Articles | Volume 14, issue 3
https://doi.org/10.5194/gmd-14-1753-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-1753-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing the simulated soil hydrothermal regime of the active layer from the Noah-MP land surface model (v1.1) in the permafrost regions of the Qinghai–Tibet Plateau
Xiangfei Li
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
National Cryosphere Desert Data Center, Northwest Institute of
Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000,
China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Xiaodong Wu
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Xiaofan Zhu
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Guojie Hu
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Ren Li
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Yongping Qiao
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Cheng Yang
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Junming Hao
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Jie Ni
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Wensi Ma
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Related authors
Dong Wang, Tonghua Wu, Lin Zhao, Cuicui Mu, Ren Li, Xianhua Wei, Guojie Hu, Defu Zou, Xiaofan Zhu, Jie Chen, Junmin Hao, Jie Ni, Xiangfei Li, Wensi Ma, Amin Wen, Chengpeng Shang, Yune La, Xin Ma, and Xiaodong Wu
Earth Syst. Sci. Data, 13, 3453–3465, https://doi.org/10.5194/essd-13-3453-2021, https://doi.org/10.5194/essd-13-3453-2021, 2021
Short summary
Short summary
The Third Pole regions are important components in the global permafrost, and the detailed spatial soil organic carbon data are the scientific basis for environmental protection as well as the development of Earth system models. Based on multiple environmental variables and soil profile data, this study use machine-learning approaches to evaluate the SOC storage and spatial distribution at a depth interval of 0–3 m in the frozen ground area of the Third Pole region.
Jianting Zhao, Lin Zhao, Zhe Sun, Guojie Hu, Defu Zou, Minxuan Xiao, Guangyue Liu, Qiangqiang Pang, Erji Du, Zhibin Li, Xiaodong Wu, Yao Xiao, Lingxiao Wang, and Wenxin Zhang
The Cryosphere, 19, 4211–4236, https://doi.org/10.5194/tc-19-4211-2025, https://doi.org/10.5194/tc-19-4211-2025, 2025
Short summary
Short summary
We used the Moving-Grid Permafrost Model (MVPM) to simulate the permafrost thermal regime in West Kunlun (55,669 km², NW Qinghai–Tibet Plateau), driven by remote-sensing-based land surface temperature (LST; 1980–2022). The model showed high accuracy and stability. Despite ongoing warming (+0.40 °C per decade), permafrost extent remained stable, reflecting delayed deep responses. The permafrost thermal regime reveals altitude- and soil-dependent responses to climate change and offers valuable insights into thermal states in data-scarce regions.
Defu Zou, Lin Zhao, Guojie Hu, Erji Du, Guangyue Liu, Chong Wang, and Wangping Li
Earth Syst. Sci. Data, 17, 1731–1742, https://doi.org/10.5194/essd-17-1731-2025, https://doi.org/10.5194/essd-17-1731-2025, 2025
Short summary
Short summary
This study provides baseline data of permafrost temperature at 15 m depth on the Qinghai–Tibetan Plateau (QTP) over the period 2010–2019 at a spatial resolution of nearly 1 km, using 231 borehole records and a machine learning method. The average MAGT15 m of the QTP permafrost was −1.85 °C, with 90 % of the values ranging from −5.1 to −0.1 °C and 51.2 % exceeding −1.5 °C. The data can serve as a crucial boundary condition for deeper permafrost assessments and a reference for model simulations.
Francisco José Cuesta-Valero, Hugo Beltrami, Almudena García-García, Gerhard Krinner, Moritz Langer, Andrew H. MacDougall, Jan Nitzbon, Jian Peng, Karina von Schuckmann, Sonia I. Seneviratne, Wim Thiery, Inne Vanderkelen, and Tonghua Wu
Earth Syst. Dynam., 14, 609–627, https://doi.org/10.5194/esd-14-609-2023, https://doi.org/10.5194/esd-14-609-2023, 2023
Short summary
Short summary
Climate change is caused by the accumulated heat in the Earth system, with the land storing the second largest amount of this extra heat. Here, new estimates of continental heat storage are obtained, including changes in inland-water heat storage and permafrost heat storage in addition to changes in ground heat storage. We also argue that heat gains in all three components should be monitored independently of their magnitude due to heat-dependent processes affecting society and ecosystems.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Jianting Zhao, Lin Zhao, Zhe Sun, Fujun Niu, Guojie Hu, Defu Zou, Guangyue Liu, Erji Du, Chong Wang, Lingxiao Wang, Yongping Qiao, Jianzong Shi, Yuxin Zhang, Junqiang Gao, Yuanwei Wang, Yan Li, Wenjun Yu, Huayun Zhou, Zanpin Xing, Minxuan Xiao, Luhui Yin, and Shengfeng Wang
The Cryosphere, 16, 4823–4846, https://doi.org/10.5194/tc-16-4823-2022, https://doi.org/10.5194/tc-16-4823-2022, 2022
Short summary
Short summary
Permafrost has been warming and thawing globally; this is especially true in boundary regions. We focus on the changes and variability in permafrost distribution and thermal dynamics in the northern limit of permafrost on the Qinghai–Tibet Plateau (QTP) by applying a new permafrost model. Unlike previous papers on this topic, our findings highlight a slow, decaying process in the response of permafrost in the QTP to a warming climate, especially regarding areal extent.
