Articles | Volume 13, issue 7
https://doi.org/10.5194/gmd-13-3373-2020
https://doi.org/10.5194/gmd-13-3373-2020
Model description paper
 | 
30 Jul 2020
Model description paper |  | 30 Jul 2020

PDE-NetGen 1.0: from symbolic partial differential equation (PDE) representations of physical processes to trainable neural network representations

Olivier Pannekoucke and Ronan Fablet

Related authors

HyPhAI v1.0: Hybrid Physics-AI architecture for cloud cover nowcasting
Rachid El Montassir, Olivier Pannekoucke, and Corentin Lapeyre
EGUsphere, https://doi.org/10.5194/egusphere-2023-3078,https://doi.org/10.5194/egusphere-2023-3078, 2024
Short summary
Toward a multivariate formulation of the parametric Kalman filter assimilation: application to a simplified chemical transport model
Antoine Perrot, Olivier Pannekoucke, and Vincent Guidard
Nonlin. Processes Geophys., 30, 139–166, https://doi.org/10.5194/npg-30-139-2023,https://doi.org/10.5194/npg-30-139-2023, 2023
Short summary
SymPKF (v1.0): a symbolic and computational toolbox for the design of parametric Kalman filter dynamics
Olivier Pannekoucke and Philippe Arbogast
Geosci. Model Dev., 14, 5957–5976, https://doi.org/10.5194/gmd-14-5957-2021,https://doi.org/10.5194/gmd-14-5957-2021, 2021
Short summary
A methodology to obtain model-error covariances due to the discretization scheme from the parametric Kalman filter perspective
Olivier Pannekoucke, Richard Ménard, Mohammad El Aabaribaoune, and Matthieu Plu
Nonlin. Processes Geophys., 28, 1–22, https://doi.org/10.5194/npg-28-1-2021,https://doi.org/10.5194/npg-28-1-2021, 2021
Short summary
Parametric covariance dynamics for the nonlinear diffusive Burgers equation
Olivier Pannekoucke, Marc Bocquet, and Richard Ménard
Nonlin. Processes Geophys., 25, 481–495, https://doi.org/10.5194/npg-25-481-2018,https://doi.org/10.5194/npg-25-481-2018, 2018
Short summary

Related subject area

Numerical methods
VISIR-2: ship weather routing in Python
Gianandrea Mannarini, Mario Leonardo Salinas, Lorenzo Carelli, Nicola Petacco, and Josip Orović
Geosci. Model Dev., 17, 4355–4382, https://doi.org/10.5194/gmd-17-4355-2024,https://doi.org/10.5194/gmd-17-4355-2024, 2024
Short summary
Incremental analysis update (IAU) in the Model for Prediction Across Scales coupled with the Joint Effort for Data assimilation Integration (MPAS–JEDI 2.0.0)
Soyoung Ha, Jonathan J. Guerrette, Ivette Hernández Baños, William C. Skamarock, and Michael G. Duda
Geosci. Model Dev., 17, 4199–4211, https://doi.org/10.5194/gmd-17-4199-2024,https://doi.org/10.5194/gmd-17-4199-2024, 2024
Short summary
Decision-making strategies implemented in SolFinder 1.0 to identify eco-efficient aircraft trajectories: application study in AirTraf 3.0
Federica Castino, Feijia Yin, Volker Grewe, Hiroshi Yamashita, Sigrun Matthes, Simone Dietmüller, Sabine Baumann, Manuel Soler, Abolfazl Simorgh, Maximilian Mendiguchia Meuser, Florian Linke, and Benjamin Lührs
Geosci. Model Dev., 17, 4031–4052, https://doi.org/10.5194/gmd-17-4031-2024,https://doi.org/10.5194/gmd-17-4031-2024, 2024
Short summary
Developing meshing workflows in Gmsh v4.11 for the geologic uncertainty assessment of high-temperature aquifer thermal energy storage
Ali Dashti, Jens C. Grimmer, Christophe Geuzaine, Florian Bauer, and Thomas Kohl
Geosci. Model Dev., 17, 3467–3485, https://doi.org/10.5194/gmd-17-3467-2024,https://doi.org/10.5194/gmd-17-3467-2024, 2024
Short summary
Development and preliminary validation of a land surface image assimilation system based on the Common Land Model
Wangbin Shen, Zhaohui Lin, Zhengkun Qin, and Juan Li
Geosci. Model Dev., 17, 3447–3465, https://doi.org/10.5194/gmd-17-3447-2024,https://doi.org/10.5194/gmd-17-3447-2024, 2024
Short summary

Cited articles

Auer, M., Tschurtschenthaler, T., and Biffl, S.: A Flyweight UML Modelling Tool for Software Development in Heterogeneous Environments, in: Proceedings of the 29th Conference on EUROMICRO, EUROMICRO '03, 267 pp., IEEE Computer Society, Washington, DC, USA, https://doi.org/10.5555/942796.943259, 2003. a
Bolton, T. and Zanna, L.: Applications of Deep Learning to Ocean Data Inference and Subgrid Parameterization, J. Adv. Model. Earth Syst., 11, 376–399, https://doi.org/10.1029/2018ms001472, 2019. a
Cai, J.-F., Dong, B., Osher, S., and Shen, Z.: Image restoration: Total variation, wavelet frames, and beyond, J. Am. Math. Soc., 25, 1033–1089, https://doi.org/10.1090/s0894-0347-2012-00740-1, 2012. a
Chollet, F.: Deep Learning with Python, Manning Publications, 2018. a
Dong, B., Jiang, Q., and Shen, Z.: Image Restoration: Wavelet Frame Shrinkage, Nonlinear Evolution PDEs, and Beyond, Multiscale Model. Sim., 15, 606–660, https://doi.org/10.1137/15m1037457, 2017. a
Download
Short summary
Learning physics from data using a deep neural network is a challenge that requires an appropriate but unknown network architecture. The package introduced here helps to design an architecture by translating known physical equations into a network, which the experimenter completes to capture unknown physical processes. A test bed is introduced to illustrate how this learning allows us to focus on truly unknown physical processes in the hope of making better use of data and digital resources.