short summary

Cited articles

Bartelt, P., Lehning, M., Bartelt, P., Brown, B., Fierz, C., and Satyawali, P.: A physical SNOWPACK model for the Swiss avalanche warning: Part I: Numerical model, Cold Reg. Sci. Technol., 35, 123–145, https://doi.org/10.1016/s0165-232x(02)00074-5, 2002. a
Bellaire, S. and Jamieson, J. B.: On estimating avalanche danger from simulated snow profiles, in: Proceedings of the International Snow Science Workshop, Grenoble–Chamonix Mont-Blanc, 7–11, 2013a. a
Bellaire, S. and Jamieson, J. B.: Forecasting the formation of critical snow layers using a coupled snow cover and weather model, Cold Reg. Sci. Technol., 94, 37–44, https://doi.org/10.1016/j.coldregions.2013.06.007, 2013b. a
Bellaire, S., Jamieson, J. B., and Fierz, C.: Forcing the snow-cover model SNOWPACK with forecasted weather data, The Cryosphere, 5, 1115–1125, https://doi.org/10.5194/tc-5-1115-2011, 2011. a
Berndt, D. J. and Clifford, J.: Using dynamic time warping to find patterns in time series, in: KDD workshop, Seattle, WA, 10, 359–370, 1994. a
Download
Short summary
The adoption of snowpack models in support of avalanche forecasting has been limited. To promote their operational application, we present a numerical method for processing multivariate snow stratigraphy profiles of mixed data types. Our algorithm enables applications like dynamical grouping and summarizing of model simulations, model evaluation, and data assimilation. By emulating the human analysis process, our approach will allow forecasters to familiarly interact with snowpack simulations.