Cuicui Mu, Xiaoqing Peng, Ran Du, Hebin Liu, Haodong Jin, Benben Liang, Mei Mu, Wen Sun, Chenyan Fan, Xiaodong Wu, Oliver W. Frauenfeld, and Tingjun Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-347, https://doi.org/10.5194/essd-2022-347, 2022
Revised manuscript not accepted
Short summary
Short summary
Permafrost warming lead to greenhouse gases release to the atmosphere, resulting in a positive feedback to climate change. But, there are some uncertainties for lacks of observations. Here, we summarized a long-term observations on the meteorological, permafrost, and carbon to publish. This datasets include 5 meteorological stations, 21 boreholes 12 active layer sites, and 10 soil organic carbon contents. These are important to study the response of frozen ground to climate change.
Lingxiao Wang, Lin Zhao, Huayun Zhou, Shibo Liu, Erji Du, Defu Zou, Guangyue Liu, Yao Xiao, Guojie Hu, Chong Wang, Zhe Sun, Zhibin Li, Yongping Qiao, Tonghua Wu, Chengye Li, and Xubing Li
The Cryosphere, 16, 2745–2767, https://doi.org/10.5194/tc-16-2745-2022, https://doi.org/10.5194/tc-16-2745-2022, 2022
Short summary
Short summary
Selin Co has exhibited the greatest increase in water storage among all the lakes on the Tibetan Plateau in the past decades. This study presents the first attempt to quantify the water contribution of ground ice melting to the expansion of Selin Co by evaluating the ground surface deformation since terrain surface settlement provides a
windowto detect the subsurface ground ice melting. Results reveal that ground ice meltwater contributed ~ 12 % of the lake volume increase during 2017–2020.
Tonghua Wu, Changwei Xie, Xiaofan Zhu, Jie Chen, Wu Wang, Ren Li, Amin Wen, Dong Wang, Peiqing Lou, Chengpeng Shang, Yune La, Xianhua Wei, Xin Ma, Yongping Qiao, Xiaodong Wu, Qiangqiang Pang, and Guojie Hu
Earth Syst. Sci. Data, 14, 1257–1269, https://doi.org/10.5194/essd-14-1257-2022, https://doi.org/10.5194/essd-14-1257-2022, 2022
Short summary
Short summary
We presented an 11-year time series of meteorological, active layer, and permafrost data at the Mahan Mountain relict permafrost site in northeastern Qinghai-Tibet Plateau. From 2010 to 2020, the increasing rate of active layer thickness was 1.8 cm-year and the permafrost temperature showed slight changes. The release of those data would be helpful to understand the impacts of climate change on permafrost in relict permafrost regions and to validate the permafrost models and land surface models.
Xiaowen Wang, Lin Liu, Yan Hu, Tonghua Wu, Lin Zhao, Qiao Liu, Rui Zhang, Bo Zhang, and Guoxiang Liu
Nat. Hazards Earth Syst. Sci., 21, 2791–2810, https://doi.org/10.5194/nhess-21-2791-2021, https://doi.org/10.5194/nhess-21-2791-2021, 2021
Short summary
Short summary
We characterized the multi-decadal geomorphic changes of a low-angle valley glacier in the East Kunlun Mountains and assessed the detachment hazard influence. The observations reveal a slow surge-like dynamic pattern of the glacier tongue. The maximum runout distances of two endmember avalanche scenarios were presented. This study provides a reference to evaluate the runout hazards of low-angle mountain glaciers prone to detachment.
Lin Zhao, Defu Zou, Guojie Hu, Tonghua Wu, Erji Du, Guangyue Liu, Yao Xiao, Ren Li, Qiangqiang Pang, Yongping Qiao, Xiaodong Wu, Zhe Sun, Zanpin Xing, Yu Sheng, Yonghua Zhao, Jianzong Shi, Changwei Xie, Lingxiao Wang, Chong Wang, and Guodong Cheng
Earth Syst. Sci. Data, 13, 4207–4218, https://doi.org/10.5194/essd-13-4207-2021, https://doi.org/10.5194/essd-13-4207-2021, 2021
Short summary
Short summary
Lack of a synthesis dataset of the permafrost state has greatly limited our understanding of permafrost-related research as well as the calibration and validation of RS retrievals and model simulation. We compiled this dataset, including ground temperature, active layer hydrothermal regimes, and meteorological indexes based on our observational network, and we summarized the basic changes in permafrost and its climatic conditions. It is the first comprehensive dataset on permafrost for the QXP.
