Articles | Volume 13, issue 12
https://doi.org/10.5194/gmd-13-6077-2020
https://doi.org/10.5194/gmd-13-6077-2020
Development and technical paper
 | 
02 Dec 2020
Development and technical paper |  | 02 Dec 2020

Simulating second-generation herbaceous bioenergy crop yield using the global hydrological model H08 (v.bio1)

Zhipin Ai, Naota Hanasaki, Vera Heck, Tomoko Hasegawa, and Shinichiro Fujimori

Related authors

Simulation of crop yield using the global hydrological model H08 (crp.v1)
Zhipin Ai and Naota Hanasaki
Geosci. Model Dev., 16, 3275–3290, https://doi.org/10.5194/gmd-16-3275-2023,https://doi.org/10.5194/gmd-16-3275-2023, 2023
Short summary
Enhancement and validation of a state-of-the-art global hydrological model H08 (v.bio1) to simulate second-generation herbaceous bioenergy crop yield
Zhipin Ai, Naota Hanasaki, Vera Heck, Tomoko Hasegawa, and Shinichiro Fujimori
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-277,https://doi.org/10.5194/gmd-2019-277, 2019
Revised manuscript not accepted
Short summary

Related subject area

Hydrology
HGS-PDAF (version 1.0): a modular data assimilation framework for an integrated surface and subsurface hydrological model
Qi Tang, Hugo Delottier, Wolfgang Kurtz, Lars Nerger, Oliver S. Schilling, and Philip Brunner
Geosci. Model Dev., 17, 3559–3578, https://doi.org/10.5194/gmd-17-3559-2024,https://doi.org/10.5194/gmd-17-3559-2024, 2024
Short summary
Wflow_sbm v0.7.3, a spatially distributed hydrological model: from global data to local applications
Willem J. van Verseveld, Albrecht H. Weerts, Martijn Visser, Joost Buitink, Ruben O. Imhoff, Hélène Boisgontier, Laurène Bouaziz, Dirk Eilander, Mark Hegnauer, Corine ten Velden, and Bobby Russell
Geosci. Model Dev., 17, 3199–3234, https://doi.org/10.5194/gmd-17-3199-2024,https://doi.org/10.5194/gmd-17-3199-2024, 2024
Short summary
Reservoir Assessment Tool version 3.0: a scalable and user-friendly software platform to mobilize the global water management community
Sanchit Minocha, Faisal Hossain, Pritam Das, Sarath Suresh, Shahzaib Khan, George Darkwah, Hyongki Lee, Stefano Galelli, Konstantinos Andreadis, and Perry Oddo
Geosci. Model Dev., 17, 3137–3156, https://doi.org/10.5194/gmd-17-3137-2024,https://doi.org/10.5194/gmd-17-3137-2024, 2024
Short summary
HydroFATE (v1): a high-resolution contaminant fate model for the global river system
Heloisa Ehalt Macedo, Bernhard Lehner, Jim Nicell, and Günther Grill
Geosci. Model Dev., 17, 2877–2899, https://doi.org/10.5194/gmd-17-2877-2024,https://doi.org/10.5194/gmd-17-2877-2024, 2024
Short summary
Validation of a new global irrigation scheme in the land surface model ORCHIDEE v2.2
Pedro Felipe Arboleda-Obando, Agnès Ducharne, Zun Yin, and Philippe Ciais
Geosci. Model Dev., 17, 2141–2164, https://doi.org/10.5194/gmd-17-2141-2024,https://doi.org/10.5194/gmd-17-2141-2024, 2024
Short summary

Cited articles

Ai, Z., Hanasaki, N., Heck, V., Hasegawa, T., and Fujimori, S.: H08 (v.bio1), Zenodo, https://doi.org/10.5281/zenodo.3521407, 2019. 
Ai, Z., Wang, Q., Yang, Y., Manevski, K., Yi, S., and Zhao, X.: Variation of gross primary production, evapotranspiration and water use efficiency for global croplands, Agr. Forest Meteorol., 287, 107935, https://doi.org/10.1016/j.agrformet.2020.107935, 2020. 
Anderson, M. C., Norman, J. M., Mecikalski, J. R., Otkin, J. A., and Kustas, W. P. A.: A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation, JGR Atmospheres, 112, D10117, https://doi.org/10.1029/2006jd007506, 2007. 
Arnold, J. G., Kiniry, J. R., Srinivasan, R., Williams, J. R., and Haney, E. B., and Neitsch, S. L.: SWAT 2012 Input/Output Documentation, Texas Water Resources Institute, Tamu, USA, 650 pp., 2013. 
Bauer, N., Rose, S. K., Fujimori, S., Van Vuuren, D. P., Weyant, J., Wise, M., Cui, Y., Daioglou, V., Gidden, M. J., Kato, E., Kitous, A., Leblanc, F., Sands, R., Sano, F., Strefler, J., Tsutsui, J., Bibas, R., Fricko, O., Hasegawa, T., Klein, D., Kurosawa, A., Mima, S., and Muratori, M.: Global energy sector emission reductions and bioenergy use: overview of the bioenergy demand phase of the EMF-33 model comparison, Climatic Change, 1–16, https://doi.org/10.1007/s10584-018-2226-y, 2018. 
Download
Short summary
Incorporating bioenergy crops into the well-established global hydrological models is seldom seen today. Here, we successfully enhance a state-of-the-art global hydrological model H08 to simulate bioenergy crop yield. We found that unconstrained irrigation more than doubled the yield under rainfed conditions while simultaneously reducing the water use efficiency by 32 % globally. Our enhanced model provides a new tool for the future assessment of bioenergy–water tradeoffs.