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Abstract. Snowpack models simulate the evolution of the
snow stratigraphy based on meteorological inputs and have
the potential to support avalanche risk management oper-
ations with complementary information relevant for their
avalanche hazard assessment, especially in data-sparse re-
gions or at times of unfavorable weather and hazard con-
ditions. However, the adoption of snowpack models in op-
erational avalanche forecasting has been limited, predomi-
nantly due to missing data processing algorithms and uncer-
tainty around model validity. Thus, to enhance the usefulness
of snowpack models for the avalanche industry, numerical
methods are required that evaluate and summarize snowpack
model output in accessible and relevant ways. We present
algorithms that compare and assess generic snowpack data
from both human observations and models, which consist
of multidimensional sequences describing the snow charac-
teristics of grain type, hardness, and age. Our approach ex-
ploits Dynamic Time Warping, a well-established method in
the data sciences, to match layers between snow profiles and
thereby align them. The similarity of the aligned profiles is
then evaluated by our independent similarity measure based
on characteristics relevant for avalanche hazard assessment.
Since our methods provide the necessary quantitative link
to data clustering and aggregating methods, we demonstrate
how snowpack model output can be grouped and summa-
rized according to similar hazard conditions. By emulating
aspects of the human avalanche hazard assessment process,
our methods aim to promote the operational application of
snowpack models so that avalanche forecasters can begin to

build an understanding of how to interpret and trust opera-
tional snowpack simulations.

1 Introduction

Snow avalanches are a serious mountain hazard, whose risk
is managed through a combination of long- and short-term
mitigation measures, depending on the character of the ex-
posed elements at risk. Avalanche forecasting — the pre-
diction of avalanche hazard over a specific area of ter-
rain (Campbell et al., 2016) — is a critical prerequisite for
choosing effective short-term mitigation measures and tim-
ing them properly (e.g., publication of advisories, tempo-
rary closures, proactive triggering of avalanches). The task
of avalanche forecasters' is to integrate the available weather,
snowpack, and avalanche observations into a coherent men-
tal model of the hazard conditions across their area of in-
terest (LaChapelle, 1966, 1980; McClung, 2002). Statham
et al. (2018) describe the essence of avalanche forecasting
as answering four sequential questions. (1) What type of
avalanche problem(s) exist? (2) Where are these problems
located in the terrain? (3) How likely are avalanches to oc-
cur? (4) How big will these avalanches be? Because of the

IWe use the term avalanche forecaster to describe anybody who
assesses avalanche hazard conditions to make decisions about short-
term mitigation options. This can include public avalanche forecast-
ers, avalanche safety technicians, ski patrollers, mountain guides,
and private recreationists.
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complexity of the avalanche phenomenon and the large un-
certainty due to the spatial and temporal variability of snow-
pack properties (Schweizer et al., 2007), avalanche forecasts
are subjective expert judgments that are expressed in qualita-
tive degrees of belief (Vick, 2002).

Snow profiles describing the stratigraphy of the snowpack
and the characteristics of the individual layers (McClung and
Schaerer, 2006) are an important source of information for
avalanche forecasting. While avalanche observations offer
direct evidence of unstable conditions, the information on
structural weaknesses and slab properties contained in snow
profiles is crucial for developing a more complete under-
standing of the nature of the avalanche hazard and its spatial
distribution, as well as making predictions about the likeli-
hood of avalanches and their expected size. To adequately
capture the conditions in an area of interest, it is common
practice for avalanche forecasters to collect snow profile in-
formation from a variety of informative locations and em-
ploy targeted sampling to address specific hypotheses. When
observing a snow profile, traditionally the most commonly
recorded layer characteristics are snow grain type, grain size,
and layer hardness. In addition, layers representing critical
structural weaknesses are often labeled with their burial date
to facilitate tracking and simplify communication (Canadian
Avalanche Association, 2016). Snow profiles that contain in-
formation about these layer characteristics are referred to
as generic snow profiles hereafter and represent the main
source of snow stratigraphy information in operational con-
texts. Snowpack tests might be performed next to profile lo-
cations to examine the potential for fracture initiation and
failure propagation along specific layers of interest.

As a winter progresses, avalanche forecasters continuously
synthesize the collected snow profile information into a com-
prehensive picture of existing hazard conditions across the
terrain. While experienced forecasters can process snow pro-
file information intuitively and effortlessly, the process is
actually a challenging exercise in multidimensional pattern
recognition, pattern matching, and data assimilation, which
requires several advanced skills. These include matching key
features between profiles, assessing the similarity or dis-
similarity of profiles, combining the information from sev-
eral profiles into an overall perspective, and extrapolating
the identified patterns across terrain based on knowledge of
snowpack processes and how they are affected by terrain. In
North America, it is common practice among avalanche fore-
casters to document their understanding of the local snow-
pack by sketching synthesized snow profiles for different ar-
eas of interest (e.g., elevation- or aspect-specific).

Since the late 1980s, physically based numerical snow-
pack models have been developed to expand the available
information sources for avalanche forecasters beyond tradi-
tional field observations. The most commonly used snow-
pack models are Crocus (Brun et al., 1989; Vionnet et al.,
2012) and SNOWPACK (Lehning et al., 1999; Bartelt et al.,
2002; Lehning et al., 2002b, a). Both of these models simu-
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late the stratigraphy of the snowpack at a point location by
integrating meteorological input data over a winter season.
The source for the meteorological forcing can be time se-
ries of in situ observations, outputs of numerical weather pre-
diction models, or assimilation products that integrate both.
The physical properties of the individual snow layers (e.g.,
grain type, grain size, hardness) are simulated using empiri-
cal representations of the key snowpack processes (e.g., Snow
metamorphism, water percolation, settlement) that are tied
together by the conservation of mass and energy.

Over the last 20 years, extensive research has been con-
ducted to improve the capabilities of snowpack models and
explore their application for avalanche forecasting. Many
contributions evaluated or improved the skill of the mod-
els with respect to hazardous weak layer formation (Fierz,
1998; Bellaire et al., 2011; Bellaire and Jamieson, 2013b;
Horton et al., 2014, 2015; Horton and Jamieson, 2016; Van
Peursem et al., 2016) or weak layer detection (Monti et al.,
2014a). Others tried to assess snow stability from model out-
puts (Schweizer et al., 2006; Schirmer et al., 2010; Monti
et al.,, 2014b) and estimate danger levels (Lehning et al.,
2004; Schirmer et al., 2009; Bellaire and Jamieson, 2013a).
Vionnet et al. (2016) and Vionnet et al. (2018) specifically
evaluated and improved meteorological data from a weather
prediction model serving as input to a snow cover model.
While all studies agree that snowpack modeling has the po-
tential to add value to avalanche forecasting, the understand-
ing of under what circumstances and to what degree these
models can add value (especially when coupled with weather
prediction models) seems to be limited. This knowledge gap
is a major hurdle to developing necessary trust for the opera-
tional use of these models.

In Canada, the combination of numerical weather and
snowpack models offers a tremendous opportunity for pro-
viding avalanche forecasters with useful information on
snowpack conditions in otherwise data-spare regions (Storm,
2012). However, the integration of physical snowpack mod-
els into operational avalanche forecasting has so far been lim-
ited. Informal conversations with forecasters highlight two
main issues: (1) the overwhelming volume of data produced
by the models and (2) validity concerns due to the cumulative
impact of potentially inaccurate weather inputs. Morin et al.
(2020) provide a more detailed discussion of the challenges
around the operational use of snowpack models, which the
authors classify into four main categories: issues of accessi-
bility, interpretability, relevance, and integrity.