Dong Wang, Tonghua Wu, Lin Zhao, Cuicui Mu, Ren Li, Xianhua Wei, Guojie Hu, Defu Zou, Xiaofan Zhu, Jie Chen, Junmin Hao, Jie Ni, Xiangfei Li, Wensi Ma, Amin Wen, Chengpeng Shang, Yune La, Xin Ma, and Xiaodong Wu
Earth Syst. Sci. Data, 13, 3453–3465, https://doi.org/10.5194/essd-13-3453-2021, https://doi.org/10.5194/essd-13-3453-2021, 2021
Short summary
Short summary
The Third Pole regions are important components in the global permafrost, and the detailed spatial soil organic carbon data are the scientific basis for environmental protection as well as the development of Earth system models. Based on multiple environmental variables and soil profile data, this study use machine-learning approaches to evaluate the SOC storage and spatial distribution at a depth interval of 0–3 m in the frozen ground area of the Third Pole region.
Xu Chen, Cuicui Mu, Lin Jia, Zhilong Li, Chengyan Fan, Mei Mu, Xiaoqing Peng, and Xiaodong Wu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-378, https://doi.org/10.5194/essd-2020-378, 2021
Revised manuscript not accepted
Short summary
Short summary
Thermokarst lakes have attracted significant attention because of their ability to regulate carbon cycle. Now, the distribution of thermokarst lakes on QTP remains largely unknown, hindering our understanding of the response of permafrost's carbon feedback to climate change. Here, based on the GEE platform, we examined the modern distribution (2018) of thermokarst lakes on the QTP using Sentinel-2A data. Results show that the total thermokarst lake area on the QTP is 1730.34 m2 km2.
Cited articles
Benjamini, Y.: Simultaneous and selective inference: Current successes and
future challenges, Biometrical J., 52, 708–721,
https://doi.org/10.1002/bimj.200900299, 2010.
Cao, B., Zhang, T., Wu, Q., Sheng, Y., Zhao, L., and Zou, D.: Brief communication: Evaluation and inter-comparisons of Qinghai–Tibet Plateau permafrost maps based on a new inventory of field evidence, The Cryosphere, 13, 511–519, https://doi.org/10.5194/tc-13-511-2019, 2019.
Chang, M., Liao, W., Wang, X., Zhang, Q., Chen, W., Wu, Z., and Hu, Z.: An
optimal ensemble of the Noah-MP land surface model for simulating surface
heat fluxes over a typical subtropical forest in South China, Agr. Forest
Meteorol., 281, 107815,
https://doi.org/10.1016/j.agrformet.2019.107815, 2020.
Che, T., Hao, X., Dai, L., Li, H., Huang, X., and Xiao, L.: Snow cover
variation and its impacts over the Qinghai-Tibet Plateau, B. Chin. Acad.
Sci., 34, 1247–1253, https://doi.org/10.16418/j.issn.1000-3045.2019.11.007,
2019.
Chen, F., Janjić, Z., and Mitchell, K.: Impact of atmospheric
surface-layer parameterizations in the new land-surface scheme of the NCEP
Mesoscale Eta Model, Bound.-Lay. Meteorol. 85, 391–421,
https://doi.org/10.1023/A:1000531001463, 1997.
Chen, R., Yang, M., Wang, X., and Wan, G.: Review on simulation of
land-surface processes on the Tibetan Plateau, Sci. Cold Arid Reg., 11,
93–115, 2019.
Chen, S., Li, X., Wu, T., Xue, K., Luo, D., Wang, X., Wu, Q., Kang, S.,
Zhou, H., and Wei, D.: Soil thermal regime alteration under experimental
warming in permafrost regions of the central Tibetan Plateau, Geoderma, 372,
114397, https://doi.org/10.1016/j.geoderma.2020.114397,
2020.
Chen, Y., Yang, K., Zhou, D., Qin, J., and Guo, X.: Improving the Noah land
surface model in arid regions with an appropriate parameterization of the
thermal roughness length, J. Hydrometeor., 11, 995–1006,
https://doi.org/10.1175/2010JHM1185.1, 2010.
Chen, Y., Yang, K., Tang, W., Qin, J., and Zhao, L.: Parameterizing soil
organic carbon's impacts on soil porosity and thermal parameters for Eastern
Tibet grasslands, Sci. Chin. Earth Sci., 55, 1001–1011,
https://doi.org/10.1007/s11430-012-4433-0, 2012.
