Articles | Volume 13, issue 12
https://doi.org/10.5194/gmd-13-6077-2020
https://doi.org/10.5194/gmd-13-6077-2020
Development and technical paper
 | 
02 Dec 2020
Development and technical paper |  | 02 Dec 2020

Simulating second-generation herbaceous bioenergy crop yield using the global hydrological model H08 (v.bio1)

Zhipin Ai, Naota Hanasaki, Vera Heck, Tomoko Hasegawa, and Shinichiro Fujimori

Related authors

Simulation of crop yield using the global hydrological model H08 (crp.v1)
Zhipin Ai and Naota Hanasaki
Geosci. Model Dev., 16, 3275–3290, https://doi.org/10.5194/gmd-16-3275-2023,https://doi.org/10.5194/gmd-16-3275-2023, 2023
Short summary
Enhancement and validation of a state-of-the-art global hydrological model H08 (v.bio1) to simulate second-generation herbaceous bioenergy crop yield
Zhipin Ai, Naota Hanasaki, Vera Heck, Tomoko Hasegawa, and Shinichiro Fujimori
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-277,https://doi.org/10.5194/gmd-2019-277, 2019
Revised manuscript not accepted
Short summary

Related subject area

Hydrology
Selecting a conceptual hydrological model using Bayes' factors computed with replica-exchange Hamiltonian Monte Carlo and thermodynamic integration
Damian N. Mingo, Remko Nijzink, Christophe Ley, and Jack S. Hale
Geosci. Model Dev., 18, 1709–1736, https://doi.org/10.5194/gmd-18-1709-2025,https://doi.org/10.5194/gmd-18-1709-2025, 2025
Short summary
The Water Table Model (WTM) (v2.0.1): coupled groundwater and dynamic lake modelling
Kerry L. Callaghan, Andrew D. Wickert, Richard Barnes, and Jacqueline Austermann
Geosci. Model Dev., 18, 1463–1486, https://doi.org/10.5194/gmd-18-1463-2025,https://doi.org/10.5194/gmd-18-1463-2025, 2025
Short summary
Modelling rainfall with a Bartlett–Lewis process: pyBL (v1.0.0), a Python software package and an application with short records
Chi-Ling Wei, Pei-Chun Chen, Chien-Yu Tseng, Ting-Yu Dai, Yun-Ting Ho, Ching-Chun Chou, Christian Onof, and Li-Pen Wang
Geosci. Model Dev., 18, 1357–1373, https://doi.org/10.5194/gmd-18-1357-2025,https://doi.org/10.5194/gmd-18-1357-2025, 2025
Short summary
Virtual Joint Field Campaign: a framework of synthetic landscapes to assess multiscale measurement methods of water storage
Till Francke, Cosimo Brogi, Alby Duarte Rocha, Michael Förster, Maik Heistermann, Markus Köhli, Daniel Rasche, Marvin Reich, Paul Schattan, Lena Scheiffele, and Martin Schrön
Geosci. Model Dev., 18, 819–842, https://doi.org/10.5194/gmd-18-819-2025,https://doi.org/10.5194/gmd-18-819-2025, 2025
Short summary
SERGHEI v2.0: introducing a performance-portable, high-performance, three-dimensional variably saturated subsurface flow solver (SERGHEI-RE)
Zhi Li, Gregor Rickert, Na Zheng, Zhibo Zhang, Ilhan Özgen-Xian, and Daniel Caviedes-Voullième
Geosci. Model Dev., 18, 547–562, https://doi.org/10.5194/gmd-18-547-2025,https://doi.org/10.5194/gmd-18-547-2025, 2025
Short summary

Cited articles

Ai, Z., Hanasaki, N., Heck, V., Hasegawa, T., and Fujimori, S.: H08 (v.bio1), Zenodo, https://doi.org/10.5281/zenodo.3521407, 2019. 
Ai, Z., Wang, Q., Yang, Y., Manevski, K., Yi, S., and Zhao, X.: Variation of gross primary production, evapotranspiration and water use efficiency for global croplands, Agr. Forest Meteorol., 287, 107935, https://doi.org/10.1016/j.agrformet.2020.107935, 2020. 
Anderson, M. C., Norman, J. M., Mecikalski, J. R., Otkin, J. A., and Kustas, W. P. A.: A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation, JGR Atmospheres, 112, D10117, https://doi.org/10.1029/2006jd007506, 2007. 
Arnold, J. G., Kiniry, J. R., Srinivasan, R., Williams, J. R., and Haney, E. B., and Neitsch, S. L.: SWAT 2012 Input/Output Documentation, Texas Water Resources Institute, Tamu, USA, 650 pp., 2013. 
Bauer, N., Rose, S. K., Fujimori, S., Van Vuuren, D. P., Weyant, J., Wise, M., Cui, Y., Daioglou, V., Gidden, M. J., Kato, E., Kitous, A., Leblanc, F., Sands, R., Sano, F., Strefler, J., Tsutsui, J., Bibas, R., Fricko, O., Hasegawa, T., Klein, D., Kurosawa, A., Mima, S., and Muratori, M.: Global energy sector emission reductions and bioenergy use: overview of the bioenergy demand phase of the EMF-33 model comparison, Climatic Change, 1–16, https://doi.org/10.1007/s10584-018-2226-y, 2018. 
Download
Short summary
Incorporating bioenergy crops into the well-established global hydrological models is seldom seen today. Here, we successfully enhance a state-of-the-art global hydrological model H08 to simulate bioenergy crop yield. We found that unconstrained irrigation more than doubled the yield under rainfed conditions while simultaneously reducing the water use efficiency by 32 % globally. Our enhanced model provides a new tool for the future assessment of bioenergy–water tradeoffs.
Share