Addressing data overload and validity concerns effectively
requires the development of computer-based methods that
can process large numbers of snow profiles. An algorithm for
objectively assessing the similarity of simulated snow pro-
files is the necessary foundation for computationally emulat-
ing the snowpack data synthesis process of avalanche fore-
casters and meaningfully reducing the data volume to a man-
ageable level. Furthermore, the ability to operationally com-
pare simulated snow profiles against observed ones provides
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an avenue for continuously monitoring the quality of the sim-
ulations and correcting them if necessary. To judge the op-
erational value of snowpack models for avalanche forecast-
ing, it is particularly important to focus on snowpack fea-
tures and layer characteristics that are of direct relevance for
avalanche hazard assessments. Since operational snowpack
observations and relevant layer characteristics are expressed
by variables (such as grain type and layer hardness) that are
only indirectly diagnosed by models, the parameterization
from prognostic variables introduces another layer of uncer-
tainty. The evaluation of these models for practical purposes
therefore needs to take all of these uncertainties into account.
While numerical methods for comparing simulated snow
profiles exist, they are unable to address the operational
needs described above. To evaluate the performance of
SNOWPACK, Lehning et al. (2001) developed an algorithm
for comparing modeled profiles against manual observations.
Since their approach is only concerned with finding manually
observed layers in a specific depth range of the modeled pro-
file, it is not suitable for subsequent clustering and aggregat-
ing. Moreover, their agreement score for snow profile pairs is
focused on providing insight for model improvements, which
has different similarity assessment needs than comparing
snow profiles for avalanche hazard assessment purposes. Ha-
genmuller and Pilloix (2016) and Hagenmuller et al. (2018b),
as well as Schaller et al. (2016), introduced Dynamic Time
Warping (DTW), a long-standing method from the fields of
time series analysis and data mining, to the snow community.
Both implemented a layer matching algorithm to align, clus-
ter, and aggregate one-dimensional snow hardness (or den-
sity) profiles from field measurements and thereby demon-
strated the usefulness of DTW for snow profile comparisons.
Since its introduction, the layer matching algorithm by Ha-
genmuller and Pilloix (2016) has been applied to evaluate
snow penetrometers (Hagenmuller et al., 2018a) or to charac-
terize the spatial variability of the snow cover from ram resis-
tance field measurements (Teich et al., 2019). Consequently,
their approach has focused on one-dimensional, continuous,
numerical sequences and is not readily applicable to opera-
tional snowpack observations from avalanche forecasters.
The objective of this study is to introduce an approach
for computationally comparing, grouping, and summarizing
generic snow profiles that consist of multidimensional, dis-
crete sequences of categorical, numerical, and ordinal data
types. To maximize the value for avalanche forecasting, our
methods focus on structural elements in the profiles that are
particularly important for avalanche hazard assessments and
can handle both simulated profiles and manual observations
with different levels of detail. We approach the task by nu-
merically emulating the cognitive process of human forecast-
ers. We first present a layer matching algorithm that aligns
profiles in a way that a similarity measure can evaluate their
agreement. We then exploit the resulting similarity score be-
tween pairs of snow profiles to cluster snow profiles into dis-
tinct groups and aggregate them into a representative pro-
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file. The derivation of the snow profile alignment algorithm
and the similarity measure is presented in Sect. 2, whereas
the new methods are valuated through practical aggregation
and clustering applications as described in Sect. 3. We dis-
cuss the implications of our approach alongside its limita-
tions and conclude with future perspectives in Sect. 4. We
believe that the algorithms presented in this paper provide
an important step for the development of operational data
aggregation and validation algorithms that can make large-
scale snowpack simulations more accessible and relevant for
avalanche forecasters.

2 Derivation of the snow profile alignment algorithm
and similarity measure

In this section we describe how snow profiles can be aligned
by matching layers between them (Sect. 2.2) and define
a similarity measure to evaluate the agreement between
aligned profiles (Sect. 2.3). Since both of these tasks require
a method for assessing differences between individual snow-
pack layers, we start with that in Sect. 2.1.

2.1 Assessing differences between individual snow
layers

To align snow profiles and determine their similarity overall,
we need a method for assessing the similarity of individual
layers. While snowpack models provide a wide range of layer
properties, the most commonly used characteristics by prac-
titioners are snow grain type, layer hardness, and burial date.
To assess the similarity between individual layers that incor-
porate all three layer characteristics, we first define distance
functions for these characteristics, which are normalized to
the interval [0, 1] to make them comparable. A distance of
0 means that two layer characteristics are identical, whereas
a distance of 1 represents complete dissimilarity.

While grain types are computed by snow models based
on parameterizations of snow metamorphism, and simulated
burial date information can easily be derived from the sim-
ulated deposition date or age of the layer, layer hardness is
only a diagnostic variable provided by the model SNOWPACK
but not Crocus. Therefore, the following distance functions
are presented in light of SNOWPACK, and the application to
other snow model output may require some modifications.

2.1.1 Distance function for grain type

The international classification for snow on the ground (Fierz
et al., 2009) organizes snow grain types (also known as grain
shapes) into main grain type classes, which can in turn be
broken down into more nuanced subclasses. The following
grain types are typical in avalanche forecasting contexts: pre-
cipitation particles (PP), decomposing and fragmented parti-
cles (DF), round grains (RG), faceted crystals (FC) (includ-
ing the subclass rounding facets, FCxr), surface and depth
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hoar (SH and DH), and melt forms (MF) (including the sub-
class melt—freeze crusts, MFcr). New snow layers mostly
consist of PP and DF; SH and DH are prototypical persis-
tent weak layers, and MFcr layers often promote the faceting
of adjacent grains, which weakens the interface (Jamieson,
2006). FC, including FCxr, can also be considered persistent
weak layers, even though not every faceted layer is a layer
of concern according to common snow profile analysis tech-
niques that consider combinations of grain type and grain
size (amongst other properties) to identify structural weak-
nesses in the snowpack (Schweizer and Jamieson, 2007).
Following that concept, we use the term bulk layers for lay-
ers that constitute a large proportion of the snowpack with-
out being structurally weak. While avalanche forecasters typ-
ically regard FC as indicative of weaker snowpack layers,
simulated layers of FC tend to be associated with smaller
faceted crystals and thicker layers that represent bulk lay-
ers rather than weak layers since SNOWPACK classifies any
faceted grain with a size greater than 1.5 mm as DH.

Since grain type is a categorical variable, calculating dis-
tances between nonidentical grain types is nontrivial. Our
approach builds on the original method developed by Lehn-
ing et al. (2001), who defined a matrix of normalized grain
type similarities between all possible pairs of grain types
based on the physics of their formation and metamorphosis.
Their approach evaluates the modeled grain type stratigra-
phy to identify model deficiencies and offer insight for model
improvements. By contrast, our focus is on matching lay-
ers between snow profiles and assessing their similarity for
avalanche hazard assessments. For the layer matching task,
the similarity between grain types should indeed be evalu-
ated partly based on their formation processes but also on
the knowledge of snowpack model quirks and differences be-
tween modeled and observed profiles. For assessing the simi-
larity of profiles, however, the similarity between grain types
should be evaluated based on their implications for the haz-
ard conditions rather than their formation processes. Thus, to
make the approach more suitable for aligning snow profiles
and assessing their similarity, we adapt the grain type simi-
larity matrix of Lehning et al. (2001) for each of the two tasks
separately (Table 1a, b). The matrices contain values within
[0, 1] that represent the similarity between two grain types
g1 and g». Values > 0.5 indicate similarity, 0.5 implies indif-
ference, and values < 0.5 indicate dissimilarity. The similar-
ity between two grain types can be converted into a distance
function dg¢ (g1, g2) by subtracting the similarity from 1 (i.e.,
the similarity between identical grain types is 1, and their dis-
tance is 0) to make it comparable to the other distance func-
tions for hardness and layer date. Table 1a and b are modified
from the grain type similarity matrix of Lehning et al. (2001)
in the following ways (i.e., cells with italic font).

1. SH and DH layers are formed by very different pro-

cesses — by the deposition of hoar onto the snow sur-
face versus by kinetic growth of crystals within the
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snowpack. Consequently, Lehning et al. (2001) eval-
uated the similarity of the two grain types as com-
pletely dissimilar. However, both SH and DH repre-
sent hazardous weak layers and are of comparable im-
portance in avalanche hazard assessments (Schweizer
and Jamieson, 2001). Furthermore, practical experience
with the current version of SNOWPACK shows that SH
layers are often converted to DH layers once buried. To
account for both of these aspects, we raised their simi-
larity from O to 0.9 for both tasks (Table 1a, b).