Claverie, M., Matthews, J. L., Vermote, E. F., and Justice, C. O.: A 30+
year AVHRR LAI and FAPAR climate data record: Algorithm description and
validation, Remote Sens., 8, 263, https://doi.org/10.3390/rs8030263, 2016.
Cosby, B. J., Hornberger, G. M., Clapp, R. B., and Ginn, T. R.: A
statistical exploration of the relationships of soil moisture
characteristics to the physical properties of soils, Water Resour. Res., 20,
682–690, https://doi.org/10.1029/WR020i006p00682, 1984.
Daniel, R., Nikolay, S., Bernd, E., Stephan, G., and Sergei, M.: Recent
advances in permafrost modelling, Permafr. Periglac. Process., 19, 137–156,
https://doi.org/10.1002/ppp.615, 2008.
Fountain, A. G., Campbell, J. L., Schuur, E. A. G., Stammerjohn, S. E.,
Williams, M. W., and Ducklow, H. W.: The disappearing cryosphere: Impacts
and ecosystem responses to rapid cryosphere loss, BioScience, 62, 405–415,
https://doi.org/10.1525/bio.2012.62.4.11, 2012.
Gan, Y. J., Liang, X. Z., Duan, Q. Y., Chen, F., Li, J. D., and Zhang, Y.:
Assessment and reduction of the physical parameterization uncertainty for
Noah-MP land surface model, Water Resour. Res., 55, 5518–5538,
https://doi.org/10.1029/2019wr024814, 2019.
Gao, Y., Kai, L., Fei, C., Jiang, Y., and Lu, C.: Assessing and improving
Noah-MP land model simulations for the central Tibetan Plateau, J. Geophys.
Res.-Atmos., 120, 9258–9278, https://doi.org/10.1002/2015JD023404, 2015.
Guo, D. and Wang, H.: Simulation of permafrost and seasonally frozen ground
conditions on the Tibetan Plateau, 1981–2010, J. Geophys. Res.-Atmos., 118,
5216–5230, https://doi.org/10.1002/jgrd.50457, 2013.
Guo, X., Yang, K., Zhao, L., Yang, W., Li, S., Zhu, M., Yao, T., and Chen,
Y.: Critical evaluation of scalar roughness length parametrizations over a
melting valley glacier, Bound.-Lay. Meteorol., 139, 307–332,
https://doi.org/10.1007/s10546-010-9586-9, 2011.
He, K., Sun, J., and Chen, Q.: Response of climate and soil texture to net
primary productivity and precipitation-use efficiency in the Tibetan
Plateau, Pratacultural Sci., 36, 1053–1065, 2019.
Hillel, D.: Applications of Soil Physics, Academic Press, New York, 400 pp., 1980.
Hjort, J., Karjalainen, O., Aalto, J., Westermann, S., Romanovsky, V. E.,
Nelson, F. E., Etzelmüller, B., and Luoto, M.: Degrading permafrost puts
Arctic infrastructure at risk by mid-century, Nat. Commun., 9, 5147,
https://doi.org/10.1038/s41467-018-07557-4, 2018.
Hong, S., Yu, X., Park, S. K., Choi, Y.-S., and Myoung, B.: Assessing optimal set of implemented physical parameterization schemes in a multi-physics land surface model using genetic algorithm, Geosci. Model Dev., 7, 2517–2529, https://doi.org/10.5194/gmd-7-2517-2014, 2014.
Hu, G., Zhao, L., Li, R., Wu, T., Wu, X., Pang, Q., Xiao, Y., Qiao, Y., and
Shi, J.: Modeling hydrothermal transfer processes in permafrost regions of
Qinghai-Tibet Plateau in China, Chin. Geograph. Sci., 25, 713–727,
https://doi.org/10.1007/s11769-015-0733-6, 2015.
Hu, G., Zhao, L., Wu, X., Li, R., Wu, T., Xie, C., Pang, Q., and Zou, D.:
Comparison of the thermal conductivity parameterizations for a freeze-thaw
algorithm with a multi-layered soil in permafrost regions, Catena, 156,
244–251, https://doi.org/10.1016/j.catena.2017.04.011, 2017.
Jiang, Y., Chen, F., Gao, Y., He, C., Barlage, M., and Huang, W.: Assessment
of uncertainty sources in snow cover simulation in the Tibetan Plateau, J.
Geophys. Res.-Atmos., 125, e2020JD032674,
https://doi.org/10.1029/2020JD032674, 2020.
Jin, H., Sun, L., Wang, S., He, R., Lu, L., and Yu, S.: Dual influences of
local environmental variables on ground temperatures on the interior-eastern
Qinghai-Tibet Plateau (I): vegetation and snow cover, J. Glaciol. Geocryol.,
30, 535–545, 2008.
