Articles | Volume 14, issue 3
https://doi.org/10.5194/gmd-14-1753-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-1753-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing the simulated soil hydrothermal regime of the active layer from the Noah-MP land surface model (v1.1) in the permafrost regions of the Qinghai–Tibet Plateau
Xiangfei Li
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
National Cryosphere Desert Data Center, Northwest Institute of
Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000,
China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Xiaodong Wu
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Xiaofan Zhu
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Guojie Hu
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Ren Li
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Yongping Qiao
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Cheng Yang
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Junming Hao
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Jie Ni
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Wensi Ma
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment
and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Data sets
The forcing data, soil temperature and liquid water content at the TGL and BLH sites Xiangfei Li https://doi.org/10.17632/h7hbd69nnr.2
Model code and software
Modified Noah-MP for https://doi.org/10.5194/gmd-2020-142 Xiangfei Li https://doi.org/10.5281/zenodo.4555449
Short summary
In this study, an ensemble simulation of 55296 scheme combinations for at a typical permafrost site on the Qinghai–Tibet Plateau (QTP) was conducted. The general performance of the Noah-MP model for snow cover events (SCEs), soil temperature (ST) and soil liquid water content (SLW) was assessed, and the sensitivities of parameterization schemes at different depths were investigated. We show that Noah-MP tends to overestimate SCEs and underestimate ST and topsoil SLW on the QTP.
In this study, an ensemble simulation of 55296 scheme combinations for at a typical permafrost...