Following the same line of logic, we also raised the sim-
ilarity between SH and FC, another common weak layer
grain type. However, to acknowledge the enhanced seri-
ousness of buried SH layers while simultaneously facil-
itating the weak layer matching, the similarity between
SH and FC is higher when aligning snow profiles (Ta-
ble 1a) than when assessing their similarities (Table 1b)

2. Since human profiles sometimes lack grain type infor-
mation for certain layers, an automated alignment algo-
rithm needs to be able to cope with missing data in a
meaningful way. Since it is more common for bulk lay-
ers to have missing grain type information, it is more
desirable to match unknown grain types to bulk layers
than weak layers. We therefore expanded the similar-
ity matrix of Lehning et al. (2001) with an additional
column for unknown grain types and filled it with val-
ues that are centered around indifference (i.e., 0.5) (Ta-
ble 1b) but with a slight preference towards bulk layers
(Table 1a).

3. While we acknowledge the physical similarity between
DH, FC, and FCxr, we want to emphasize their slightly
different implications for hazard conditions. We there-
fore classified DH layers — often representing buried
SH layers or layers with large FC grains in simulated
profiles — as first-order weak layers, whereas FC and
FCxr were classified as second- and third-order weak
layers, respectively. This hierarchy is implemented in
Table 1b: similarities DH-FC and DH-FCxr are equal
to and slightly lower than 0.5, respectively, and thus
represent indifference or a slight mismatch; the similar-
ity FC-FCxr is slightly greater than 0.5 and thus repre-
sents a weak match. These modifications lead to a pro-
nounced distinction of the weak layer grains SH and DH
from the less distinct weak layer grains FC and FCxr.

2.1.2 Distance function for layer hardness

The second important layer characteristic to consider is hard-
ness, which characterizes the resistance of snow to penetra-
tion. In operational field observations the layer hardness is
expressed on an ordinal hand hardness scale (Fierz et al.,
2009). Hardness observations are taken by gently pushing
different objects into snow layers from a snow pit wall. The
hardness of a layer is expressed by the largest object that can
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Table 1. Similarities between snow grain types as used for the layer alignment of snow profiles (a) and as used for the similarity assessment
between snow profiles (b). Italic font represents modifications introduced by this publication, bold font highlights differences between the
two tables (a) and (b), and all other values are taken directly from Lehning et al. (2001).

(a) Grain type similarity (snow profile alignments)

PP DF RG FC DH SH MF FCxr MFcr na
PP 1.0 0.6
DF 0.8 1.0 0.6
RG 05 08 1.0 0.6
FC 02 04 04 10 0.5
DH 00 00 01 08 10 0.4
SH 00 00 00 06 09 1.0 0.4
MF 00 00 00 00 00 00 10 0.5
FCxr 02 04 05 08 07 00 0.0 1.0 0.6
MFer 0.0 00 00 00 00 00 02 0.0 1.0 04
(b) Grain type similarity (snow profile similarity assessments)

PP DF RG FC DH SH MF FCxr MFcr na
PP 1.0 0.5
DF 0.8 1.0 0.5
RG 05 08 1.0 0.5
FC 02 04 04 10 0.5
DH 00 00 01 05 10 0.5
SH 00 00 00 03 09 10 0.5
MF 00 00 00 00 00 00 10 0.5
FCxr 02 04 05 06 04 00 00 1.0 0.5
MFer 00 00 00 00 00 00 02 0.0 1.0 05

be pushed into the snow layer with a consistent force of ap-
proximately 10-15N. The ordinal levels of the hand hard-
ness index are fist (F), four fingers (4F), one finger (1F), pen-
cil (P), knife blade (K), and ice (I). Subclassifications like
4F+, 4F-1F, and IF- are possible and refer to the descrip-
tions “just harder than 4F”, “between 4F and 1F”, and “just
softer than 1F”, respectively.

A translation of the ordinal index into a numerical scale
is straightforward by assuming that “fist” equals a numer-
ical value of 0, “ice” equals 6, and the ordinal levels are
equidistant (Schweizer and Jamieson, 2007). The normal-
ized distance dj, can then be written as dj (h1, h) = M'Sﬂ
where h; and hy represent numerical translations of two
hand hardness values and the normalization factor of 5 refers
to the largest distance possible (F-I). Hence, only layers
with a hardness difference of fist to ice are considered com-
pletely dissimilar, while all other hardness combinations ex-
hibit some degree of similarity.

s

2.1.3 Distance function for layer date

Snow layers are commonly labeled with either their depo-
sition date (i.e., the date when a specific layer was formed)
or their burial date (i.e., the date when a specific layer was
buried). While snowpack models predominantly work with
deposition dates, practitioners mainly use burial dates. One
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reason for practitioners’ preference for burial dates is the fact
that layers can form over several days, which makes assign-
ing a deposition date challenging. However, it is straightfor-
ward to derive the burial date of a simulated snowpack layer
based on the deposition date of the overlying layer. Hence,
layer dates of simulated snow profiles can easily be compared
with layer dates recorded by practitioners.

The distance function d; between two dates #; and t; be-
comes trivial as soon as the dates represent the same type
of date (deposition or burial) and are converted into Julian
dates: d;(t1, 1) = @ In this case, the normalization fac-
tor ¢ determines the time lag when the dates are considered to
be completely dissimilar. A normalization factor of ¢ = 5, for
example, means that date differences from 0d to 4 d become
increasingly dissimilar (i.e., d; € [0, 1]), whereas date differ-
ences equal to or greater than 5 d are considered completely
dissimilar (i.e., d; > 1; d; typically does not exceed 2, but the
exact limit depends on ¢ and the length of the season or the
size of the DTW window constraint). A normalization fac-
tor of ¢ = 1 means that only identical dates are considered to
have any similarity. Hence, ¢ can be used to account for small
deviations in reported burial dates and in short time lags of
weather patterns across geographic regions. In cases when
layer dates are not available for one or both layers, the dis-
tance d; defaults to indifference (i.e., d; = 0.5). This makes
it possible to label only important layers with their date.
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2.2 Aligning snow profiles with Dynamic Time
Warping

In this section, we present a numerical algorithm that ad-
dresses the challenge of matching corresponding layers in
snow profiles. Our method is based on Dynamic Time Warp-
ing (DTW), a long-standing algorithm, which was originally
designed for speech recognition in the 1970s (Sakoe and
Chiba, 1970; Sakoe, 1971; Sakoe and Chiba, 1978). Soon
thereafter it was adopted in time series analyses (e.g., Berndt
and Clifford, 1994), and it remains a state-of-the-art compo-
nent in data-mining methods such as clustering and classi-
fication (e.g., Keogh and Ratanamahatana, 2005; Petitjean
et al., 2011; Wang et al., 2013; Paparrizos and Gravano,
2015). Our discussion of DTW starts with a general back-
ground section, which is followed by four sections that ex-
plain our application of DTW to snow profiles in more detail.
This includes snow profile preprocessing steps and inputs to
the DTW algorithm. We then discuss suitable DTW parame-
ter choices for snow profile alignments and make recommen-
dations on how to use the alignment algorithm.

2.2.1 Background on Dynamic Time Warping

The following brief summary of DTW is based on Sakoe
and Chiba (1978), Rabiner and Juang (1993), Keogh and
Ratanamahatana (2005), and Giorgino (2009).

DTW is an elastic distance measure for time series or,
more generally, sequences that calculates the dissimilarity
between two sequences while allowing for distortions in
“time”. The distortions are accommodated by mapping each
element of one sequence to one or many elements of the other
sequence (Fig. 1a). Once mapped, the dissimilarities between
each of the matched sequence elements can be computed and
combined into one single distance value that quantifies the
dissimilarity between the two sequences.

To link corresponding sequence elements, a local cost ma-
trix D is calculated that stores the distances between every
possible pair of sequence elements. Hence, the dimensions
of D are the lengths of the two sequences. Then, the best
alignment of the two sequences is represented by the path of
least resistance through D, which is referred to as the opti-
mal warping path P (Fig. 1b). To ensure meaningful match-
ing between sequence elements, the warping path is subject
to the following constraints.