Koren, V., Schaake, J., Mitchell, K., Duan, Q. Y., Chen, F., and Baker, J.
M.: A parameterization of snowpack and frozen ground intended for NCEP
weather and climate models, J. Geophys. Res.-Atmos., 104, 19569–19585,
https://doi.org/10.1029/1999JD900232, 1999.
Koven, C., Riley, W., and Stern, A.: Analysis of permafrost thermal dynamics
and response to climate change in the CMIP5 earth system models, J. Climate,
26, 1877–1900, https://doi.org/10.1175/JCLI-D-12-00228.1, 2013.
Lawrence, D., Fisher, R., Koven, C., Oleson, K., Swenson, S., and Vertenstein, M.: Technical description of version 5.0 of the Community Land Model (CLM), National Center for Atmospheric Research, Boulder, Colorado, 2018.
Li, K., Gao, Y., Fei, C., Xu, J., Jiang, Y., Xiao, L., Li, R., and Pan, Y.:
Simulation of impact of roots on soil moisture and surface fluxes over
central Qinghai–Xizang Plateau, Plateau Meteor., 34, 642–652,
https://doi.org/10.7522/j.issn.1000-0534.2015.00035, 2015.
Li, R., Zhao, L., Wu, T., Wang, Q. X., Ding, Y., Yao, J., Wu, X., Hu, G.,
Xiao, Y., Du, Y., Zhu, X., Qin, Y., Shuhua, Y., Bai, R., Erji, D., Liu, G.,
Zou, D., Yongping, Q., and Shi, J.: Soil thermal conductivity and its
influencing factors at the Tanggula permafrost region on the Qinghai–Tibet
Plateau, Agr. Forest Meteorol., 264, 235–246,
https://doi.org/10.1016/j.agrformet.2018.10.011, 2019.
Li, X.: Modified Noah-MP for https://doi.org/10.5194/gmd-2020-142, Zenodo, https://doi.org/10.5281/zenodo.4555449, 2021.
Li, X., Wu, T., Zhu, X., Jiang, Y., Hu, G., Hao, J., Ni, J., Li, R., Qiao,
Y., Yang, C., Ma, W., Wen, A., and Ying, X.: Improving the Noah-MP Model for
simulating hydrothermal regime of the active layer in the permafrost regions
of the Qinghai-Tibet Plateau, J. Geophys. Res.-Atmos., 125, e2020JD032588,
https://doi.org/10.1029/2020JD032588, 2020.
Li, X.-F.: Noah-MP forcings and results at TGL and BLH stations, Mendeley Data, V2, https://doi.org/10.17632/h7hbd69nnr.2, 2020.
Luo, D., Wu, Q., Jin, H., Marchenko, S., Lyu, L., and Gao, S.: Recent
changes in the active layer thickness across the northern hemisphere,
Environ. Earth Sci., 75, 555, https://doi.org/10.1007/s12665-015-5229-2,
2016.
Luo, S., Lyu, S., Zhang, Y., Hu, Z., Ma, Y. M., Li, S. S., and Shang, L.:
Soil thermal conductivity parameterization establishment and application in
numerical model of central Tibetan Plateau, Chin. J. Geophys., 52, 919–928,
https://doi.org/10.3969/j.issn.0001-5733.2009.04.008, 2009.
Luo, S., Wang, J., Pomeroy, J. W., and Lyu, S.: Freeze–thaw changes of
seasonally frozen ground on the Tibetan Plateau from 1960 to 2014, J. Climate, 33, 9427–9446, https://doi.org/10.1175/JCLI-D-19-0923.1, 2020.
Ma, N., Zhang, Y., Guo, Y., Gao, H., Zhang, H., and Wang, Y.: Environmental
and biophysical controls on the evapotranspiration over the highest alpine
steppe, J. Hydrol., 529, 980–992,
https://doi.org/10.1016/j.jhydrol.2015.09.013, 2015.
Maheu, A., Anctil, F., Gaborit, É., Fortin, V., Nadeau, D. F., and
Therrien, R.: A field evaluation of soil moisture modelling with the Soil,
Vegetation, and Snow (SVS) land surface model using evapotranspiration
observations as forcing data, J. Hydrol., 558, 532–545,
https://doi.org/10.1016/j.jhydrol.2018.01.065, 2018.
Melton, J. R., Verseghy, D. L., Sospedra-Alfonso, R., and Gruber, S.: Improving permafrost physics in the coupled Canadian Land Surface Scheme (v.3.6.2) and Canadian Terrestrial Ecosystem Model (v.2.1) (CLASS-CTEM), Geosci. Model Dev., 12, 4443–4467, https://doi.org/10.5194/gmd-12-4443-2019, 2019.