Monotonicity and continuity. Subsequent elements of the
warping path are contiguous in the sense that they are
horizontally, vertically, or diagonally adjacent cells of
the local cost matrix D, while “going back (in time)” is
not allowed.

Warping window. It is common practice to restrict the
search for the optimal warping path to the bounds of a
warping window around the main diagonal of the local
cost matrix D. The main diagonal represents the lock-
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step alignment of the two sequences, whereby the ith
element of the first sequence is mapped onto the ith ele-
ment of the second sequence. Thus, the farther the warp-
ing path deviates from the main diagonal, the more ex-
treme the warping gets, and sequence elements that are
farther apart from each other are matched. The shape
and size of the optimal warping window changes with
the domain and the target data set. Popular choices in-
clude a slanted band of constant width (Sakoe—Chiba
band) or a parallelogram between the sequences’ start
and end points (Itakura parallelogram). For detailed
visualizations see Ratanamahatana and Keogh (2004).
DTW with a constrained warping window is com-
monly referred to as constrained Dynamic Time Warp-
ing (cDTW).

Local slope constraint. While the warping window con-
strains the envelope of the warping path globally, the
so-called local slope constraint of the warping path en-
sures reasonable warping locally. More specifically, the
local slope constraint controls how many subsequent el-
ements of one sequence can be mapped onto one ele-
ment of the other sequence. That is an important control
because it regulates how much stretching and compress-
ing of individual sequence elements is allowed. For time
series, that means stretching and compressing with re-
spect to time; in the case of snow profiles, it refers to the
stretching and compressing of snow layer thicknesses.

Many different local slope constraints have been sug-
gested in the literature. As an illustration, in Fig. 1,
we use a nonrestrictive local slope constraint, which al-
lows arbitrarily many elements to be mapped onto one
corresponding element. In this case, the first element
of Sequence 2 is mapped onto almost 20 elements of
Sequence 1 (Fig. la), which requires a vertical start
slope of the warping path (Fig. 1b). Find an explicit il-
lustration of the nonrestrictive local slope constraint in
Fig. Bla.

Boundary conditions. For a global alignment, both the se-
quences’ start and end points need to be elements of
the warping path (Fig. 1b). Partial alignments can be
computed by relaxing one or both of these constraints.
This results in three different options: alignments for
which the start but not the end points are matched (open-
end alignment), alignments for which the end but not
the start points are matched (open-begin alignment),
or alignments for which subsequences of the two se-
quences that include neither the start or end points are
matched. Further details on partial DTW matching can
be found in Appendix A and in the review by Tormene
et al. (2009).

While there are many potential warping paths through the
local cost matrix D that satisfy these constraints, the objec-
tive is to find the optimal warping path P that accumulates
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Figure 1. Illustrative example of the DTW alignment of two sine wave sequences. (a) Each element of the first sequence is mapped to one
or many elements of the second sequence; the corresponding sequence elements can be found by (b) the (warping) path of least resistance
through a local cost matrix that stores the distances between every possible pair of sequence elements.

the least cost while stepping through D. This is an optimiza-
tion problem that can be solved by dynamic programming.
We refer the interested reader to Appendix A for more de-
tails.

2.2.2 Preprocessing of snow profiles: uniform scaling
and resampling

The specific nature of snow profile data requires some pre-
processing before DTW can be applied in a meaningful way.
Variabilities in snowpack structures can be divided into sys-
tematic differences due to systematic variations in the me-
teorological forcing (e.g., location: a wind-scoured ridgeline
next to a wind-loaded slope; elevation: increase in snowfall
amounts with elevation) and random differences due to natu-
ral variations in the meteorological forcing (e.g., peculiar pat-
terns of individual storms, small-scale variations) (Schweizer
et al., 2007). The former can result in substantial differences
in the snow profiles due to accumulation of different forcings
over time. (See Sect. S1 in the Supplement for more details
and visualizations of idealized stratigraphic snowpack vari-
ability.) While the DTW algorithm is well suited to deal with
random differences, it was not designed to cope with system-
atic differences. Since systematic differences are common in
snow profiles, it is necessary to preprocess them for a mean-
ingful application of DTW. Fu et al. (2007) suggest uniform
scaling, another optimization technique that minimizes sys-
tematic differences by determining an optimal global scaling
factor. For efficiency reasons, we simply scale the snow pro-
files to identical snow heights instead. We thereby assume
that the offset corresponds to approximately the magnitude
of the systematic differences and that the rescaled profiles
are predominantly characterized by random differences that
can be handled by DTW. A tentative evaluation of this as-
sumption can be found in the Supplement (Sect. S2.2).
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Once the profiles have been rescaled, each of the two pro-
files consists of a series of discrete layers along an irregular
height grid. To equalize the two different height grids, we
resample the profiles onto a regular grid with a constant sam-
pling rate, which represents the final resolution for the align-
ment procedure. While our algorithm allows users to flexibly
set the sampling rate, a resolution of about half a centimeter
ensures that typically thin, hazardous weak layers are being
captured. Hence, the snow profiles included in the examples
in this paper were resampled to 0.5 cm. To preserve the dis-
crete layer character of each profile, we do not interpolate
between the grid points during the resampling process.

2.2.3 Computing a weighted local cost matrix from
multiple layer characteristics

Section 2.2.1 introduced how DTW exploits the local cost
matrix D to find the best alignment of two sequences. We will
now show how to compute this local cost matrix for snow
profiles. The following presentation therefore focuses on the
layer characteristics of categorical grain type, ordinal layer
hardness, and numerical layer date, which are the layer char-
acteristics most commonly recorded by practitioners. Note,
however, that the layer date contribution can be omitted if
the information is not available, and our algorithm can easily
be expanded to include other layer properties.

First, we combine the distances of the individual layer
characteristics (defined in Sect. 2.1) into one scalar distance
by weighted averaging. The resulting scalar distance fills one
cell of the local cost matrix D and thus controls how the
alignment algorithm matches the corresponding layers in the
snow profiles.

Second, we use a weighting scheme for preferential layer
matching (Fig. 2) to ensure that the algorithm prioritizes
the alignment of snowpack features that are relevant for
avalanche hazard assessment when calculating the scalar dis-

Geosci. Model Dev., 14, 239-258, 2021



246 F. Herla et al.: Snow profile alignment and similarity assessment

= x ] .
=3 _ Grain types ¢° r?
T m SH FCxr
_g B = DH FC
5 PP MFcr
I W — | | I DF MF
RG
Distance
6.0
5.4
S _|as —
N 142
o 36
o 30 |
5 9 |2
8 N (18-
‘S 1.2
=~ 06 {
>
3 o oo
R
o}
S o I
O —
— —
o _|
s}
I I I I T 1T 1T 1
50 100 150 200 250 F 1F K
Layer index i of profile Q Hardness 1"

Figure 2. Visualization of a local cost matrix D, which stores the distance between individual layers of two snow profiles Q and R; Q and R
contain the layer characteristics of grain type g8 and r8, as well as hardness ¢" andr". Dis only filled with values around its diagonal; the
rest is clipped by a warping window and a local slope constraint. The back line represents the optimal warping path P, which accumulates
the least cost while stepping through D and which defines the alignment of the two profiles; the preferential layer matching implementation
becomes apparent in the yellow and orange cells, which represent smaller than average distances and will thus be matched more easily. See

the text for further explanation.

tance. The intent of the weighting scheme is to create anchor
points for key layers by artificially introducing penalties for
non-key layers. This is especially advantageous when no date
information is available. Similar to our approach with the dis-
tance function for grain types, we focus on avalanche hazard
assessment priorities and try to emulate a human alignment
approach. First and second priority should be given to the
alignment of first-order persistent weak layers (SH and DH)
and crusts. Third priority should be given to the alignment
of faceted grain types with first-order persistent weak layers.
This cascade of priorities is expressed numerically by the rel-
ative differences of the weighting coefficients v presented in
Table 2. We determined these values experimentally by test-
ing numerous snow profile alignments and found that they
yield the wanted result without any unwanted side effects.
To compute D from two generic snow profiles, we intro-
duce the following notation. Q and R are two rescaled and
resampled snow profiles with I number of layers — typically

Geosci. Model Dev., 14, 239-258, 2021

on the order of hundreds of layers, depending on the sam-
pling rate and the time of the season. The indicesi =1, ..., 1
and j =1, ..., I refer to these layers. Each layer of the snow
profiles Q and R contains information about the grain type,
the hardness, the burial date, and the vertical position of the
layer in the profile (i.e., height or depth). Those characteris-
tics are denoted by g% and ré for grain type, ¢" and r" for
hardness, and ¢’ and r’ for date (see Table 3 for an exam-
ple). Each element D;; of the local cost matrix D can then be
written as

Dyj = wydg(qf . ri) +wadn (], r}) +widi (gf . r) +v(gf,r$), (1)

where w,, wy, and w, are averaging weights that sum up
to 1 (wg +wp +w, = 1). Those weights need to be estimated
(see Supplement Sect. S2.1), but specific values are recom-
mended in Sect. 2.2.5. Since d,; and dj, range within [0, 1], d;
typically within [0, 2], and v within [0, 5], the distance D;;
typically ranges within [0, 7], where a distance of D;; =0
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Table 2. Weighting scheme for preferential layer matching; the
preferential layer matching coefficient v(gy, g») depends on the
combination of two grain types g1 and gp; the smaller the coeffi-
cient, the more preferably the grain type combinations are matched
(bold font). Values in the upper triangle are symmetric to values in
the lower triangle.
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Table 3. An illustrative example of a resampled snow profile Q that
contains information about the vertical position of the profile layers
(at their top interfaces), the grain types g8, the hardnesses qh, and
the (burial) dates ¢’.

Height (cm) i q8 q" q’
0.5 1 DH 1.0 2018-12-15
1.0 2 DH 1.0 2018-12-15
119.5 239 DF 225 -
120.0 240 PP 1.5 -

refers to the two layers being identical. Note that in Eq. (1)
d, is calculated based on the similarity matrix in Table 1a,
which is geared towards snow profile alignments. Figure 2
visualizes a local cost matrix derived from two generic snow
profiles.

2.2.4 Obtaining the optimal alignment of the snow
profiles

After calculating the local cost matrix D, there are several
constraints on the warping path that need to be specified
to tailor DTW to snow profile alignments; those constraints
are the warping window, the local slope constraint, and the
boundary conditions.

Warping window. We use a slanted band of constant width
around the main diagonal of D to constrain the warping
path. This so-called Sakoe—Chiba band is quantified by
the window size ¢. See Sect. 2.2.5 for a recommendation
on which value of ¢ to use for snow profile alignments.

Local slope constraint. We require the local slope con-
straint to prevent excessive stretching or compressing of
the snow layers in either of the two profiles. The sym-
metric Sakoe—Chiba local slope constraints (Sakoe and
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Chiba, 1978) do exactly that: they limit the amount of
stretching or compressing to a specific factor, which is
identical for both profiles. We chose a factor that limits
the amount of stretching to double the layer thickness
and the compression to half the layer thickness. On the
technical level, that means that while stepping through
D, a horizontal or vertical step is only allowed if follow-
ing a diagonal step (Figs. Al, B1). The specific local
slope constraint we refer to has been termed by Sakoe
and Chiba (1978) as symmetric (P = 1).

Note that the local slope constraint results in a funnel-
shaped restriction of the warping window close to the
starting point of the alignment, which is more restrictive
than the slanted band window (Fig. 2). See Appendix A
for a more detailed explanation.

Boundary conditions. In cases when defining features of
the snowpack at the very bottom or top only exist in
one of the two profiles (e.g., lack of an early-season
snowfall event or missing of the most recent storm at
one of the two profile locations), partial snow profile
alignments are more suitable than global alignments.
In those situations the alignment benefits from relax-
ing the boundary conditions to accommodate those par-
tial alignments (Figs. 2 and 3). We therefore implement
symmetric open-end alignments, whereby an entire pro-
file is mapped onto the other profile with the start points
matched but the end points not.

Since open-begin alignments cannot be calculated with
our chosen local slope constraint (Tormene et al., 2009),
we developed a work-around by aligning snow profiles
both bottom-up and top-down. The top-down alignment
can be calculated straightforwardly by reversing both
profiles and rerunning the DTW algorithm. However,
since the DTW distance (Sect. 2.2.1, Appendix A) can-
not be used to effectively identify the better alignment
of the two, we use our independent, more nuanced sim-
ilarity measure of snow profiles (addressed in Sect. 2.3)
to assess the quality of the alignment.

Finding the optimal warping path P implies matching the
corresponding layers between the two profiles Q and R. That
in turn allows warping one profile onto the other one by op-
timally stretching and compressing its individual layer thick-
nesses so that the warped profile is optimally aligned with
the other profile. For example, warping profile Q onto pro-
file R produces the warped profile Q, which contains the
same layer sequences as profile Q, but the adjusted layer
thicknesses have aligned Qy to the corresponding layers of
R (Fig. 3). The optimally aligned profiles R and Q., can now
be used as input to an independent similarity measure.
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2.2.5 Application cases and usage recommendations

There are two main application cases for the snow profile
alignment algorithm: (i) aligning snow profiles from differ-
ent locations (or sources) but at the same points in time and
(ii) aligning snow profiles from the same location at different
points in time.

In the first case, we recommend using open-end align-
ments when the optimal alignment of all individual layers is
required — e.g., in applications that compare individual lay-
ers or in clustering applications that search for regions with
similar snowpack conditions. We recommend using global
alignments when modeled profiles are evaluated versus hu-
man profiles: even though open-end alignments might yield
better alignment results, the explicit mismatch of layers at
the very bottom or top of the profiles represents an impor-
tant element of the model evaluation. Furthermore, keep in
mind that open-end alignments increase the scope of the
alignment algorithm, which can sometimes lead to surpris-
ing layer matches if the algorithm is used unsupervised.

In the second case, aligning profiles from the same loca-
tion at different points in time (i.e., layer tracking), one of
the two profiles typically has more layers and a higher snow
depth. Since the smaller profile should be contained in the
taller profile in a similar form, the alignment needs to be
open-end and bottom-up. Furthermore, it is not necessary to
rescale the profiles as recommended in Sect. 2.2.2 but only to
resample them. In this case, rescaling actually moves corre-
sponding layers farther apart, which would have to be com-
pensated for by increasing the window size ¢. To increase
your control on which parts of the profiles are matched, we
recommend that you label some of the key layers with their
date information.

In the Supplement (Sect. S2), we derive the optimal val-
ues for the averaging weights w, and wy, as well as the win-
dow size ¢, with a series of simulation experiments. Based
on the results of these experiments, we recommend using
the following default settings: ¢ ~ 0.3 in conjunction with a
bottom-up/top-down approach? and a ratio of wy,/ we =1/4.
The value of w,; depends heavily on how similar the mete-
orological processes are that shape the snowpack at the two
locations; e.g., two profiles from the same elevation and the
same aspect that are in close proximity can be aligned based
on layer date alone. However, two profiles from opposite as-
pects and different elevation bands may be aligned predomi-
nantly based on grain type and hardness.

2.3 Assessing the similarity of snow profiles

A measure that quantifies the similarity of snow profiles as a
whole is best designed independently from a profile align-
ment or layer matching routine. Such an independent ap-
proach allows for matching layers based on physical similar-

2Note that this value is much higher than typically recommended
in the literature (Ratanamahatana and Keogh, 2004).
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ity (i.e., processes like grain formation and metamorphism or
knowledge about snow cover models), whereas the similarity
of the aligned profiles can be assessed based on character-
istics relevant for avalanche hazard assessment. Therefore,
we define a similarity measure @ for generic snow profiles
based on the layer characteristics of grain type and hard-
ness, which can be used to numerically compare, evaluate,
and group snow profiles.