Nicolsky, D. J., Romanovsky, V. E., Alexeev, V. A., and Lawrence, D. M.:
Improved modeling of permafrost dynamics in a GCM land-surface scheme,
Geophys. Res. Lett., 34, L08501, https://doi.org/10.1029/2007gl029525, 2007.
Niu, G.-Y. and Yang, Z.-L.: Effects of vegetation canopy processes on snow
surface energy and mass balances, J. Geophys. Res.-Atmos., 109, D23111,
https://doi.org/10.1029/2004jd004884, 2004.
Niu, G.-Y. and Yang, Z.-L.: Effects of frozen soil on snowmelt runoff and
soil water storage at a continental scale, J. Hydrometeorol., 7, 937–952,
https://doi.org/10.1175/JHM538.1, 2006.
Niu, G.-Y., Yang, Z.-L., Dickinson, R. E., and Gulden, L. E.: A simple
TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate
models, J. Geophys. Res.-Atmos., 110, D21106,
https://doi.org/10.1029/2005jd006111, 2005.
Niu, G.-Y., Yang, Z.-L., Dickinson, R. E., Gulden, L. E., and Su, H.:
Development of a simple groundwater model for use in climate models and
evaluation with Gravity Recovery and Climate Experiment data, J. Geophys.
Res.-Atmos., 112, D07103, https://doi.org/10.1029/2006jd007522, 2007.
Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M.,
Kumar, A., Manning, K., Niyogi, D., and Rosero, E.: The community Noah land
surface model with multiparameterization options (Noah-MP): 1. Model
description and evaluation with local-scale measurements, J. Geophys.
Res.-Atmos., 116, D12109, https://doi.org/10.1029/2010JD015139, 2011.
Park, S. and Park, S. K.: Parameterization of the snow-covered surface albedo in the Noah-MP Version 1.0 by implementing vegetation effects, Geosci. Model Dev., 9, 1073–1085, https://doi.org/10.5194/gmd-9-1073-2016, 2016.
Pilgrim, D. H., Chapman, T. G., and Doran, D. G.: Problems of
rainfall-runoff modelling in arid and semiarid regions, Hydrolog. Sci. J.,
33, 379–400, https://doi.org/10.1080/02626668809491261, 1988.
Shen, M., Piao, S., Jeong, S.-J., Zhou, L., Zeng, Z., Ciais, P., Chen, D.,
Huang, M., Jin, C.-S., Li, L. Z. X., Li, Y., Myneni, R. B., Yang, K., Zhang,
G., Zhang, Y., and Yao, T.: Evaporative cooling over the Tibetan Plateau
induced by vegetation growth, P. Natl. Acad. Sci. USA, 112,
9299–9304, https://doi.org/10.1073/pnas.1504418112, 2015.
Toure, A., Rodell, M., Yang, Z., Beaudoing, H., Kim, E., Zhang, Y., and
Kwon, Y.: Evaluation of the snow simulations from the community land model,
version 4 (CLM4), J. Hydrometeor., 17, 153–170,
https://doi.org/10.1175/JHM-D-14-0165.1, 2016.
Wang, W., Yang, K., Zhao, L., Zheng, Z., Lu, H., Mamtimin, A., Ding, B., Li,
X., Zhao, L., Li, H., Che, T., and Moore, J. C.: Characterizing surface
albedo of shallow fresh snow and its importance for snow ablation on the
interior of the Tibetan Plateau, J. Hydrometeorol., 21, 815–827,
https://doi.org/10.1175/JHM-D-19-0193.1, 2020.
Wang, X., Chen, R., Han, C., Yang, Y., Liu, J., Liu, Z., Guo, S., and Song,
Y.: Response of shallow soil temperature to climate change on the
Qinghai–Tibetan Plateau, Int. J. Climatol., 41, 1–16,
https://doi.org/10.1002/joc.6605, 2021.
Wei, Z. and Dong, W.: Assessment of simulations of snow depth in the
Qinghai-Tibetan Plateau using CMIP5 multi-models, Arct. Antarct. Alp. Res.,
47, 611–525, https://doi.org/10.1657/AAAR0014-050, 2015.
Westermann, S., Langer, M., Boike, J., Heikenfeld, M., Peter, M., Etzelmüller, B., and Krinner, G.: Simulating the thermal regime and thaw processes of ice-rich permafrost ground with the land-surface model CryoGrid 3, Geosci. Model Dev., 9, 523–546, https://doi.org/10.5194/gmd-9-523-2016, 2016.
Wetzel, P. and Chang, J.-T.: Concerning the relationship between
evapotranspiration and soil moisture, J. Clim. Appl. Meteorol., 26, 18–27,
https://doi.org/10.1175/1520-0450(1987)026<0018:CTRBEA>2.0.CO;2, 1987.
Woo, M. K.: Permafrost Hydrology, Springer, Berlin, Heidelberg, 2012.
Wu, X. and Nan, Z.: A multilayer soil texture dataset for permafrost
modeling over Qinghai-Tibetan Plateau, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 10–15 July 2016, Beijing, China, 4917–4920, https://doi.org/10.1109/IGARSS.2016.7730283, 2016.
Wu, X., Nan, Z., Zhao, S., Zhao, L., and Cheng, G.: Spatial modeling of
permafrost distribution and properties on the Qinghai-Tibet Plateau,
Permafr. Periglac. Process., 29, 86–99, https://doi.org/10.1002/ppp.1971,
2018.
Xie, Z., Hu, Z., Ma, Y., Sun, G., Gu, L., Liu, S., Wang, Y., Zheng, H., and
Ma, W.: Modeling blowing snow over the Tibetan Plateau with the community
land model: Method and preliminary evaluation, J. Geophys. Res.-Atmos., 124,
9332–9355, https://doi.org/10.1029/2019jd030684, 2019.
Yang, K., Koike, T., Ye, B., and Bastidas, L.: Inverse analysis of the role
of soil vertical heterogeneity in controlling surface soil state and energy
partition, J. Geophys. Res.-Atmos., 110, D08101,
https://doi.org/10.1029/2004jd005500, 2005.
Yang, K., Koike, T., Ishikawa, H., Kim, J., Li, X., Liu, H., Shaomin, L.,
Ma, Y., and Wang, J.: Turbulent flux transfer over bare-soil surfaces:
Characteristics and parameterization, J. Appl. Meteorol. Clim., 47, 276–290,
https://doi.org/10.1175/2007JAMC1547.1, 2008.
Yang, Z.-L. and Dickinson, R. E.: Description of the biosphere-atmosphere
transfer scheme (BATS) for the soil moisture workshop and evaluation of its
performance, Global Planet. Change, 13, 117–134,
https://doi.org/10.1016/0921-8181(95)00041-0, 1996.
Yang, Z.-L., Cai, X., Zhang, G., Tavakoly, A., Jin, Q., Meyer, L., and Guan, X.: The Community Noah Land Surface Model with Multi-Parameterization Options (Noah-MP): Technical Description, Center for Integrated Earth System Science, Department of Geological Sciences, The University of Texas at Austin, Austin, TX, USA, available at: https://www.jsg.utexas.edu/noah-mp/files/Noah-MP_Technote_v0.2.pdf (last access: 27 March 2021), 2011a.
Yang, Z.-L., Niu, G.-Y., E. Mitchell, K., Chen, F., B. Ek, M., Barlage, M.,
Longuevergne, L., Manning, K., Niyogi, D., Tewari, M., and Xia, Y.: The
community Noah land surface model with multiparameterization options
(Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res.-Atmos.,
116, D12110, https://doi.org/10.1029/2010JD015140, 2011b.
Yao, C., Lyu, S., Wang, T., Wang, J., and Ma, C.: Analysis on
freezing-thawing characteristics of soil in high and low snowfall years in
source region of the Yellow River, Plateau Meteor., 38, 474–483, 2019.
Yao, J., Zhao, L., Gu, L., Qiao, Y., and Jiao, K.: The surface energy budget
in the permafrost region of the Tibetan Plateau, Atmos. Res., 102, 394–407,
https://doi.org/10.1016/j.atmosres.2011.09.001, 2011.
Yi, S., Zhou, Z., Ren, S., Ming, X., Yu, Q., Shengyun, C., and Baisheng, Y.:
Effects of permafrost degradation on alpine grassland in a semi-arid basin
on the Qinghai–Tibetan Plateau, Environ. Res. Lett., 6, 045403,
https://doi.org/10.1088/1748-9326/6/4/045403, 2011.
You, Y., Huang, C., Gu, J., Li, H., Hao, X., and Hou, J.: Assessing snow
simulation performance of typical combination schemes within Noah-MP in
northern Xinjiang, China, J. Hydro., 581, 124380,
https://doi.org/10.1016/j.jhydrol.2019.124380, 2020a.
You, Y., Huang, C., Yang, Z., Zhang, Y., Bai, Y., and Gu, J.: Assessing
Noah-MP parameterization sensitivity and uncertainty interval across snow
climates, J. Geophys. Res.-Atmos., 125, e2019JD030417,
https://doi.org/10.1029/2019jd030417, 2020b.
Yuan, W., Xu, W., Ma, M., Chen, S., Liu, W., and Cui, L.: Improved snow
cover model in terrestrial ecosystem models over the Qinghai–Tibetan
Plateau, Agric. For. Meteor., 218–219, 161–170,
https://doi.org/10.1016/j.agrformet.2015.12.004, 2016.