Let us again consider two snow profiles. Some of their
layers have been matched, while others have not. The non-
matched layers are located either at the very bottom or very
top of one of the two profiles. For example, the two profiles
could be the profiles R and Q,, from the previous section.
Our goal is to compute a scalar number that expresses the
similarity between these two profiles on a scale from 0-1.
To do so, we start again by computing the (dis)similarities
between the corresponding layers analogously to the previ-
ous sections. However, in a similarity measure that is geared
towards hazard assessment not every layer is equally im-
portant. Furthermore, since important weak layers are often
much thinner than the bulk layers, they would be dramati-
cally underrepresented in a measure that computes a standard
average across all layers. Thus, we bin all layers according
to four major grain type classes relevant for avalanche haz-
ard assessments: (1) new snow crystals (PP and DF) that are
commonly associated with surface problems, (2) weak lay-
ers (SH and DH) and (3) crusts (MFcr) that are typically re-
lated to persistent avalanche problems, and (4) all other grain
types that represent bulk layers. We calculate separate simi-
larity values for every class (a scalar value within [0, 1]), and
the overall similarity between the two profiles is the average
similarity derived from the classes.

To calculate the similarity for a grain type class, we first
distinguish between matched and non-matched layers. All
non-matched layers are treated as indifferent and are there-
fore assigned a similarity value of 0.5. Such a strategy makes
the measure robust against a varying number of non-matched
layers. Next, we calculate the similarities of all matched
layers. That can be done with the distance functions from
Sect. 2.1, which compute the dissimilarity between two lay-
ers based on grain type or hardness. Note that in this context,
the grain type distance is calculated based on Table 1b to en-
sure that the derived similarity is most useful for avalanche
forecasting. The resulting distance is converted into a simi-
larity by subtracting the distance from 1 (i.e., a distance of
0.8 becomes a similarity of 0.2). If the grain type class is
new snow crystals or bulk grains, the similarity of a matched
layer is computed as the product of the associated similarity
of grain type and hardness. The emerging similarity for the
entire class is then the average over all (matched and non-
matched) layers within.

While the above approach works well for new snow crys-
tals and bulk layers, weak layers and crusts require additional
considerations to be integrated in a meaningful way.
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Figure 3. The open-begin alignment of two snow profiles Q and R: the line segments match the corresponding layers between Q and R.
Adjusting the layer thicknesses of profile Q yields the warped profile Oy, which is optimally aligned to profile R.

First, given weak layers or crusts, an identical match of
the grain type is arguably more important than a hardness
evaluation: many weak layers and crusts are thin, and of-
ten melt—freeze crust laminates are characterized by an in-
homogeneous hardness. These circumstances challenge pre-
cise hardness measurements of these layers and make them
prone to error. Additionally, crusts play an important role in
avalanches not as a weak layer themselves, but as a layer fa-
voring adjacent weak layer growth (Jamieson, 2006). That in
turn makes the grain type of a crust much more important
than its hardness when evaluating the similarity between two
layers. In summary, a hardness evaluation might introduce
more error than benefit, especially when comparing human
versus modeled profiles. Therefore, we compute the similar-
ity of a matched weak layer or crust as the associated simi-
larity of grain type alone, thereby neglecting hardness infor-
mation.

Second, for weak layers and crusts, it is specifically im-
portant where in the profile they are located. Consider a snow
profile with two DH layers close to the ground and one SH
layer buried under new snow. A second, almost identical pro-
file lacks the buried SH layer. While the likelihood of trig-
gering and the potential size of avalanches are similar with
respect to the two matched DH layers, they are not with re-
spect to the buried SH layer, which is missing in the sec-
ond profile. Even though the two profiles are visually almost
identical, they require different avalanche risk management
approaches. If we calculated the similarity for the weak layer
class of those two profiles as described above (i.e., as an av-
erage over all layers), the thin SH layer would be heavily
underrepresented among the thicker DH layers. As a con-
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sequence, the weak layer class would exhibit a high simi-
larity value. For example, if the two DH layers were each
10 cm thick, the SH layer 2 cm, and the sampling rate were
1 cm, then the similarity for the weak layer class would be
(20-142-0)/22 =0.9. Given that the two snowpack con-
ditions demand different risk management approaches, such
a high similarity is not meaningful. To mitigate those sit-
uations, we divide the two profiles into sections of equal
thickness and evaluate the similarity of the weak layers and
crusts within those sections separately. The number of sec-
tions is determined by the maximum number of weak layers
(or crusts) in either of the two profiles. By evaluating similar-
ities of adjacent weak layers or crusts, we introduce a basic
weighting scheme for the position of those layers in the pro-
file. It is based on the idea that avalanche likelihood and size,
as well as resulting risk management, are rather similar for
adjacent weak layers or crusts but rather different for weak
layers or crusts in opposing depths of the profile. In our ex-
ample, there are three weak layers; hence, the two profiles are
divided into three sections of equal thickness. We assume that
all weak layers that are in the same section require a similar
risk management approach. So, the similarity for each sec-
tion is the average similarity of the weak layers within, and
each section is equally important for the hazard assessment,
so the similarity for the weak layer class is the average simi-
larity with respect to the sections. In our example, the lower
section contains the two DH layers, the middle section con-
tains no weak layers, and the upper section contains the SH
layer in one profile. Hence, the similarity for the weak layer

class is (% + %) /2 =0.5. A weak layer similarity of 0.5
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represents the two snowpack conditions much better than a
similarity of 0.9.

In summary, the resulting similarity measure ® between
two snow profiles expresses the similarity between these two
profiles in a scalar value within [0, 1]. A similarity of 1 cor-
responds to the two profiles being identical. Note that the
measure is symmetric to the two profiles so that the first pro-
file is as similar to the second profile as the second is to the
first. By treating non-matched layers as indifferent the mea-
sure is able to cope with varying numbers of missing layers
at the bottom or top of the profiles, which is important for
assessing the similarity of snow profiles from different times
and/or locations. To make the similarity measure useful for
avalanche forecasting, it weighs hazardous thin layers, crusts
and storm snow layers more heavily than bulk layers, and it
considers the relative depth of those layers.

3 Aggregation and clustering applications — a practical
valuation

Section 2.2 and 2.3 detail how to match layers between snow
profiles and how to assess the similarity of the aligned pro-
files for applications in avalanche hazard assessment. Both of
these steps are fundamental prerequisites to automate fore-
caster tasks, such as grouping similar profiles and finding the
representative profile of a group. In the data sciences, these
tasks are called data clustering and data aggregation. In this
section, we demonstrate how to apply simple data clustering
and data aggregation methods to snow profiles based on their
prior alignment and similarity assessment. We use these ap-
plication examples as a face validation of our methods.

3.1 Clustering of snow profiles

Avalanche professionals need to group snow profiles to un-
derstand how snowpack conditions and avalanche hazard
vary across space. The snow profile alignment algorithm and
similarity measure described in the previous section enable
the automation of this task by providing the necessary quan-
titative link to the well-established field of numerical cluster-
ing methods (e.g., James et al., 2013; Sarda-Espinosa, 2019).

To showcase the clustering of snow profiles based on our
similarity measure, we use a set of 12 snow profiles that ex-
hibit both pronounced and subtle differences in their snow-
pack features (Fig. 4). The alignment and similarity assess-
ment of the snow profiles is based on grain type and hard-
ness information, even though they are visualized in Fig. 4
solely by their grain type sequences. After computing a to-
tal of 12 11 = 132 profile alignments and similarity assess-
ments, the clustering is carried out by an agglomerative hier-
archical clustering algorithm that iteratively fuses individual
profiles to clusters based on the similarity of the profiles.

3We use complete linkage to fuse individual profiles to clusters
(James et al., 2013).
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The resulting cluster hierarchy is best analyzed from the top
to the bottom, allowing us to separate the set of 12 profiles
into up to 12 clusters. The higher a split occurs in the hier-
archy, the more distinct the corresponding clusters are from
each other.

The first most distinct split separates the heavily faceted
profiles 1-4 from the remaining profiles. The remaining pro-
files are generally quite similar, except for some subtle but
important features that still require different risk manage-
ment strategies: profiles 5—7 show weak layers in the middle
of the snowpack and below the new snow (i.e., second split);
profiles 8 and 9 have a weak layer sandwiched between two
crusts at the bottom of the snowpack (i.e., third split), and
profiles 10—12 either have a weak layer only in the middle of
the snowpack or none at all. Additionally to examining those
most distinct four clusters, the similarities within the clusters
can be investigated further. For example, profile 1 is the most
dissimilar profile within the first cluster, being the only pro-
file with a crust below the new snow and the only profile with
a pronounced weak layer in mid-snow height. As another ex-
ample, profile 10 is the outsider in cluster 4, having no weak
layer at all.

The relationships among the profiles as established by the
alignment algorithm and similarity measure yield a sound
clustering result that looks similar to how a human avalanche
forecaster would group the profiles according to different
strategies on how to manage snowpack conditions and the re-
lated avalanche hazard. This example demonstrates that our
approach can differentiate between very different and subtly
different snowpack conditions.

3.2 Finding a representative snow profile: the medoid

Avalanche forecasters often draw a representative snow pro-
file that summarizes the most important snowpack features
within a group of profiles. In the data-mining community,
this type of generalization is typically called the average se-
quence, or aggregate, and the most sophisticated methods for
computing that aggregate are closely tied to the alignment
algorithm and similarity measure used (e.g., Petitjean et al.,
2011; Paparrizos and Gravano, 2015). In the following, we
use the simple approach of identifying the one profile within
the group that is most similar to all other profiles, called the
medoid profile. Visually, the medoid profile can be thought
of as the member of the group that is closest to the geomet-
ric center of the group. Mathematically, that means that the
medoid profile minimizes the accumulated distances to all
other profiles. To identify the medoid, we compute the accu-
mulated distances to all other profiles for every profile. As the
distance § between two profiles Q and R we use the similar-
ity measure & after converting it to a distance by subtracting
it from 1 (see Sect. 2.3). We apply the similarity measure to
both profile pairs (Q, Ry) and (Qy, R) to account for miss-
ing layers. Hence,
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Figure 4. Hierarchical clustering of 12 snow profiles based on prior snow profile alignment and similarity assessment. The colors represent
the grain types of distinct layers, and the bold black lines separate the four most distinct clusters.

8(Q,R) = max{l —®(Q, Ry), I —®(Qw, R)}. (@)

The pairwise distances between the profiles of the group
can be translated into a configuration plot, which gathers sim-
ilar profiles close to each other and dissimilar ones further
away from each other* (Fig. 5). The medoid profile, being
most similar to all other profiles, is the member of the group
that represents the group the best. We use the same set of
12 profiles as in Sect. 3.1 to demonstrate the profile aggrega-
tion. As the snowpack conditions within the set are too dif-
ferent to meaningfully represent them by one representative
profile (Fig. 5a), we can combine clustering and aggregat-
ing to draw the representative profiles of the most distinct
clusters within the set (Fig. 5b — the three clusters consist of
profiles 1-4, 5-7, and 8-12, as depicted in Fig. 4).

While our proof of concept demonstrates a sound and re-
liable workflow, using the medoid profile may be computa-
tionally too expensive to efficiently deal with data volumes
beyond the order of tens to hundreds of profiles on an opera-
tional basis. However, Paparrizos and Gravano (2015) show
that the medoid approach performs slightly better than any
other sequence aggregation method. Dynamic Time Warp-
ing Barycenter Averaging (Petitjean et al., 2011) might be

4We use an ordinal multidimensional scaling approach to create
the configuration plot for the group of snow profiles (e.g., Mair,
2018).
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an alternative aggregating method that could be evaluated in
future studies.

4 Discussion and conclusions

The snow profile alignment algorithm and the similarity mea-
sure presented in this paper aim to address two of the main
factors that have limited the adoption of snowpack models to
support avalanche warning services and practitioners. First,
the methods provide the foundation for numerical group-
ing and summarizing snow profile data and can thus help to
make snowpack model output more accessible by addressing
any avalanche operation fundamental questions: where in the
terrain do we find which conditions? Second, our methods
have the potential to make snowpack models more relevant to
avalanche forecasters by providing a means for model evalu-
ation against human observations.

Building on the well-established and long-standing con-
cept of Dynamic Time Warping (DTW), we developed a
snow profile alignment algorithm that combines multiple
layer characteristics of categorical, numerical, and ordinal
format into a weighted metric and feeds into existing DTW
algorithms such as the open-source R package dtw (https://
dynamictimewarping.github.io/, last access: 7 January 2021)
(Giorgino, 2009). Moreover, we reviewed and derived useful
DTW configurations and hyper-parameter settings for snow
profile applications. Since these applications rely on opera-
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Figure 5. Configuration plots of a group of 12 snow profiles with similar profiles gathered close to each other. (a) The geometric center of
the whole group, which identifies the most representative profile. (b) The three most distinct subsets of the whole group, highlighting their

associated representative profiles; see Fig. 4.

tionally available profile observations that typically focus on
information relevant for current avalanche conditions only,
our approach is able to handle missing data and take advan-
tage of select layer date tags. To maximize the layer match-
ing performance for profiles with limited details, we imple-
mented a scheme for preferential layer matching based on
domain knowledge. In parallel, Viallon-Galinier et al. (2020)
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extended the layer matching algorithm from Hagenmuller
and Pilloix (2016) to conduct a detailed, process-related eval-
uation of the snowpack model Crocus based on high-quality
snow profile observations with a large variety of observed
variables that are sampled at specific study sites at regular in-
tervals. Since their goal is the correction of deviating model
states with a direct insertion assimilation scheme based on
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point-scale simulations and observations, their evaluation tar-
gets not only each individual layer, but also each individ-
ual layer characteristic separately. To address operational
avalanche forecasting needs, we additionally developed a
similarity measure that focuses on avalanche-forecasting-
specific considerations for which certain layers are consid-
ered more important. Moreover, combining information from
individual layers and their characteristics into a scalar mea-
sure allows for clustering and aggregating sets of profiles to
characterize and evaluate the regional-scale avalanche hazard
conditions.

In the data-mining community, similarity (or distance)
measures are evaluated through classification applications
(Wang et al., 2013). Since snow profile data sets that rep-
resent the ground truth of alignments or groupings do not
(yet) exist, the evaluation of our methods needs to rely on ex-
pert judgment or application valuation. During the develop-
ment of our algorithm, we therefore manually evaluated the
alignment of many profile pairs, a few of which are shown
in Sect. S3 of the Supplement to demonstrate its behavior.
Furthermore, we evaluated the interplay of the alignment al-
gorithm and similarity measure through clustering and ag-
gregation applications. Those applications involve many in-
dividual profile assessments and therefore represent a mean-
ingful valuation approach, which shows that the alignment
algorithm and similarity measure are capable of distinguish-
ing between subtle differences in the snow stratigraphy and
yield a sound grouping that could have been carried out by a
human avalanche professional.

Although our methods have been designed to accommo-
date a wide range of requirements and to cope with a variety
of scenarios, the following limitations should be considered.
First, while the layer matching algorithm can easily be ap-
plied to large data sets in an unsupervised manner, not all
scenarios within such a data set might be best served with
the same parameter settings. Getting meaningful results in
highly diverse data sets requires the algorithm to be less con-
strained. However, this can also result in unrealistic align-
ments. Second, when alignments are based on grain type
and hardness alone, the matching of layers can sometimes
be ambiguous — even for human experts. In those cases, la-
beling a few key layers with their burial date can greatly
improve the alignment accuracy with little extra effort, es-
pecially as the labeling of weak layers is already established
practice in North America (Canadian Avalanche Association,
2016). Note that our algorithm can easily be expanded to in-
clude other layer properties, especially if they are of ordi-
nal or numeric data types such as grain size or specific sur-
face area. Third, it is important to recognize that any numer-
ical approach that condenses the complexity of these simi-
larity assessments to a one-dimensional scale within [0, 1]
is unable to capture the full expertise and situational flexi-
bility of human forecasters. However, it is a critical prereq-
uisite for algorithmically grouping profiles and establishing
ranks among them. As such our similarity measure offers a

https://doi.org/10.5194/gmd-14-239-2021

consistent evaluation of snow profiles that is based on the
most commonly available layer characteristics. And lastly,
the similarity measure and consequently the clustering and
aggregating applications are purely based on the agreement
of the snowpack structure. Hence, snow depth is not a driver
of our similarity assessment unless it leads to deviations in
the snow stratigraphy. If combined with monitoring of the
snow depth distribution, a clustering or aggregation applica-
tion can provide a comprehensive picture of the conditions
within a specific forecast area.