Zeng, X., Dicknson, R., Barlage, M., Dai, Y., Wang, G., and Oleson, K.:
Treatment of undercanopy turbulence in land models. J. Climate, 18,
5086–5094, https://doi.org/10.1175/Jcli3595.1, 2005.
Zeng, X., Wang, Z., and Wang, A.: Surface skin temperature and the interplay
between sensible and ground heat fluxes over arid regions, J. Hydrometeorol.,
13, 1359–1370, https://doi.org/10.1175/JHM-D-11-0117.1, 2012.
Zhang, G., Zhou, G., Chen, F., Barlage, M., and Xue, L.: A trial to improve surface heat exchange simulation through sensitivity experiments over a desert steppe site, J. Hydrometeor., 15, 664–684, https://doi.org/10.1175/JHM-D-13-0113.1, 2014.
Zhang, G., Chen, F., and Gan, Y.: Assessing uncertainties in the Noah-MP
ensemble simulations of a cropland site during the Tibet Joint International
Cooperation program field campaign, J. Geophys. Res.-Atmos., 121, 9576–9596,
https://doi.org/10.1002/2016jd024928, 2016.
Zhang, H., Su. Y., Jiang, H., Chao, H., and Su, W.: Influence of snow
subliming process on land-atmosphere interaction at alpine wetland, J.
Glaci. Geocry., 40, 1223–1230, 2018.
Zhang, T.: Influence of the seasonal snow cover on the ground thermal
regime: An overview, Rev. Geophys., 43, RG4002,
https://doi.org/10.1029/2004RG000157, 2005.
Zhao, L., Hu, G., Zou, D., Wu, X., Ma, L., Sun, Z., Yuan, L., Zhou, H., and
Liu, S.: Permafrost changes and its effects on hydrological processes on
Qinghai-Tibet Plateau, B. Chin. Acad. Sci., 34, 1233–1246,
https://doi.org/10.16418/j.issn.1000-3045.2019.11.006, 2019.
Zheng, D., van der Velde, R., Su, Z., Wen, J., Booij, M., Hoekstra, A., and
Wang, X.: Under-canopy turbulence and root water uptake of a Tibetan meadow
ecosystem modeled by Noah-MP, Water Resour. Res., 51, 5735–5755.
https://doi.org/10.1002/2015WR017115, 2015.
Zheng, D., van der Velde, R., Su, Z., Wen, J., and Wang, X.: Assessment of
Noah land surface model with various runoff parameterizations over a Tibetan
river, J. Geophys. Res.-Atmos., 122, 1488–1504,
https://doi.org/10.1002/2016jd025572, 2017.
Zheng, H., Yang, Z.-L., Lin, P., Wei, J., Wu, W.-Y., Li, L., Zhao, L., and
Wang, S.: On the sensitivity of the precipitation partitioning into
evapotranspiration and runoff in land surface parameterizations, Water
Resour. Res., 55, 95–111, https://doi.org/10.1029/2017WR022236, 2019.
Zheng, W., Wei, H., Wang, Z., Zeng, X., Meng, J., Ek, M., Mitchell, K., and
Derber, J.: Improvement of daytime land surface skin temperature over arid
regions in the NCEP GFS model and its impact on satellite data assimilation,
J. Geophys. Res.-Atmos., 117, D06117, https://doi.org/10.1029/2011jd015901,
2012.
Zilitinkevich, S.: Non-local turbulent transport pollution dispersion
aspects of coherent structure of convective flows, in: Air Pollution III, Air
pollution theory and simulation, edited by: Power, H., Moussiopoulos, N., Brebbia, C. A., Computational Mechanics Publ., Southampton, Boston, 1, 53–60, 1995.
Zou, D., Zhao, L., Sheng, Y., Chen, J., Hu, G., Wu, T., Wu, J., Xie, C., Wu, X., Pang, Q., Wang, W., Du, E., Li, W., Liu, G., Li, J., Qin, Y., Qiao, Y., Wang, Z., Shi, J., and Cheng, G.: A new map of permafrost distribution on the Tibetan Plateau, The Cryosphere, 11, 2527–2542, https://doi.org/10.5194/tc-11-2527-2017, 2017.
Short summary
In this study, an ensemble simulation of 55296 scheme combinations for at a typical permafrost site on the Qinghai–Tibet Plateau (QTP) was conducted. The general performance of the Noah-MP model for snow cover events (SCEs), soil temperature (ST) and soil liquid water content (SLW) was assessed, and the sensitivities of parameterization schemes at different depths were investigated. We show that Noah-MP tends to overestimate SCEs and underestimate ST and topsoil SLW on the QTP.
In this study, an ensemble simulation of 55296 scheme combinations for at a typical permafrost...