Since our methods aim to help overcome the operational
challenges of summarizing snowpack model data and eval-
uating that data, we imagine its integration into operational
avalanche forecasting as follows. Traditionally, an avalanche
risk management operation, such as a public warning ser-
vice or a backcountry guiding operation, obtains vital in-
formation about the snowpack through manual snow pit ob-
servations at select point locations. Simulated snow profiles
across a mountain drainage can sample the snowpack con-
ditions similarly to field observations, except with higher
spatiotemporal coverage and independent from external cir-
cumstances. Our methods could group the simulated profiles
according to similar conditions, potentially uncovering dif-
ferent avalanche problems. Furthermore, that grouping could
quantify the prevalence of those conditions, and the condi-
tions could be linked to their specific location, elevation, and
aspect. Then, the different conditions could be summarized
by their representative profile to present the data in a familiar
way. Human forecasters can then use that simulated data as
an additional data source complementing the field observa-
tions or deploy targeted field observations to verify the model
output. Through a continuous evaluation of the model out-
put against human observations or human assessments (e.g.,
synthesized snow profiles), the current validity of the simu-
lations could potentially be extrapolated into data-sparse re-
gions. More generally, a continuous evaluation of operational
snowpack simulations provides an opportunity to better un-
derstand the strengths and weaknesses of the involved model
chain for its application in avalanche forecasting. Through
this line of research, we hope that snowpack models will
be further incorporated into operational avalanche hazard as-
sessment routines so that avalanche forecasters can begin to
build an understanding of how to interpret and trust snow-
pack simulations.

Geosci. Model Dev., 14, 239-258, 2021



254 F. Herla et al.: Snow profile alignment and similarity assessment

Appendix A: An exemplary solution to the DTW
optimization problem

In this section we explain the concept of solving the DTW
optimization problem and thereby finding the optimal warp-
ing path P through the local cost matrix D. We do this by
applying some of the same constraints that we also use in the
snow profile alignment algorithm, most notably the Sakoe—
Chiba local slope constraint (symmetric, P=1; Fig. B1b) and
(symmetric) open-end boundary conditions (see Sect. 2.2.4).

As mentioned in Sect. 2.2.1, the DTW optimization prob-
lem can be solved recursively with the aid of dynamic pro-
gramming. Imagine a local cost matrix D (i by j) with indi-
vidual elements D;;. Another, yet empty, matrix G — the ac-
cumulated cost matrix — has the same dimension as D. From
the boundary conditions, we know that the first items of the
two sequences need to be matched. Thus, the optimal warp-
ing path P starts at G, which holds the same value as D1.
From the local slope constraint, we know that a horizontal
or vertical step is only allowed if following a diagonal step.
Therefore, as we are about to do our first step, we have to do a
diagonal one to G2>. G is the second element of the optimal
warping path P, and its value can be calculated by the accu-
mulated cost one step before (i.e., G11) plus twice the local
cost of the current step (i.e., D22); hence, G2y = G11+2D2
(where the weighting factor 2 represents a slope weight; see
Appendix B). Since we just did a diagonal step, we are now
allowed to step up vertically, diagonally, or horizontally to
fields G23, G33, or G3y, respectively.

More generally, any element G;; can be calculated by the
recursion

Gi—1j—2+2D;j_1+ Djj
Gi—1j-1+2Dj; . (AD
Gi—2j-1+2Di—1j+ Dij

Gij = min

Figure Al sketches that concept. Each individual step of
the optimal warping path P is governed by the local slope
constraint such that only a limited number of matrix elements
can be visited by the warping path. Each of those elements
of the cost matrix G in turn stores the smallest accumulated
cost that is necessary to arrive at that cell. In a symmetric
open-end alignment, the final element of the optimal warping
path P is the one element in the last column or row of G that
has accumulated the least cost.

If the optimal warping path P has K elements from k =
I,...,K, then each element p, stores its location in the
cost matrix by p; = (p,i, p}f). Consequently, the accumu-
lated cost of the optimal warping path P can be expressed
as GP‘}< Pl For example, for the warping path implied
by Fig. Al, P ={(1, 1),(2, 2),...,(6, 5)} and Gp;{p;-{ =
Ggs = 6. Finally, the DTW distance between two sequences,
dptw, is expressed by the accumulated cost of the optimal
warping path P normalized by the length of the path (ex-
pressed as Manhattan distance from the matrix origin, for
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Figure Al. Sketch of a cost matrix G that stores the smallest ac-
cumulated cost of visiting a matrix element G;;. In an open-end
alignment, the optimal warping path P starts at G11. The steps
of the warping path are governed by the chosen local slope con-
straint (black arrows) such that only the grey matrix cells can be
visited. The warping path ends in the last row or column of the ma-
trix wherein the accumulated cost is smallest (i.e., at Gg5 = 6). See
the text for more details.

symmetric recursions), i.e.,

1
dptw=—""-+6G

5 (A2)
i
P +Px

P Pk’

In Sect. 2.2.4 we introduced the warped snow profile Qy,.
With the insight gained from the current section, we can now
precisely define the warped profile Q. Therefore, we adopt
the notation introduced in Sect. 2.2.3 and additionally denote
the layer height of the snow profiles Q. and R as qg‘ and
rHt respectively. Then the warped profile Qy can be con-
structed with the indices p’ and p/, which are given by the
warping path P by

qu =rt, (A3)
=g, (A4)

The vectors g” and g/, can be calculated analogously to
Eq. (A4).
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Appendix B: Exemplary DTW step patterns

DTW step patterns describe the local slope constraint and
the slope weights associated with each step of the warping
path. While the local slope constraint limits the warping path
to physically meaningful steps, the slope weights, which de-
pend on the local indices’ increments, ensure that different
alignments can be compared. Both step patterns used in this
paper use slope weights that are symmetric to the query and
reference sequences but asymmetric slope weights that fa-
vor the advance of a certain sequence also exist (Rabiner and
Juang, 1993; Sakoe and Chiba, 1978; Giorgino, 2009).

While the symmetric, unconstrained step pattern allows
the warping path to advance diagonally, vertically, or hori-
zontally at any time of the alignment (Fig. Bla, used in the
alignment of sine waves shown in Fig. 1), the Sakoe—Chiba
symmetric (P = 1) step pattern enforces a diagonal step pre-
ceding each horizontal or vertical step to limit the stretching
and compressing of the sequences to a factor of 2 and 1/2,
respectively (Fig. B1b, used for snow profile alignments as
in Figs. 2, 3).
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Figure B1. Two exemplary DTW step patterns that illustrate dif-
ferent symmetric local slope constraints and their associated slope
weights. While panel (a) shows an unconstrained pattern, panel
(b) shows a pattern that limits the stretching of either sequence to
a factor of 2 by enforcing a diagonal step before a horizontal or
vertical one.
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Code and data availability. The snow profile alignment algorithm
and similarity measure are implemented in the R language and
environment for statistical computing (R Core Team, 2020) as
package sarp.snowprofile.alignment. Future stable re-
leases of the package will be available from the Comprehen-
sive R Archive Network at https://cran.r-project.org/package=sarp.
snowprofile.alignment (Herla et al., 2021). The latest version of
the package is available at Bitbucket (https://bitbucket.org/sfu-arp/
sarp.snowprofile.alignment/src/master/, Herla et al., 2021), and
a static version of the code as well as the data and the ac-
cording analysis scripts to reproduce the results presented in
this paper are available from a permanent DOI repository at
https://doi.org/10.17605/0SF.IO/9VSAD (Herla et al., 2020) (us-
ingR 3.6.3and dtw v1.21-3). Our package builds upon the
open-source package dtw (https://dynamictimewarping.github.io/,
last access: 7 January 2021, by Giorgino, 2009), which belongs to
the most complete freely available (GPL) implementation of Dy-
namic Time Warping (DTW) types of algorithms up to date.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-14-239-2021-supplement.
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